JPH095018A - Device for measuring moving quantity - Google Patents

Device for measuring moving quantity

Info

Publication number
JPH095018A
JPH095018A JP7159306A JP15930695A JPH095018A JP H095018 A JPH095018 A JP H095018A JP 7159306 A JP7159306 A JP 7159306A JP 15930695 A JP15930695 A JP 15930695A JP H095018 A JPH095018 A JP H095018A
Authority
JP
Japan
Prior art keywords
reflected
light
mirror
reference light
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7159306A
Other languages
Japanese (ja)
Inventor
Yukio Eda
幸夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7159306A priority Critical patent/JPH095018A/en
Publication of JPH095018A publication Critical patent/JPH095018A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To detect the moving quantity of a lens mount on the optical axis of objective lens or the like, by providing a moving mirror means and a fixed mirror means, according to the change in the light path length difference between the reflection beams of a measurement beam and a reference beam made incident on each reflection surface. CONSTITUTION: A laser beam from a laser light source 1 is made incident on a polar beam splitter 2 and divided into a reference beam and a measurement beam. The reference beam reflected on the splitter 2 passes through a 1/4 wavelength plate 8 and reflected on a board mirror 9, then returns to pass through the plate 8 again to become the reference beam linearly polarized, passing through the splitter 2. The reference beam passes through a corner cube 6 and a 1/2 wavelength plate 7 and reflected on the splitter 2 and a reflection mirror 3. Thereafter, the reference beam passes through a 1/4 reflection plate 4 and reflected on the mirror 9, and then passes through a wavelength plate 4 and made incident on a detector 10. The measurement beam passed through the splitter 2 is reflected at a plate 3, then passes the plate 4 and made incident on the detector 10 again after being reflected on a planar mirror 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プレーンミラー干渉計
を応用した顕微鏡の対物レンズ等の光軸方向への変位を
レーザ光によって高精度に測長する移動量測長装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a movement length measuring device for measuring a displacement in a direction of an optical axis of an objective lens of a microscope to which a plane mirror interferometer is applied with high precision by a laser beam.

【0002】[0002]

【従来の技術】従来、顕微鏡の対物レンズ等に取り付け
られ、光軸方向への変位を測長する移動量測長装置があ
る。一般的に用いられている構成としては、図2に示す
ように顕微鏡の鏡体20にガラススケール21を固定
し、またガラススケール21に重ね合わせるように、対
物レンズ12のマウント11に読み取りヘッド22を固
定して構成している。この構成においては、対物レンズ
12の移動に伴い、読み取りヘッド22が移動し、その
移動量をガラススケール21で読取り測長している。
2. Description of the Related Art Conventionally, there is a movement amount measuring device which is attached to an objective lens of a microscope or the like and measures the displacement in the optical axis direction. As a configuration generally used, as shown in FIG. 2, a glass scale 21 is fixed to a mirror body 20 of a microscope, and a read head 22 is mounted on a mount 11 of an objective lens 12 so as to be superposed on the glass scale 21. Is fixed and configured. In this configuration, the reading head 22 moves as the objective lens 12 moves, and the amount of movement is read and measured by the glass scale 21.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述した従来
の移動量測長装置は、それぞれの部位を鏡体20とマウ
ント11(対物レンズ12)に取り付けているため、対
物レンズ12の光軸とガラススケール21が離れた位置
に設置せざるを得ない。すなわち、対物レンズ12自体
の移動量を直接的に測定するのではなく、マウント11
の移動では光軸のずれ等が発生しないことを前提とし
て、マウント11の移動量を対物レンズ12の移動量と
して測長している。しかし、実際にはマウント11は、
機械的な構成により移動しており、精密な部材で構成し
ても、その移動時には僅かであってもぶれは必然的に発
生する。このぶれによって、対物レンズの光軸にぶれが
生じる。
However, in the above-described conventional movement length measuring device, since the respective parts are attached to the mirror body 20 and the mount 11 (objective lens 12), the optical axis of the objective lens 12 and There is no choice but to install the glass scale 21 at a remote position. That is, instead of directly measuring the amount of movement of the objective lens 12 itself, the mount 11
The amount of movement of the mount 11 is measured as the amount of movement of the objective lens 12 on the premise that the displacement of the optical axis does not occur in the movement of. However, the mount 11 is actually
It moves due to its mechanical structure, and even if it is made up of precision members, even if it is a slight amount, blurring will inevitably occur. This blur causes a blur on the optical axis of the objective lens.

【0004】従って、対物レンズの移動時の真角度のぶ
れの影響によるアッベエラーを避けることは難しい。対
物レンズの真上にガラススケールを設置すれば、アッベ
エラーを無くすことはできるが対物レンズによる観察路
を確保する必要があるため、このような配置は難しい。
Therefore, it is difficult to avoid Abbe error due to the influence of the shake of the true angle when the objective lens is moved. If a glass scale is installed directly above the objective lens, Abbe error can be eliminated, but such an arrangement is difficult because it is necessary to secure an observation path by the objective lens.

【0005】そこで本発明は、小型化され、レーザ光の
干渉を利用して、顕微鏡の対物レンズ等の光軸方向の移
動量を高精度に測長する移動量測長装置を提供すること
を目的とする。
Therefore, the present invention is to provide a moving amount measuring device which is miniaturized and which highly accurately measures the moving amount of an objective lens of a microscope in the optical axis direction by utilizing the interference of laser light. To aim.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、レーザ光源と、前記レーザ光源からのレー
ザ光を参照光と測定光に分岐する偏光ビームスプリッタ
と、移動可能な対物レンズ鏡筒の観察路範囲外の周辺部
分に固定され、入射した前記測定光を反射面の少なくと
も2箇所で反射する移動ミラー手段と、前記移動ミラー
手段の反射面と所定間隔で平行して配置され、入射した
前記参照光を反射面の少なくとも2箇所で反射する固定
ミラー手段と、前記移動ミラー手段と前記固定ミラー手
段で反射された参照光と測定光を入射し、該参照光と測
定光の光路長差の変化により対物レンズ鏡筒の移動量を
検出する検出手段と、前記偏光ビームスプリッタにより
分岐された参照光及び測定光を前記移動ミラー手段及び
前記固定ミラー手段のそれぞれ所定の反射箇所に導き、
それぞれの反射箇所で反射された参照光と測定光を前記
検出手段に導く光路手段とで構成された移動量測長装置
を提供する。
To achieve the above object, the present invention provides a laser light source, a polarization beam splitter for splitting the laser light from the laser light source into reference light and measurement light, and a movable objective lens. The movable mirror means is fixed to a peripheral portion outside the observation path range of the lens barrel, and is arranged in parallel with the reflecting surface of the moving mirror means at a predetermined interval, and the moving mirror means for reflecting the incident measuring light at at least two points on the reflecting surface. Fixed mirror means for reflecting the incident reference light at at least two points on the reflection surface, reference light and measurement light reflected by the movable mirror means and the fixed mirror means, and the reference light and the measurement light Detecting means for detecting the amount of movement of the objective lens barrel by changing the difference in optical path length, reference light and measurement light split by the polarization beam splitter, the moving mirror means and the fixed mirror hand. Respectively guided to a predetermined reflection point of
Provided is a movement length measuring device including a reference light reflected at each reflection point and an optical path means for guiding the measurement light to the detecting means.

【0007】[0007]

【作用】以上のような構成の移動量測長装置は、顕微鏡
における対物レンズ鏡筒(レンズマウント)の観察路範
囲外の周辺部分に取り付けられた移動ミラー手段と、顕
微鏡内でレンズマウントを囲んだ近傍に設けられた固定
ミラー手段と各反射面の少なくとも2箇所の反射箇所
に、それぞれ測定光と参照光とを光路手段により入射さ
れ、それらの反射光の光路長差の変化により対物レンズ
等の光軸上のレンズマウントの移動量が検出される。
The movement length measuring device having the above-described structure includes the moving mirror means attached to the peripheral portion of the objective lens barrel (lens mount) outside the observation path range of the microscope and the lens mount in the microscope. The measuring light and the reference light are made incident on the fixed mirror means provided in the vicinity thereof and at least two reflecting points of each reflecting surface by the optical path means, and the objective lens or the like is caused by the change in the optical path length difference between the reflected light. The amount of movement of the lens mount on the optical axis of is detected.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1には、本発明による実施例として顕微
鏡に装着したプレーンミラー干渉計の原理を応用した移
動距離測長装置の概略的な構成を示し説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows, as an embodiment according to the present invention, a schematic configuration of a moving distance measuring apparatus to which the principle of a plane mirror interferometer mounted on a microscope is applied.

【0009】この移動距離測長装置は、レーザ光を発生
させるレーザ光源1と、発生したレーザ光を後述する参
照光と測定光に分岐する偏光ビームスプリッタ2と、図
示されない駆動部により上下に移動可能なレンズマウン
ト(対物レンズ鏡筒)11の上部に取り付けられた穴開
き平面ミラー(移動ミラー)5と、偏光ビームスプリッ
タ2と穴開き平面ミラー5との間に固定され穴開き平面
ミラー5よりも大口径の穴開き平面ミラー9と、偏光ビ
ームスプリッタ2と穴開き平面ミラー(固定ミラー)9
との間に設けられた1/4波長板8と、その偏光ビーム
スプリッタ2の反対側に設けられたコーナキューブ6お
よび1/2波長板7と、参照光及び測定光を偏光ビーム
スプリッタ2と穴開き平面ミラー5,9との間で反射す
る反射鏡3と、反射鏡3と穴開き平面ミラー5,9との
間に設けられた1/4波長板4と、穴開き平面ミラー
5,9を反射した参照光及び測定光を検出する検出器1
0と、レンズマウント11に取り付けられた顕微鏡の対
物レンズ12と構成される。レンズマウント11に取り
付けられるものは、顕微鏡の対物レンズに限定されるも
のではない。また前記穴開き平面ミラー9は、偏光ビー
ムスプリッタ2、反射鏡3に対して固定されているもの
とする。
This moving distance measuring apparatus moves up and down by a laser light source 1 for generating a laser beam, a polarization beam splitter 2 for splitting the generated laser beam into reference light and measuring light which will be described later, and a drive unit (not shown). A perforated plane mirror (moving mirror) 5 attached to the upper part of a possible lens mount (objective lens barrel) 11, and a perforated plane mirror 5 fixed between the polarization beam splitter 2 and the perforated plane mirror 5. Also a large-diameter perforated plane mirror 9, a polarization beam splitter 2, and a perforated plane mirror (fixed mirror) 9
A quarter-wave plate 8 provided between the reference beam and the measurement beam, and the corner cube 6 and the half-wave plate 7 provided on the opposite side of the polarization beam splitter 2 from the polarization beam splitter 2. The reflecting mirror 3 that reflects between the perforated plane mirrors 5 and 9, the quarter-wave plate 4 provided between the reflective mirror 3 and the perforated plane mirrors 5 and 9, and the perforated plane mirror 5, Detector 1 for detecting reference light and measurement light reflected by 9
0, and the objective lens 12 of the microscope attached to the lens mount 11. What is mounted on the lens mount 11 is not limited to the objective lens of the microscope. The perforated plane mirror 9 is fixed to the polarization beam splitter 2 and the reflection mirror 3.

【0010】このように構成された移動距離測長装置に
おける測長動作について説明する。まず、レーザ光源1
からのレーザ光が偏光ビームスプリッタ2に入射され、
参照光と測定光に分岐される。ここで、参照光と測定光
は互いに直角の直線偏光となる。
A length measuring operation in the moving distance length measuring device thus constructed will be described. First, the laser light source 1
The laser light from is incident on the polarization beam splitter 2,
It is split into reference light and measurement light. Here, the reference light and the measurement light are linearly polarized lights that are orthogonal to each other.

【0011】前記偏光ビームスプリッタ2で反射した参
照光は、1/4波長板8を透過し、穴開き平面ミラー9
で反射され、再び、1/4波長板8を透過し、90度回
転した直線偏光の参照光となり、偏光ビームスプリッタ
2を透過する。そして偏光ビームスプリッタ2を透過し
た参照光は、コーナキューブ6、1/2波長板7を経由
し、再び90度回転した直線偏光の参照光となって、偏
光ビームスプリッタ2、反射鏡3で反射される。
The reference light reflected by the polarization beam splitter 2 is transmitted through the quarter-wave plate 8 and a plane mirror 9 with a hole is formed.
The reflected light is transmitted through the quarter-wave plate 8 again, becomes linearly polarized reference light rotated by 90 degrees, and is transmitted through the polarization beam splitter 2. The reference light that has passed through the polarization beam splitter 2 passes through the corner cube 6 and the half-wave plate 7 and becomes linearly polarized reference light that is rotated 90 degrees again, and is reflected by the polarization beam splitter 2 and the reflecting mirror 3. To be done.

【0012】さらに反射鏡3で反射された参照光は、1
/4波長板4を透過し、穴開き平面ミラー9で反射さ
れ、再び、1/4波長板4を透過し、90度回転して、
検出器10に入射する。
Further, the reference light reflected by the reflecting mirror 3 is 1
It passes through the quarter wave plate 4, is reflected by the perforated plane mirror 9, passes through the quarter wave plate 4 again, and is rotated 90 degrees,
It is incident on the detector 10.

【0013】一方、偏光ビームスプリッタ2で透過した
測定光は、反射鏡3で反射され、1/4波長板4を透過
し、穴開き平面ミラー5で反射され、再び、1/4波長
板4を透過し、90度回転した直線偏光の測定光とな
り、反射鏡3、偏光ビームスプリッタ2で反射される。
そして前記偏光ビームスプリッタ2で反射した測定光
は、コーナーキューブ6、1/2波長板7を経由し、再
び90度回転した直線偏光の測定光となり、偏光ビーム
スプリッタ2、1/4波長板4を透過し、穴開き平面ミ
ラー5で反射され、再び、1/4波長板4を透過し、偏
光ビームスプリッタ2で反射され、検出器10に入射す
る。
On the other hand, the measurement light transmitted by the polarization beam splitter 2 is reflected by the reflecting mirror 3, is transmitted through the quarter-wave plate 4, is reflected by the perforated plane mirror 5, and is again the quarter-wave plate 4. Of the linearly polarized light, which is rotated by 90 degrees and becomes the measuring light of linearly polarized light, which is reflected by the reflecting mirror 3 and the polarization beam splitter 2.
Then, the measurement light reflected by the polarization beam splitter 2 passes through the corner cube 6 and the half-wave plate 7 to become the measurement light of linearly polarized light which is rotated by 90 degrees again, and becomes the polarization beam splitter 2 and the quarter-wave plate 4. Is reflected by the perforated plane mirror 5, again transmitted through the quarter-wave plate 4, reflected by the polarization beam splitter 2, and incident on the detector 10.

【0014】前記穴開き平面ミラー5は、レンズマウン
ト11に固定される。前記穴開き平面ミラー9は、偏光
ビームスプリッタ2、反射鏡3に対して、固定されてい
る。前記穴開き平面ミラー5,9ともに対物レンズ12
の観察光路を遮らない大きさの穴を確保している。ここ
で、レンズマウント11が変位Lの移動をすると、検出
器10には、レーザ光源1の波長を長さ基準とした周期
的な干渉信号が得られる。
The perforated plane mirror 5 is fixed to the lens mount 11. The perforated plane mirror 9 is fixed to the polarization beam splitter 2 and the reflection mirror 3. The perforated plane mirrors 5 and 9 are both objective lenses 12
A hole of a size that does not block the observation light path is secured. Here, when the lens mount 11 moves by the displacement L, the detector 10 obtains a periodic interference signal with the wavelength of the laser light source 1 as a length reference.

【0015】この干渉信号をIとすると、 I=A12 +A22 +2・A1・A2・Cos(4nL/λ)… 式1 と表すことができる。ここで、A1は測定光の振幅、A
2は参照光の振幅、λはレーザ光源1のレーザ波長値、
nは光路の屈折率であり、空気中で使用する場合は空気
の屈折率となる。
When this interference signal is I, it can be expressed as follows: I = A1 2 + A2 2 + 2 · A1 · A2 · Cos (4nL / λ). Where A1 is the amplitude of the measurement light, A
2 is the amplitude of the reference light, λ is the laser wavelength value of the laser light source 1,
n is the refractive index of the optical path, and is the refractive index of air when used in air.

【0016】通常、対物レンズの移動量は、非常に小さ
く、高分解能、高精度が要求される場合が多い。図1に
おいて、参照光と測定光は、ほぼ共通光路となってお
り、外乱に強く、安定した測長ができる。
Usually, the amount of movement of the objective lens is very small, and high resolution and high accuracy are often required. In FIG. 1, the reference light and the measurement light have a substantially common optical path, which is resistant to disturbance and enables stable length measurement.

【0017】また、前記穴開き平面ミラー5は測定光を
2回反射するが、対物レンズ12の光軸に対して対象な
位置で、それぞれ一回づつ反射されるため、対物レンズ
12の光軸上のレンズマウント11の移動量を正確に測
長することができる。
The perforated plane mirror 5 reflects the measurement light twice, but since it is reflected once at each target position with respect to the optical axis of the objective lens 12, the optical axis of the objective lens 12 is reflected. The amount of movement of the upper lens mount 11 can be accurately measured.

【0018】すなわち、図2に示した従来の構成で発生
したアッベエラーを無くすことが可能となる。また、参
照光と測定光の光路長差ΔZ(図1に示す)を数nm程
度に納めることができるため、レーザ光源1の波長安定
度は、高い安定度は必要としない。
That is, it becomes possible to eliminate the Abbe error generated in the conventional structure shown in FIG. Further, since the optical path length difference ΔZ (shown in FIG. 1) between the reference light and the measurement light can be set to about several nm, the wavelength stability of the laser light source 1 does not need to be high.

【0019】従って、特に高い精度を要求されない測長
精度であれば、簡易的な波長安定化レーザの使用も可能
であり、低価格化や小型化に有利である。例えば、半導
体レーザのような小型のレーザ光源を使用することも可
能となり、全体を小型化、低価格化を実現することがで
きる。特に顕微鏡等の内部に図1に示すようなレーザ光
の干渉を利用した、例えばプレーンミラー干渉計の原理
を応用した干渉計を組み込む場合は、小型化という点で
大きなメリットが得られる。
Therefore, if the length measurement accuracy is not particularly required to be high, a simple wavelength-stabilized laser can be used, which is advantageous for cost reduction and size reduction. For example, it is possible to use a small laser light source such as a semiconductor laser, and it is possible to realize a small size and a low price as a whole. In particular, when an interferometer utilizing the interference of laser light as shown in FIG. 1, for example, an interferometer applying the principle of a plane mirror interferometer is incorporated in a microscope or the like, a great advantage can be obtained in terms of downsizing.

【0020】以上の実施例に基づいて説明したが、本明
細書には、以下のような発明も含まれる。 (1)レーザ光源と、前記レーザ光源からのレーザ光を
参照光と測定光に分岐する偏光ビームスプリッタと、移
動可能な対物レンズ鏡筒の観察路に入り込まない上部端
に取り付けられ、入射した前記測定光を平面な反射面の
少なくとも2箇所で反射する移動ミラー手段と、前記移
動ミラー手段の反射面と所定間隔をあけて平行して固定
され、入射した前記参照光を平面な反射面の少なくとも
2箇所で反射する固定ミラー手段と、前記移動ミラー手
段と前記固定ミラー手段で反射された参照光と測定光を
入射し、該参照光と測定光の光路長差の変化により光軸
上の対物レンズ鏡筒の移動量を検出する検出手段と、前
記偏光ビームスプリッタにより分岐された参照光及び測
定光を前記移動ミラー手段及び前記固定ミラー手段のそ
れぞれ所定の反射箇所に導き、それぞれの反射箇所で反
射された参照光と測定光を前記検出手段に導く光路手段
と、を具備することを特徴とする移動量測長装置。
Although the description has been made based on the above embodiment, the present invention also includes the following inventions. (1) A laser light source, a polarization beam splitter for splitting the laser light from the laser light source into a reference light and a measurement light, and a movable objective lens barrel, which is attached to the upper end of the movable path of the objective lens barrel and does not enter the observation path. Moving mirror means for reflecting the measurement light at least at two points on the flat reflecting surface, and fixed parallel to the reflecting surface of the moving mirror means at a predetermined interval, and at least the incident reference light on the flat reflecting surface. Fixed mirror means reflecting at two points, reference light and measurement light reflected by the moving mirror means and the fixed mirror means are incident, and the objective on the optical axis is changed by a change in optical path length difference between the reference light and the measurement light. Detecting means for detecting the amount of movement of the lens barrel, and predetermined reflection of the reference light and the measuring light split by the polarization beam splitter by the moving mirror means and the fixed mirror means, respectively. Guided at the movement amount measuring apparatus for measuring light and reference light reflected by the respective reflecting locations, characterized by comprising, an optical path means for guiding said detecting means.

【0021】(2)前記移動ミラー手段及び前記固定ミ
ラー手段の各平面ミラーは、対物レンズの光軸に対して
対象な位置で測定光を、それぞれ一回づつ、2回反射
し、前記対物レンズの光軸上の対物レンズ鏡筒(レンズ
マウント)の移動量を測長することを特徴とする前記
(1)記載の移動量測長装置。
(2) Each of the plane mirrors of the movable mirror means and the fixed mirror means reflects the measurement light at a target position with respect to the optical axis of the objective lens once and twice respectively, and the objective lens The distance measuring device according to (1) above, which measures the amount of movement of the objective lens barrel (lens mount) on the optical axis.

【0022】(3)前記平面ミラーは、レンズマウント
の対物レンズの観察路に入り込まないように穴があけら
れた形状であることを特徴とする前記(2)記載の移動
量測長装置。
(3) The movement length measuring device according to (2), wherein the plane mirror has a shape in which a hole is formed so as not to enter the observation path of the objective lens of the lens mount.

【0023】(4)前記レーザ光源からのレーザ光は、
前記偏光ビームスプリッタにより、互いに直角の直線偏
光となる参照光と測定光に分岐されることを特徴とする
前記(1)記載の移動量測長装置。
(4) The laser light from the laser light source is
The movement length measuring device according to (1), wherein the polarization beam splitter splits the reference light and the measurement light, which are linearly polarized light orthogonal to each other.

【0024】(5)前記移動ミラー手段の反射面と前記
固定ミラー手段の反射面との所定間隔(参照光と測定光
の光路長差ΔZ)を接近させて配置し、所定の波長安定
度にすることを特徴とする前記(1)記載の移動量測長
装置。
(5) The reflecting surface of the moving mirror means and the reflecting surface of the fixed mirror means are arranged close to each other by a predetermined distance (optical path length difference ΔZ between the reference light and the measurement light) to obtain a predetermined wavelength stability. The movement length measuring device according to (1) above.

【0025】[0025]

【発明の効果】以上詳述したように本発明によれば、レ
ーザ光の干渉を利用して、顕微鏡における対物レンズ等
の光軸上におけるレンズマウントの移動量を測長するこ
とができる移動量測長装置を提供することができる。
As described above in detail, according to the present invention, the amount of movement of the lens mount on the optical axis of the objective lens or the like in the microscope can be measured by utilizing the interference of laser light. A length measuring device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の顕微鏡の対物レンズ等に取り付けら
れ、光軸方向への変位に測長する移動量測長装置の概略
構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a movement length measuring device which is attached to an objective lens or the like of a microscope of the present invention and measures a displacement in a direction of an optical axis.

【図2】従来の顕微鏡の対物レンズ等に取り付けられ、
光軸方向への変位に測長する移動量測長装置の概略構成
を示す図である。
FIG. 2 is attached to an objective lens of a conventional microscope,
It is a figure which shows schematic structure of the movement amount measuring device which measures length by the displacement to an optical axis direction.

【符号の説明】[Explanation of symbols]

1…レーザ光源、2…偏光ビームスプリッタ、3…反射
鏡、4,8…1/4波長板、5,9…穴開き平面ミラ
ー、6…コーナキューブ、7…1/2波長板、10…検
出器、11…マウント、12…対物レンズ。
DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Polarization beam splitter, 3 ... Reflecting mirror, 4, 8 ... 1/4 wavelength plate, 5, 9 ... Perforated plane mirror, 6 ... Corner cube, 7 ... 1/2 wavelength plate, 10 ... Detector, 11 ... Mount, 12 ... Objective lens.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源と、 前記レーザ光源からのレーザ光を参照光と測定光に分岐
する偏光ビームスプリッタと、 移動可能な対物レンズ鏡筒の観察路範囲外の周辺部分に
取り付けられ、入射した前記測定光を反射面の少なくと
も2箇所で反射する移動ミラー手段と、 前記移動ミラー手段の反射面と所定間隔をあけて平行し
て固定され、入射した前記参照光を反射面の少なくとも
2箇所で反射する固定ミラー手段と、 前記移動ミラー手段と前記固定ミラー手段で反射された
参照光と測定光を入射し、該参照光と測定光の光路長差
の変化により光軸上の対物レンズ鏡筒の移動量を検出す
る検出手段と、 前記偏光ビームスプリッタにより分岐された参照光及び
測定光を前記移動ミラー手段及び前記固定ミラー手段の
それぞれ所定の反射箇所に導き、それぞれの反射箇所で
反射された参照光と測定光を前記検出手段に導く光路手
段と、を具備することを特徴とする移動量測長装置。
1. A laser light source, a polarization beam splitter for splitting the laser light from the laser light source into a reference light and a measurement light, and a movable objective lens barrel which is attached to a peripheral portion outside an observation path range and is incident. The moving mirror means for reflecting the measured light at at least two points on the reflecting surface, and the fixed reference light which is fixed in parallel with the reflecting surface of the moving mirror means at a predetermined interval, and the incident reference light at at least two points on the reflecting surface. Fixed mirror means for reflecting the light on the optical axis, the reference light and the measurement light reflected by the movable mirror means and the fixed mirror means, and the objective lens mirror on the optical axis due to a change in optical path length difference between the reference light and the measurement light. Detecting means for detecting the amount of movement of the cylinder, and the reference light and the measuring light split by the polarization beam splitter are respectively reflected at predetermined reflection points of the moving mirror means and the fixed mirror means. Come, the movement amount measuring apparatus reference light reflected by the respective reflecting locations and the measurement light, characterized by comprising, an optical path means for guiding said detecting means.
【請求項2】 前記移動量測長装置の光路手段は、所定
の偏光を行う複数の波長板、光路方向を変えるコーナキ
ューブ及び反射鏡を具備し、 前記偏光ビームスプリッタで分岐された参照光が、第1
の1/4波長板を透過し、固定ミラー手段の反射面の第
1の所定箇所で反射され、再び、前記第1の1/4波長
板を透過し、90度回転した直線偏光の参照光に偏光さ
れ、前記偏光ビームスプリッタを透過し、コーナキュー
ブ、1/2波長板を経由し、再び、90度回転した直線
偏光の参照光となって、該偏光ビームスプリッタ及び反
射鏡で反射され、 前記反射鏡で反射された参照光は、第2の1/4波長板
を透過し、固定ミラー手段の反射面の第2の所定箇所で
反射され、再び、第2の1/4波長板を透過し、90度
回転して、検出手段に入射する第1の光路を形成し、 且つ、前記偏光ビームスプリッタで分岐された測定光
が、前記反射鏡で反射され、第2の1/4波長板を透過
し、前記移動ミラー手段の反射面の第1の所定箇所で反
射され、再び、前記第2の1/4波長板を透過し、90
度回転した直線偏光の測定光に偏光され、前記反射鏡及
び前記偏光ビームスプリッタで反射され、 前記偏光ビームスプリッタで反射された測定光が前記コ
ーナーキューブ及び前記1/2波長板を経由し、再び9
0度回転した直線偏光の測定光に偏光された後、前記第
1の1/4波長板を透過し、移動ミラー手段の反射面の
第2の所定箇所で反射され、再び、前記第1の1/4波
長板を透過し、前記偏光ビームスプリッタで反射され、
検出手段に入射する第2の光路を形成し、 前記参照光と前記測定光は、反射面を除き共通光路に形
成されることを特徴とする請求項1記載の移動量測長装
置。
2. The optical path means of the movement length measuring device comprises a plurality of wavelength plates for performing predetermined polarization, a corner cube for changing the optical path direction, and a reflecting mirror, and the reference light split by the polarization beam splitter is , First
Of the linearly polarized reference light which is transmitted through the 1/4 wavelength plate, is reflected at the first predetermined position on the reflecting surface of the fixed mirror means, is transmitted again through the 1/4 wavelength plate, and is rotated by 90 degrees. Polarized light, transmitted through the polarization beam splitter, passed through a corner cube and a half-wave plate, and again becomes linearly polarized reference light rotated by 90 degrees, and is reflected by the polarization beam splitter and a reflecting mirror. The reference light reflected by the reflecting mirror is transmitted through the second quarter-wave plate, is reflected at the second predetermined position on the reflecting surface of the fixed mirror means, and is again reflected by the second quarter-wave plate. The measurement light, which is transmitted and rotated by 90 degrees to form a first optical path incident on the detection means, and which is branched by the polarization beam splitter is reflected by the reflecting mirror to generate a second quarter wavelength. Transmits through the plate and is reflected at the first predetermined location on the reflecting surface of the moving mirror means. It is again transmitted through the second quarter-wave plate, 90
The linearly polarized measuring light rotated by a degree is reflected by the reflecting mirror and the polarizing beam splitter, and the measuring light reflected by the polarizing beam splitter passes through the corner cube and the half-wave plate, and again. 9
After being polarized into the linearly polarized measuring light rotated by 0 °, it is transmitted through the first quarter-wave plate, is reflected at the second predetermined position on the reflecting surface of the moving mirror means, and is again the first. Transmitted through the quarter-wave plate and reflected by the polarization beam splitter,
2. The movement length measuring device according to claim 1, wherein a second optical path that enters the detection means is formed, and the reference light and the measurement light are formed in a common optical path except for a reflecting surface.
【請求項3】 前記移動量測長装置の検出手段が検出す
る参照光と測定光の光路長差の変化において、 測定光の振幅をA1、参照光の振幅をA2、レーザ光源
のレーザ波長値をλ、光路の屈折率をnと、対物レンズ
鏡筒の移動変位長をLとすると、検出手段は、 I=A12 +A22 +2・A1・A2・Cos(4nL
/λ) に基づく、レーザ光源の波長を長さ基準とした周期的な
干渉信号Iを得ることを特徴とする請求項1記載の移動
量測長装置。
3. Amplitude of the measurement light is A1, amplitude of the reference light is A2, and laser wavelength value of the laser light source is a change in the optical path length difference between the reference light and the measurement light detected by the detection means of the movement amount measuring device. Is λ, the refractive index of the optical path is n, and the displacement length of the objective lens barrel is L, the detection means is: I = A1 2 + A2 2 + 2 · A1 · A2 · Cos (4nL
2. The movement length measuring apparatus according to claim 1, wherein a periodic interference signal I based on the wavelength of the laser light source as a length reference is obtained based on / λ).
JP7159306A 1995-06-26 1995-06-26 Device for measuring moving quantity Withdrawn JPH095018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159306A JPH095018A (en) 1995-06-26 1995-06-26 Device for measuring moving quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159306A JPH095018A (en) 1995-06-26 1995-06-26 Device for measuring moving quantity

Publications (1)

Publication Number Publication Date
JPH095018A true JPH095018A (en) 1997-01-10

Family

ID=15690928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159306A Withdrawn JPH095018A (en) 1995-06-26 1995-06-26 Device for measuring moving quantity

Country Status (1)

Country Link
JP (1) JPH095018A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
CN104697442A (en) * 2015-03-30 2015-06-10 北方民族大学 Motion-compensated plane reflection mirror laser interferometer and using method
CN107643055A (en) * 2017-09-29 2018-01-30 中国科学院西安光学精密机械研究所 Self-reference collimated light path system and calculating tested angle method based on light beam
CN110514139A (en) * 2019-08-13 2019-11-29 桂林电子科技大学 A kind of the reflecting mirror surface shape change detecting device and method of laser interferometry system
CN115128800A (en) * 2022-06-27 2022-09-30 西北工业大学 Optical displacement sensitive unit based on F-P cavity and inverse design method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
CN104697442A (en) * 2015-03-30 2015-06-10 北方民族大学 Motion-compensated plane reflection mirror laser interferometer and using method
CN104697442B (en) * 2015-03-30 2018-07-20 北方民族大学 A kind of motion compensation formula planar reflector laser interference instrument and application method
CN107643055A (en) * 2017-09-29 2018-01-30 中国科学院西安光学精密机械研究所 Self-reference collimated light path system and calculating tested angle method based on light beam
CN110514139A (en) * 2019-08-13 2019-11-29 桂林电子科技大学 A kind of the reflecting mirror surface shape change detecting device and method of laser interferometry system
CN115128800A (en) * 2022-06-27 2022-09-30 西北工业大学 Optical displacement sensitive unit based on F-P cavity and inverse design method
CN115128800B (en) * 2022-06-27 2024-02-02 西北工业大学 Optical displacement sensitive unit based on F-P cavity and reverse design method

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
US4576479A (en) Apparatus and method for investigation of a surface
US6122058A (en) Interferometer system with two wavelengths, and lithographic apparatus provided with such a system
US4534649A (en) Surface profile interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
CN112484648B (en) Displacement measurement system and method for heterodyne optical fiber interferometer
WO2022105533A1 (en) Interferometer displacement measurement system and method
US8547557B2 (en) Apparatus for determining a height map of a surface through both interferometric and non-interferometric measurements
JP2603429B2 (en) Tracking laser interferometer
JPH095018A (en) Device for measuring moving quantity
GB2109545A (en) Surface profile interferometer
JPS5979104A (en) Optical device
JP2002116010A (en) Three-dimensional shape measuring method and device
US20240011762A1 (en) Compact dual pass interferometer for a plane mirror interferometer
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH0754802Y2 (en) Contact type profilometer
JP3053135B2 (en) High precision coordinate measuring instrument
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JPH09126712A (en) Laser length measuring machine
JP3064614B2 (en) High precision coordinate measuring device
JPH02259506A (en) Fringe scanning type interference measuring instrument
JPS61272605A (en) Interferometer for measuring surface shape
JPH04372804A (en) Optical system for measuring linear motion
JPS61202102A (en) Light wave interfering microscope

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903