JPH0754802Y2 - Contact type profilometer - Google Patents

Contact type profilometer

Info

Publication number
JPH0754802Y2
JPH0754802Y2 JP1992088549U JP8854992U JPH0754802Y2 JP H0754802 Y2 JPH0754802 Y2 JP H0754802Y2 JP 1992088549 U JP1992088549 U JP 1992088549U JP 8854992 U JP8854992 U JP 8854992U JP H0754802 Y2 JPH0754802 Y2 JP H0754802Y2
Authority
JP
Japan
Prior art keywords
light
reflecting mirror
measuring
beam splitter
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992088549U
Other languages
Japanese (ja)
Other versions
JPH0649954U (en
Inventor
朗 樋口
Original Assignee
株式会社小坂研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小坂研究所 filed Critical 株式会社小坂研究所
Priority to JP1992088549U priority Critical patent/JPH0754802Y2/en
Publication of JPH0649954U publication Critical patent/JPH0649954U/en
Application granted granted Critical
Publication of JPH0754802Y2 publication Critical patent/JPH0754802Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、被測定物の表面を探針
(スタイラス)により追従させる事によって、この表面
の形状を測定する、接触式表面形状測定器に関し、上記
表面の形状に応じた上記探針の変位を、高精度に検出可
能とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact type surface profile measuring instrument for measuring the surface profile of a measured object by following it with a probe (stylus). In addition, the displacement of the probe can be detected with high accuracy.

【0002】[0002]

【従来の技術】金属やガラスの表面形状を測定する為、
従来から接触式表面形状測定器が使用されている。この
従来の接触式表面形状測定器は、横軸により揺動自在と
された可動腕体の一端に、ダイヤモンド等の探針を設
け、この探針を、測定すべき表面上を接触した状態でな
ぞらせる。一端に探針を設けた可動腕体の他端には平面
反射鏡を設けており、上記表面の形状に伴なう変位を、
マイケルソン型の干渉計を用いて検出する。これによ
り、上記表面の形状を測定する事が出来る。
2. Description of the Related Art In order to measure the surface shape of metal or glass,
Conventionally, a contact-type profilometer has been used. This conventional contact-type surface profile measuring instrument is provided with a probe such as a diamond at one end of a movable arm that can be swung by a horizontal axis, and the probe is in contact with the surface to be measured. Trace it. A flat reflecting mirror is provided at the other end of the movable arm that has a probe at one end, and displacement due to the shape of the surface is
Detect using a Michelson type interferometer. Thereby, the shape of the surface can be measured.

【0003】しかしながら、上述した従来の接触式表面
形状測定器に於いては、汎用的な使用が不可能であっ
た。即ち、上述した従来装置を用いて、汎用的な測定を
行なう為には、上記横軸から探針を設けた一端迄の距離
を、この横軸から平面反射鏡を設けた他端迄の距離より
も大きくする必要がある。この為、被測定物の表面形状
の測定に直接関与する、可動腕体他端の変位が、上記表
面形状に追従する探針の変位よりも小さくなり、この表
面形状を、縮小して検出する事になってしまう。この結
果、高精度の検出が困難になってしまう。
However, the conventional contact-type surface profile measuring instrument described above cannot be used for general purposes. That is, in order to perform general-purpose measurement using the above-mentioned conventional device, the distance from the horizontal axis to one end where the probe is provided is the distance from this horizontal axis to the other end where the plane reflecting mirror is provided. Need to be larger than. Therefore, the displacement of the other end of the movable arm, which is directly involved in the measurement of the surface shape of the object to be measured, becomes smaller than the displacement of the probe that follows the surface shape, and this surface shape is reduced and detected. It becomes a matter. As a result, high precision detection becomes difficult.

【0004】特公平4−5922号公報には、可動腕体
の他端に、互いに直行した3個の反射面を有し、光線を
入射方向と平行、且つ逆向きに出射させるコーナーキュ
ーブを設け、被測定物の表面形状に応じた探針の変位に
伴なうコーナーキューブの変位を、干渉計によって検出
する装置が記載されている。
In Japanese Patent Publication No. 4-5922, a corner cube is provided at the other end of a movable arm, which has three reflecting surfaces orthogonal to each other and emits light rays in a direction parallel to and parallel to the incident direction. , An apparatus for detecting the displacement of a corner cube associated with the displacement of a probe according to the surface shape of an object to be measured by an interferometer.

【0005】この装置によれば、上記コーナーキューブ
の1/4波長分の変位に対し、1個の干渉縞が変化する
為、2倍の感度を得る事が出来る。更に、被測定物の表
面形状によっては探針が傾く場合があるが、この様な場
合、前述した従来装置に於いては、探針を設けた可動腕
体も傾く為、平面反射鏡で反射される光束が所定の光路
上に返されず、被測定物の表面形状が測定出来なくなる
と言った不都合が存在した。上記公報に記載された装置
に於いては、この様な不都合が解消され、可動腕体の傾
き、並びに横方向の移動に影響される事なく、コーナー
キューブで反射される光束を所定の光路上に返す事が出
来る。この為、汎用的な使用が可能となる。
According to this device, one interference fringe changes with respect to the displacement of the corner cube by a quarter wavelength, so that it is possible to obtain twice the sensitivity. Further, the probe may tilt depending on the surface shape of the object to be measured. In such a case, in the above-mentioned conventional device, the movable arm body provided with the probe also tilts, so that it is reflected by the plane reflecting mirror. However, there is a disadvantage that the surface shape of the object to be measured cannot be measured because the generated light flux is not returned to a predetermined optical path. In the device described in the above publication, such inconvenience is eliminated, and the light flux reflected by the corner cube is not affected by the tilt of the movable arm and the lateral movement on the predetermined optical path. You can return to. Therefore, general-purpose use becomes possible.

【0006】[0006]

【考案が解決しようとする課題】ところで、近年の加工
技術の発達に伴ない、金属やガラスの表面形状を、nm
(10-9m)のオーダーで測定可能な測定装置の出現が
望まれる様になった。前述した従来装置、或いは上述し
た公報に記載された装置に於いて、nmのオーダーの分
解能を得る為には、干渉縞の一周期を更に細分化し、電
気的に検出する必要があるが、電気的な雑音を受け易
く、実用化は困難である。又、上記公報記載の装置に於
いて、汎用的な測定を行なう為には、前述した従来装置
と同様、可動腕体の横軸から探針を設けた一端迄の距離
を大きく取る必要があり、探針の変位を、縮小して検出
する事になる為、高精度の測定はやはり困難である。更
に、可動腕体の他端に設けられる平面反射鏡、或いはコ
ーナーキューブの変位を検出する検出手段として、マイ
ケルソン型の干渉計を用いている為、振動等の外乱の影
響を受け易く、nmのオーダーで測定する事に対する障
害となっていた。
[Problems to be Solved by the Invention] With the recent development of processing technology, the surface shape of metal or glass is
The emergence of a measuring device capable of measuring on the order of (10 −9 m) has come to be desired. In the conventional device described above or the device described in the above-mentioned publication, in order to obtain resolution on the order of nm, it is necessary to further subdivide one cycle of the interference fringes and electrically detect it. Noise is easily received, and it is difficult to put it into practical use. Further, in the device described in the above publication, in order to perform general-purpose measurement, it is necessary to take a large distance from the horizontal axis of the movable arm to one end where the probe is provided, as in the conventional device described above. Since the displacement of the probe is reduced and detected, highly accurate measurement is still difficult. Furthermore, since a Michelson-type interferometer is used as the detection means for detecting the displacement of the plane reflecting mirror provided at the other end of the movable arm or the corner cube, it is easily affected by disturbance such as vibration, Was an obstacle to measuring on the order of.

【0007】本考案の接触式表面形状測定器は、上述の
様な事情に鑑みて考案されたものである。
The contact type surface profile measuring instrument of the present invention was devised in view of the above circumstances.

【0008】[0008]

【課題を解決するための手段】本考案の接触式表面形状
測定器は、被測定物に対する相対移動自在で、この被測
定物の表面形状に応じて変位する測定手段と、光源手段
と、この光源手段から出射した光束を、参照光と上記測
定手段の変位を測定する為の測定光とに分割すると共
に、上記測定手段の変位に伴なって変化する上記測定光
の光路長を増幅させる光学手段と、この光路長に基づい
て上記被測定物の表面形状を算出する検出手段とを備え
ている。
A contact type surface profile measuring instrument of the present invention is movable relative to an object to be measured and is displaced according to the surface profile of the object to be measured, a light source means, and a light source means. Optical for splitting the light beam emitted from the light source means into a reference light and a measuring light for measuring the displacement of the measuring means, and for amplifying the optical path length of the measuring light which changes with the displacement of the measuring means. And means for calculating the surface shape of the object to be measured based on the optical path length.

【0009】この内、上記測定手段は、可動腕体と、こ
の可動腕体の一端に設けられ、被測定物の表面に接触し
た状態でこの表面を追従する探針とを有している。又、
上記光学手段は、上記光源手段から出射した光束を、ほ
ぼ共通な光路を進む上記参照光と測定光とに分割する第
一の偏光ビームスプリッタ及び第一の反射鏡と、上記可
動腕体の他端に設けられ、上記測定光を変位させて入射
方向と逆向きに送り出すコーナーキューブと、このコー
ナーキューブを出射した測定光、及び上記参照光を透過
させる1/4波長板と、この1/4波長板を出射した測
定光を逆行させるべく反射させる第二の反射鏡と、上記
1/4波長板を透過した上記参照光を逆行させるべく反
射させる第三の反射鏡と、この第三の反射鏡で反射し逆
行して上記第一の偏光ビームスプリッタで反射した参照
光、及び上記第二の反射鏡で反射して逆行し上記コーナ
ーキューブを経て上記第一の偏光ビームスプリッタを透
過した測定光を、この第一の偏光ビームスプリッタに向
け反射させる反射部材とを有している。
Among these, the measuring means has a movable arm and a probe which is provided at one end of the movable arm and follows the surface of the object to be measured in contact with the surface. or,
The optical means includes a first polarization beam splitter and a first reflecting mirror for splitting the light flux emitted from the light source means into the reference light and the measurement light traveling along a substantially common optical path, and other movable arm members. A corner cube that is provided at the end and that displaces the measurement light and sends it out in the direction opposite to the incident direction, a quarter-wave plate that transmits the measurement light emitted from the corner cube and the reference light, and a quarter-wave plate A second reflecting mirror that reflects the measurement light emitted from the wave plate in a backward direction, a third reflecting mirror that reflects the reference light that has passed through the ¼ wavelength plate in a backward direction, and the third reflection mirror. Reference light reflected by the mirror and backward and reflected by the first polarizing beam splitter, and measurement light reflected by the second reflecting mirror and backward and transmitted through the first polarizing beam splitter through the corner cube. To It has first and a reflecting member for reflecting toward the polarization beam splitter.

【0010】更に、上記検出手段は、参照光と測定光と
の干渉強度を電気信号に変換し、この電気信号の位相差
から上記被測定物の表面形状を算出するものである。
Further, the detecting means converts the interference intensity between the reference light and the measuring light into an electric signal and calculates the surface shape of the object to be measured from the phase difference between the electric signals.

【0011】そして、上記参照光は、第一の反射鏡で反
射後、第三の反射鏡と反射部材との間を2往復した後、
上記検出手段に入る光路を取る。又、上記測定光は、第
一の偏光ビームスプリッタを出射後、第二の反射鏡と反
射部材との間を2往復した後、この第一の偏光ビームス
プリッタを出射し、上記検出手段に入る光路を取る事を
特徴とする。
Then, after the reference light is reflected by the first reflecting mirror and then reciprocated twice between the third reflecting mirror and the reflecting member,
Take the optical path entering the detection means. The measurement light is emitted from the first polarization beam splitter, then reciprocated between the second reflection mirror and the reflection member twice, and then emitted from the first polarization beam splitter to enter the detection means. Characterized by taking an optical path.

【0012】[0012]

【作用】本考案の接触式表面形状測定器は、上述の様に
構成される為、被測定物の表面形状に伴なうコーナーキ
ューブの変位が、測定光の光路長の変化として4倍に増
幅されて測定される。この為、nmのオーダーでの測定
が可能となる。しかも、上記コーナーキューブを大型化
する必要はなく、又、外乱の影響も受け難い為、確実な
測定を行なえる。
Since the contact-type surface profile measuring device of the present invention is constructed as described above, the displacement of the corner cube due to the surface profile of the object to be measured is quadrupled as a change in the optical path length of the measuring light. Amplified and measured. Therefore, measurement on the order of nm is possible. Moreover, it is not necessary to increase the size of the corner cube, and since it is not easily affected by disturbance, reliable measurement can be performed.

【0013】[0013]

【実施例】次に図示の実施例に就いて説明する。図1〜
4は本考案の第一実施例を示している。本考案の接触式
表面形状測定器は、被測定物1の表面形状を測定する測
定手段2と、光源手段3と、この光源手段3から出射し
た光束を参照光と上記測定手段2の変位を測定する測定
光とに2分割すると共に、測定光の光路長を増幅する光
学手段4と、この光学手段4より出射した上記参照光と
測定光との干渉強度を検出して電気信号に変換した後、
この電気信号の位相差に基づいて、上記被測定物1の表
面形状を算出する検出手段5とを備えている。
Embodiments Next, the illustrated embodiments will be described. Figure 1
Reference numeral 4 shows a first embodiment of the present invention. The contact type surface shape measuring instrument of the present invention comprises a measuring means 2 for measuring the surface shape of an object 1 to be measured, a light source means 3, and a light beam emitted from the light source means 3 for reference light and displacement of the measuring means 2. The optical means 4 is divided into two parts, the measuring light to be measured and the optical path length of the measuring light is amplified, and the interference intensity between the reference light and the measuring light emitted from the optical means 4 is detected and converted into an electric signal. rear,
The detection means 5 calculates the surface shape of the DUT 1 based on the phase difference between the electric signals.

【0014】上記測定手段2は、図1〜2に示す様に、
横軸6を中心として揺動自在に設けられた、可動腕体で
あるアーム7の一端(図1〜2の左端)に、被測定物1
の表面に接触自在な探針(スライラス)8を設けてい
る。このアーム7の他端(図1〜2の右端)には上記光
学手段4を構成する、後述するコーナーキューブ16を
設けている。アーム7は、探針8が被測定物1の表面に
接触した状態で、図示しない駆動機構により移動自在と
している為、上記探針8は上記表面を追従し、アーム7
が上記表面の形状に応じて変位する。
The measuring means 2 is, as shown in FIGS.
An object to be measured 1 is attached to one end (left end in FIGS. 1 and 2) of an arm 7 which is a movable arm and is swingably provided around a horizontal axis 6.
A probe 8 (sillus) that can be freely contacted is provided on the surface of. At the other end (right end in FIGS. 1 and 2) of the arm 7, a corner cube 16 which will be described later and is included in the optical means 4 is provided. The arm 7 is movable by a drive mechanism (not shown) while the probe 8 is in contact with the surface of the DUT 1. Therefore, the probe 8 follows the surface and the arm 7
Are displaced according to the shape of the surface.

【0015】上記光源手段3は、本実施例に於いては、
単一周波数を有するレーザーを用いている。光源手段3
であるこのレーザーは、上記測定手段2、光学手段4と
別体とし、このレーザーの端部と上記光学手段4との間
に、アイソレーター9と1/2波長板10とを配置する
と共に、これらアイソレータ9と波長板10との間に、
上記レーザーが出射した光束を導く偏波面保持ファイバ
ー11を設けている。この様に、光源手段3を他の手段
に対し別体に設ける事により、測定系(測定手段2、光
学手段4)の体積を小さく出来、且つ光源手段3の発生
する熱の影響を僅小にする事が出来る。尚、図示は省略
したが、実際には上記各部品の他、コリメータレンズ等
も配設されている。
The above-mentioned light source means 3 is, in this embodiment,
A laser with a single frequency is used. Light source means 3
This laser is separate from the measuring means 2 and the optical means 4, and an isolator 9 and a half-wave plate 10 are arranged between the end of the laser and the optical means 4, and Between the isolator 9 and the wave plate 10,
A polarization maintaining fiber 11 for guiding the light beam emitted by the laser is provided. In this way, by providing the light source means 3 separately from the other means, the volume of the measuring system (measuring means 2, optical means 4) can be reduced, and the influence of heat generated by the light source means 3 is small. You can Although not shown, a collimator lens and the like are actually provided in addition to the above components.

【0016】上記アイソレーター9は、レーザーを出射
した光束が上記レーザーに向けて戻るのを防止する(戻
り光を遮断する)為に設けている。上記1/2波長板1
0は、上記レーザーを出射し、上記偏波面保持ファイバ
ー11を導かれて送り出された上記光束を、図1で紙面
に対して45度の傾きを有する直線偏光にするのに用い
られる。
The isolator 9 is provided to prevent the luminous flux emitted from the laser from returning toward the laser (block the returning light). 1/2 wave plate 1
0 is used to radiate the laser and guide the light beam guided by the polarization maintaining fiber 11 into linearly polarized light having an inclination of 45 degrees with respect to the paper surface in FIG.

【0017】上記1/2波長板10の働きにより直線偏
光した上記光束は、後述する検出手段5を構成する第一
のビームスプリッタ22を透過し、上記光学手段4に入
る。
The light beam linearly polarized by the action of the half-wave plate 10 passes through a first beam splitter 22 constituting a detecting means 5 described later and enters the optical means 4.

【0018】この光学手段4は、上記直線偏光を互いに
直交した2つの直線偏光に分離する第一の偏光ビームス
プリッタ12と、この第一の偏光ビームスプリッタ12
を直進した一の光束(参照光)を、この第一の偏光ビー
ムスプリッタ12で入射方向に対し垂直に折れ曲がる光
路を取る他の光束(測定光)と平行になる様に反射させ
る第一の反射鏡13と、この第一の反射鏡13で反射し
た上記参照光の光路上に配設された1/4波長板14並
びに第三の反射鏡15と、前記測定手段2を構成するア
ーム7の他端に設けられ、上記第一の偏光ビームスプリ
ッタ12で反射した上記測定光を変位させて入射方向と
逆方向に出射させるコーナーキューブ16と、このコー
ナーキューブ16を出射した測定光が、前記1/4波長
板14を透過後、この光路を逆行する様に反射させる
二の反射鏡17と、上記第一の偏光ビームスプリッタ1
2の上方位置に設けられ、この第一の偏光ビームスプリ
ッタ12から出て上方に向かう光束を、その入射方向と
垂直方向に変位させて入射光束と平行に戻す、反射部材
である直角プリズム21とから構成される。
The optical means 4 includes a first polarization beam splitter 12 for separating the above-mentioned linear polarization into two linear polarizations orthogonal to each other, and the first polarization beam splitter 12
A first reflection that reflects one light flux (reference light) that has traveled straight in the direction of the first polarization beam splitter 12 so as to be parallel to another light flux (measurement light) that has an optical path that is bent perpendicularly to the incident direction. Of the mirror 13, the quarter-wave plate 14 and the third reflecting mirror 15 arranged on the optical path of the reference light reflected by the first reflecting mirror 13, and the arm 7 constituting the measuring means 2. The corner cube 16 which is provided at the other end and which displaces the measurement light reflected by the first polarization beam splitter 12 and emits it in the direction opposite to the incident direction, and the measurement light emitted from the corner cube 16 are After passing through the quarter-wave plate 14, the light is reflected in the reverse direction of the optical path .
A second reflecting mirror 17, the first polarization beam splitter 1
And a right-angle prism 21 which is a reflecting member, which is provided at a position above 2, and which shifts a light flux emitted from the first polarization beam splitter 12 and directed upwards to be parallel to the incident light flux by displacing the light flux in a direction perpendicular to the incident direction. Composed of.

【0019】更に詳しく説明すると、上記第一の偏光ビ
ームスプリッタ12は、その入射方向と同一方向に直進
する参照光となる一の光束と、上記入射方向と垂直方向
(図1の鉛直下方)に折れ曲がり、被測定物1の表面形
状測定に直接関与する測定光となる他の光束とに分離す
るものである。又、第一の反射鏡13は、上記参照光と
なる光束を、上記測定光となる他の光束に対し、微小距
離だけ離隔した、平行で且つ同一方向に進ませるべく反
射させるものである。
More specifically, the first polarization beam splitter 12 has one luminous flux which is a reference light which travels straight in the same direction as the incident direction and a vertical direction (downward in FIG. 1) perpendicular to the incident direction. It bends and separates into another light flux which becomes the measurement light directly involved in the surface shape measurement of the DUT 1. Further, the first reflecting mirror 13 reflects the light flux serving as the reference light so as to travel in parallel and in the same direction with respect to the other light flux serving as the measurement light, separated by a minute distance.

【0020】コーナーキューブ16は第一、第二、第三
の3つの反射面18、19、20を有し、入射する測定
光を入射方向と垂直方向に変移させ、入射方向と逆向き
に出射させる。これら各反射面18、19、20には金
属コーティングを施している。
The corner cube 16 has three reflecting surfaces 18, 19 and 20 which are a first, a second and a third, changes the incident measuring light in the direction perpendicular to the incident direction and emits it in the direction opposite to the incident direction. Let A metal coating is applied to each of the reflecting surfaces 18, 19 and 20.

【0021】第一の反射鏡13とコーナーキューブ16
との間には、この第一の反射鏡13の側から順に、1/
4波長板14と、第三の反射鏡15とを配設している。
この内、1/4波長板14は、透過する光束の偏光状態
を変化させるものであり、上記測定光と参照光で共通に
使用される。この為、光学手段4を構成する部品点数が
減少すると共に、1/4波長板を通過する際に於ける、
温度変化に伴なう光路長の変化も排除する事が出来、信
頼性の高い測定を行なうのに寄与する。第三の反射鏡1
は1/4波長板14を透過した参照光を、それ迄の光
路を逆行させるべく反射させるものである。この第三の
反射鏡15は、コーナーキューブ16の上方位置で、図
示しない固定の部材に固設されており、平面反射鏡が使
用出来る。
The first reflecting mirror 13 and the corner cube 16
Between 1 and 2, in order from the first reflecting mirror 13 side,
A four-wave plate 14 and a third reflecting mirror 15 are arranged.
Among these, the quarter-wave plate 14 changes the polarization state of the transmitted light flux, and is commonly used for the measurement light and the reference light. Therefore, the number of parts constituting the optical means 4 is reduced, and when passing through the quarter-wave plate,
The change in optical path length due to the temperature change can be eliminated, which contributes to highly reliable measurement. Third reflector 1
Reference numeral 5 reflects the reference light transmitted through the quarter-wave plate 14 so as to reverse the optical path up to that point. This third
The reflecting mirror 15 is fixed to a fixed member (not shown) above the corner cube 16, and a flat reflecting mirror can be used.

【0022】上記1/4波長板14のコーナーキューブ
16と反対側には、図示しない固定の部材に第二の反射
鏡17が固設されている。この第二の反射鏡17は、コ
ーナーキューブ16を出射した測定光を、それ迄の光路
を逆行する様、反射させるもので、前記第三の反射鏡1
と同様、平面反射鏡を用いている。
On the opposite side of the quarter-wave plate 14 from the corner cube 16, a fixed member (not shown) is provided with a second reflection member .
The mirror 17 is fixed. The second reflecting mirror 17, the measurement light emitted from the corner cube 16, as to reverse the optical path up to it, but to reflect the third reflecting mirror 1
Similar to 5 , a plane reflecting mirror is used.

【0023】更に、第一の偏光ビームスプリッタ12の
上方には、反射部材である直角プリズム21を設けてい
る。この直角プリズム21は、入射する光束を、入射方
向と垂直に変位させて、入射光束と平行に戻すものであ
る。尚、反射部材としては、上記直角プリズム21の
他、コーナーキューブ等、他の部材を使用出来る。
Further, a right-angle prism 21 which is a reflecting member is provided above the first polarization beam splitter 12. The right-angle prism 21 displaces an incident light flux in a direction perpendicular to the incident direction and returns the light flux to be parallel to the incident light flux. As the reflecting member, other members such as the corner cube and the like can be used in addition to the right-angle prism 21.

【0024】前記光学手段4は、上述の様に構成される
為、レーザーを出射し、アイソレータ9、偏波面保持フ
ァイバー11を通過した光束は、1/2波長板10並び
に検出手段5を構成する第一のビームスプリッタ22を
経て第一の偏光ビームスプリッタ12に入射する。
Since the optical means 4 is constructed as described above, the light beam which has emitted the laser and has passed through the isolator 9 and the polarization maintaining fiber 11 constitutes the half-wave plate 10 and the detection means 5. It is incident on the first polarization beam splitter 12 via the first beam splitter 22.

【0025】第一の偏光ビームスプリッタ12に入射
し、互いに直交する2つの直線偏光に分離した2光束の
内、偏光方向が図1で紙面に平行な光束はこの第一の偏
光ビームスプリッタ12を透過し、第一の反射鏡13で
入射方向と垂直に曲げられる。この光束が、前記参照光
として作用する。
Of the two light beams which are incident on the first polarization beam splitter 12 and are separated into two linearly polarized lights which are orthogonal to each other, the light beam whose polarization direction is parallel to the paper surface of FIG. The light is transmitted and is bent by the first reflecting mirror 13 perpendicularly to the incident direction. This light flux acts as the reference light.

【0026】又、偏光方向が図1で紙面に垂直な光束
は、この第一の偏光ビームスプリッタ12で反射し、入
射方向と垂直に曲がった、上記参照光と微小間隔だけ離
隔した平行な光路を取る。この光束が前記測定光として
作用し、前記アーム7の変位を測定する。
A light beam whose polarization direction is perpendicular to the plane of the paper in FIG. 1 is reflected by the first polarization beam splitter 12 and bent in a direction perpendicular to the incident direction, which is a parallel optical path separated from the reference light by a small distance. I take the. This light flux acts as the measurement light to measure the displacement of the arm 7.

【0027】上記参照光と測定光との間隔は極く微小で
あり、互いに平行で、且つ同一方向(図1の鉛直下方)
に進む。この様に、参照光と測定光との間隔が極く小さ
い為、これらは共通光路とみなす事が出来る。この為、
振動や熱等の影響を受け難い。
The distance between the reference light and the measurement light is extremely small, parallel to each other, and in the same direction (vertically downward in FIG. 1).
Proceed to. In this way, since the distance between the reference light and the measurement light is extremely small, they can be regarded as a common optical path. Therefore,
Hardly affected by vibration and heat.

【0028】上記参照光は、第一の反射鏡13で反射し
た後、1/4波長板14を通過する事で、直線偏光から
円偏光となる。更に、この参照光は、第三の反射鏡15
で反射し、それ迄の光路を逆行する。この際、反射した
参照光は直線偏光に変換される。
The reference light is changed from linearly polarized light to circularly polarized light by passing through the quarter-wave plate 14 after being reflected by the first reflecting mirror 13. Further, this reference light is transmitted to the third reflecting mirror 15
It reflects at and reverses the optical path up to that point. At this time, the reflected reference light is converted into linearly polarized light.

【0029】更に、参照光は第一の反射鏡13で反射
し、次いで、第一の偏光ビームスプリッタ12で反射
し、図1の上方に向けて進む。第一の偏光ビームスプリ
ッタ12の上方位置には、直角プリズム21を設けてい
る為、参照光は、この直角プリズム21でその入射方向
と垂直方向に変位され、上記入射光束と平行に出射す
る。
Further, the reference light is reflected by the first reflecting mirror 13, and then by the first polarizing beam splitter 12, and travels upward in FIG. Since the right-angle prism 21 is provided above the first polarization beam splitter 12, the reference light is displaced by the right-angle prism 21 in the direction perpendicular to the incident direction and is emitted in parallel with the incident light beam.

【0030】直角プリズム21を出射した参照光は、第
一の偏光ビームスプリッタ12に入射し、この第一の偏
光ビームスプリッタ12から第三の反射鏡15迄の光路
を、再び往復する。この復路に於いて、参照光は1/4
波長板14を透過する事でその入射方向に平行な直線偏
光となる為、第一の反射鏡13で反射した後、第一の偏
光ビームスプリッタ12を透過し、検出手段5を構成す
る第一のビームスプリッタ22に入射する。結局、参照
光は、第一の反射鏡13で最初に反射した後、第三の反
射鏡15から直角プリズム21迄の光路を2往復する事
になる。この第一のビームスプリッタ22から第一の偏
光ビームスプリッタ12に向かう光束と、この光束と逆
向きの上記参照光とは、空間的にずれている。
The reference light emitted from the rectangular prism 21 enters the first polarization beam splitter 12 and reciprocates in the optical path from the first polarization beam splitter 12 to the third reflecting mirror 15 . On this return path, the reference light is 1/4
Since the light that has passed through the wave plate 14 becomes linearly polarized light parallel to the incident direction thereof, it is reflected by the first reflecting mirror 13 and then passes through the first polarizing beam splitter 12 to constitute the detecting means 5. Incident on the beam splitter 22. After all, the reference light is first reflected by the first reflecting mirror 13 and then reciprocates twice in the optical path from the third reflecting mirror 15 to the rectangular prism 21. The light beam traveling from the first beam splitter 22 to the first polarization beam splitter 12 and the reference light in the opposite direction to this light beam are spatially displaced.

【0031】一方、測定光は第一の偏光ビームスプリッ
タ12を出た後、測定手段2を構成するアーム7の他端
に設けられたコーナーキューブ16に入射する。コーナ
ーキューブ16の反射面18、19、20には、前述し
た様に、金属コーティングを施している為、このコーナ
ーキューブ16で反射した光の偏光状態が乱れる事はな
い。
On the other hand, the measurement light exits the first polarization beam splitter 12 and then enters a corner cube 16 provided at the other end of the arm 7 constituting the measuring means 2. Since the reflecting surfaces 18, 19 and 20 of the corner cube 16 are metal-coated as described above, the polarization state of the light reflected by the corner cube 16 is not disturbed.

【0032】上記コーナーキューブ16は、図3(A)
(B)に示す様に第一、第二、第三の反射面18、1
9、20を有している。これら各反斜面は、互いに直交
している為、図3(A)に示す様に、各反射面18、1
9、20をそれぞれ2分割して得られる合計6個の領域
S1〜S6が存在する。コーナーキューブ16にほぼ垂
直な状態で領域S1に入射した光(図3(A)の黒丸)
は、第一の反射面18で反射し、領域S2を経て、領域
S4から出射する。又、コーナーキューブ16にほぼ垂
直な状態で領域S2に入射した光(図3(A)の白丸)
は、領域S1を介して領域S5から出射する。そして、
本考案に於ける反射部材である直角プリズム21が、コ
ーナーキューブ16に入射する光束を、このコーナーキ
ューブ16が変位する平面に対し垂直方向にシフトさせ
る為、入射する度に光はコーナーキューブ16の異なる
領域に入射する。この結果、本考案に於いては、コーナ
ーキューブ16を大きくする事なく、測定光の光路長を
4倍に増幅出来る。
The corner cube 16 is shown in FIG.
As shown in (B), the first, second, and third reflecting surfaces 18, 1
It has 9 and 20. Since these anti-slope surfaces are orthogonal to each other, as shown in FIG.
There are a total of 6 areas S1 to S6 obtained by dividing each of 9 and 20 into two. Light incident on the area S1 in a state substantially perpendicular to the corner cube 16 (black circle in FIG. 3A)
Is reflected by the first reflecting surface 18, passes through the region S2, and exits from the region S4. Further, the light incident on the area S2 in a state substantially perpendicular to the corner cube 16 (white circle in FIG. 3A)
Exits from the area S5 via the area S1. And
The right-angle prism 21, which is a reflecting member in the present invention, shifts the light flux incident on the corner cube 16 in the direction perpendicular to the plane on which the corner cube 16 is displaced. It is incident on different areas. As a result, in the present invention, the optical path length of the measurement light can be amplified four times without making the corner cube 16 large.

【0033】上述した様な第一〜第三の反射面18〜2
0を有するコーナーキューブ16に入射した測定光は、
上記第三の反射鏡15を外ずれた光路を取り、前記1/
4波長板14を透過して、第二の反射鏡17で反射され
る。
The first to third reflecting surfaces 18 to 2 as described above.
The measurement light incident on the corner cube 16 having 0 is
The optical path deviated from the third reflecting mirror 15 is taken and
The light passes through the four-wave plate 14 and is reflected by the second reflecting mirror 17 .

【0034】1/4波長板14を透過する以前に於い
て、この測定光は、上記金属コーティングを施した事に
伴なって偏光方向が紙面に垂直な直線偏光のままである
が、1/4波長板14を透過する事で円偏光となる。更
に、第二の反射鏡17で反射した後は、それ迄の光路を
逆行し、1/4波長板14を通過して、今度は偏光方向
が紙面と平行な直線偏光に変換され、コーナーキューブ
16に入射する。
Before passing through the quarter-wave plate 14, the measurement light is linearly polarized light whose polarization direction is perpendicular to the paper surface due to the metal coating, but Circularly polarized light is obtained by passing through the four-wave plate 14. Further, after being reflected by the second reflecting mirror 17 , it travels backward through the optical path up to that point, passes through the quarter-wave plate 14, and is converted into linearly polarized light whose polarization direction is parallel to the paper surface. It is incident on 16.

【0035】再びコーナーキューブ16に入射した測定
光は、前述したのと同様に、第一〜第三の3つの反射面
18〜20で反射した後、第一の偏光ビームスプリッタ
12に向け出射する。この際、測定光は偏光方向が紙面
に平行な直線偏光である為、第一の偏光ビームスプリッ
タ12を透過し、直角プリズム21で反射する。そし
て、偏光方向が紙面と垂直な方向に変位され、入射する
測定光と平行になる。この後、測定光は、第一の偏光ビ
ームスプリッタ12から第二の反射鏡17迄の光路を、
上述したのと同様に進む。
The measurement light incident on the corner cube 16 again is reflected by the three first to third reflecting surfaces 18 to 20 and then emitted toward the first polarization beam splitter 12, as described above. . At this time, since the measurement light is linearly polarized light whose polarization direction is parallel to the paper surface, it passes through the first polarization beam splitter 12 and is reflected by the rectangular prism 21. Then, the polarization direction is displaced in the direction perpendicular to the paper surface, and becomes parallel to the incident measuring light. After that, the measurement light travels along the optical path from the first polarization beam splitter 12 to the second reflecting mirror 17 .
Proceed as described above.

【0036】コーナーキューブ16による第3回目の反
射の後、1/4波長板14を透過する事で、この測定光
は偏光方向が紙面に平行な直線偏光から円偏光となり、
第二の反射鏡17で反射して戻る際に、偏光方向が紙面
に垂直な直線偏光に変換し、第一の偏光ビームスプリッ
タ12で反射する。この様に、本考案に於いては、上記
測定光はコーナーキューブ16を4回反射する事にな
り、被測定物1の表面形状に応じたコーナーキューブ1
6の変位量を、測定光の光路長の変化として4倍に増幅
して測定出来る。しかも、コーナーキューブ16を大型
化する必要はない。
After the third reflection by the corner cube 16, after passing through the quarter-wave plate 14, this measurement light changes from linearly polarized light whose polarization direction is parallel to the paper surface to circularly polarized light,
When reflected by the second reflecting mirror 17 and returned, it is converted into linearly polarized light whose polarization direction is perpendicular to the paper surface, and reflected by the first polarization beam splitter 12. As described above, in the present invention, the measurement light is reflected by the corner cube 16 four times, and the corner cube 1 corresponding to the surface shape of the DUT 1 is measured.
The displacement amount of 6 can be amplified and measured four times as a change in the optical path length of the measurement light. Moreover, it is not necessary to upsize the corner cube 16.

【0037】この様にして、第一の偏光ビームスプリッ
タ12を出た参照光と測定光とは、検出手段5に入射す
る。尚、本考案に於いては、上記直角プリズム21の作
用により上記第一の偏光ビームスプリッタ12を出た参
照光と測定光とを、この第一の偏光ビームスプリッタ1
2に入射する光や、他の漏れた光に対し、空間的に分離
している。この為、構成各部品の不可避的製造誤差に伴
なう、漏れた光等の悪影響を排除出来、誤差の小さな測
定を可能としている。誤差を更に抑えるには、第一のビ
ームスプリッタ22と検出手段5との間位置、並びに第
一のビームスプリッタ22と偏波面保持ファイバー11
との間位置に空間フィルタを設ける。
In this way, the reference light and the measurement light emitted from the first polarization beam splitter 12 enter the detecting means 5. In the present invention, the reference light and the measurement light emitted from the first polarization beam splitter 12 by the action of the rectangular prism 21 are converted into the first polarization beam splitter 1
It is spatially separated from the light incident on the beam 2 and other leaked light. Therefore, it is possible to eliminate the adverse effects of leaked light and the like due to the unavoidable manufacturing error of each component, and it is possible to measure with a small error. In order to further suppress the error, the position between the first beam splitter 22 and the detecting means 5, and the first beam splitter 22 and the polarization maintaining fiber 11
A spatial filter is provided at a position between and.

【0038】本実施例に於いて、上記検出手段5は、図
4に示す様に構成される。この図4に於いて、22は第
一のビームスプリッタで、この第一のビームスプリッタ
22は、上記参照光と測定光とを、その入射方向に対
し、垂直に反射させるものである。23は第二のビーム
スプリッタで、この第二のビームスプリッタ23は、上
記参照光と測定光とを、それぞれ等しい振幅で、2分割
するものである。
In the present embodiment, the detecting means 5 is constructed as shown in FIG. In FIG. 4, 22 is a first beam splitter, and this first beam splitter 22 reflects the reference light and the measurement light perpendicularly to the incident direction. Reference numeral 23 is a second beam splitter, which divides the reference light and the measurement light into two with the same amplitude.

【0039】上記第二のビームスプリッタ23の周囲に
は、入射光の入射方向に対し、45度回転した状態で、
第二、第三の偏光ビームスプリッタ24、25を設けて
いる。そして、これら第二、第三の偏光ビームスプリッ
タ24、25の後方に、図4に示す様にそれぞれ第一〜
第四の光電変換素子26〜29を設けている。尚、上記
第二の偏光ビームスプリッタ22と第三の偏光ビームス
プリッタ25との間位置には、1/4波長板30を設
け、第三の偏光ビームスプリッタ25を介して、干渉強
度から得られる電気信号の位相を、90度異ならせてい
る。
Around the second beam splitter 23, in a state rotated by 45 degrees with respect to the incident direction of the incident light,
Second and third polarization beam splitters 24 and 25 are provided. Then, behind the second and third polarization beam splitters 24 and 25, as shown in FIG.
Fourth photoelectric conversion elements 26 to 29 are provided. A quarter wavelength plate 30 is provided between the second polarization beam splitter 22 and the third polarization beam splitter 25, and the interference intensity is obtained via the third polarization beam splitter 25. The phase of the electric signal is different by 90 degrees.

【0040】更に、図示は省略したが、上記電気信号を
基に、被測定物1の表面形状を算出する、演算装置を設
けている。実際の場合、この演算装置はマイクロコンピ
ューター等のコンピューターを用いる
Further, although not shown, an arithmetic unit for calculating the surface shape of the DUT 1 based on the electric signal is provided. In the actual case, this computing device uses a computer such as a microcomputer

【0041】検出手段5を上述の様に構成する為、第一
の偏光ビームスプリッタ12を射出した参照光と測定光
とは、第一のビームスプリッタ22で進路を垂直に曲げ
られ、第二のビームスプリッタ23で、それぞれ等しい
振幅で2分割される。
Since the detecting means 5 is constructed as described above, the reference beam and the measuring beam emitted from the first polarization beam splitter 12 have their paths vertically bent by the first beam splitter 22, and the second beam is reflected by the second beam splitter 22. The beam splitter 23 splits the beam into two with the same amplitude.

【0042】第二のビームスプリッタ23でそれぞれ2
分割された参照光と測定光の内、1組の参照光と測定光
とは、第二の偏光ビームスプリッタ24に入射し、干渉
する。そして、この第二の偏光ビームスプリッタ24の
後方に設けられた第一、第二の光電変換素子26、27
がそれぞれ上記干渉強度を電気信号に変換する。第一の
光電変換素子26により得られた電気信号と、第二の光
電変換素子27により得られた電気信号とは、位相が1
80度異なっている。これらの電気信号は、上記演算装
置であるコンピュータに入力され、これら電気信号の和
を1/2倍する演算を行ない、干渉強度のDC成分を求
める。更に、このコンピュータは何れかの電気信号から
上記DC成分を減算し、出力信号とする。
Each of the second beam splitters 23 has two
Of the split reference light and measurement light, one set of reference light and measurement light enters the second polarization beam splitter 24 and interferes with them. Then, the first and second photoelectric conversion elements 26, 27 provided behind the second polarization beam splitter 24.
Converts the interference intensity into an electric signal. The electric signal obtained by the first photoelectric conversion element 26 and the electric signal obtained by the second photoelectric conversion element 27 have a phase of 1
80 degrees different. These electric signals are input to the computer, which is the above-mentioned arithmetic unit, and the calculation of halving the sum of these electric signals is performed to obtain the DC component of the interference intensity. Further, this computer subtracts the DC component from any electric signal to obtain an output signal.

【0043】一方、第二のビームスプリッタ23で等し
い振幅でそれぞれ2分割された光束の内の他方は、主軸
を紙面に対して垂直、或は平行に配置された上記1/4
波長板30を経て、第三の偏光ビームスプリッタ25に
入射し、干渉する。以下、上述した第二の偏光ビームス
プリッタ24に於ける場合と同様にして、出力信号を得
る。
On the other hand, the other of the light beams divided into two parts with the same amplitude by the second beam splitter 23 has the main axis perpendicular to or parallel to the plane of the paper, and is a quarter of the above.
The light enters the third polarization beam splitter 25 through the wave plate 30 and interferes with it. Hereinafter, the output signal is obtained in the same manner as in the case of the second polarization beam splitter 24 described above.

【0044】上述の様にして得られた、互いに位相が9
0度異なる正弦信号波である各出力信号により、上記コ
ンピュータは、被測定物1の表面形状を算出する。尚、
互いに位相が90度異なる2つの出力信号を用いて表面
形状を算出するのは、前記コーナーキューブ16の変位
方向を検出する為である。
The phases which are obtained in the above-described manner are 9
The computer calculates the surface shape of the DUT 1 from each output signal which is a sine signal wave different by 0 degree. still,
The reason why the surface shape is calculated using two output signals whose phases are different from each other by 90 degrees is to detect the displacement direction of the corner cube 16.

【0045】本考案の接触式表面形状測定器は、上述の
様に構成され作用する為、コーナーキューブ16を大型
化したり、外乱の影響を大きく受けたりする事なく、よ
り高精度で信頼性の高い測定が可能となる。特に、本考
案に於いては、光源手段3を構成するレーザーを、他の
手段と別体に設けている為、この光源手段3から発生す
る熱の影響を受け難く、誤差の少ない測定を行える。
Since the contact surface measuring instrument of the present invention is constructed and operates as described above, the corner cube 16 is not increased in size and is not greatly affected by disturbance, and it is more accurate and reliable. Higher measurement is possible. Particularly, in the present invention, since the laser constituting the light source means 3 is provided separately from the other means, the influence of the heat generated from the light source means 3 is less likely to occur and the measurement with less error can be performed. .

【0046】次に、図5は本考案の第二実施例を示して
いる。本実施例に於いては、可動腕体であるアーム7の
下端に、探針8を、上端にコーナーキューブ16を、そ
れぞれ設けると共に、このアーム7を昇降のみ自在とし
ている。そして、被測定物1は、X−Y駆動装置の移動
ステージ31に載置している。測定を行なう場合、アー
ム7を昇降させる事で探針8を被測定物1表面に接触さ
せると共に、移動ステージ31をX−Y方向に移動させ
る。その他の構成、並びに作用は、上述した第一実施例
と同様である。
Next, FIG. 5 shows a second embodiment of the present invention. In the present embodiment, the probe 8 is provided at the lower end of the arm 7 which is a movable arm, and the corner cube 16 is provided at the upper end, and the arm 7 can only be raised and lowered. Then, the DUT 1 is placed on the moving stage 31 of the XY driving device. When performing the measurement, the probe 8 is brought into contact with the surface of the DUT 1 by moving the arm 7 up and down, and the moving stage 31 is moved in the XY directions. Other configurations and operations are similar to those of the above-described first embodiment.

【0047】尚、上述した各実施例に於いては、光源手
段3として、単一周波数のレーザーを用いているが、こ
れに代えて、周波数が若干異なり、且つ、偏光方向が互
いに直交した2周波数のレーザーを用いる事も出来る。
この場合、検出手段5をこの2周波数のレーザーに対応
したものとする。
In each of the above-mentioned embodiments, a laser having a single frequency is used as the light source means 3, but instead of this, the frequency is slightly different and the polarization directions are orthogonal to each other. A frequency laser can also be used.
In this case, the detecting means 5 is adapted to the laser of these two frequencies.

【0048】更に、本考案の接触式表面形状測定器は、
上述した様に、測定光をコーナーキューブ16で4回反
射させる事で被測定物1の表面形状に応じたコーナーキ
ューブ16の変位を4倍の感度に増幅する事を特徴とす
るが、従来使用されて来た装置の測定手段、光学手段等
を本考案のものに変更する事で安価に高精度の分解能を
得る様にする事も可能となる。
Further, the contact type surface profile measuring device of the present invention is
As described above, the measurement light is reflected by the corner cube 16 four times to amplify the displacement of the corner cube 16 according to the surface shape of the DUT 1 to 4 times the sensitivity. By changing the measuring means, optical means, etc. of the device which has been used to the one of the present invention, it is possible to obtain a highly accurate resolution at a low cost.

【0049】[0049]

【考案の効果】本考案の接触式表面形状測定器は、上述
の様に構成され作用する為、nmのオーダ等、高精度の
測定が可能となる。しかも、熱等の外乱の影響を受け難
く、信頼性に富む測定を行なえる為、実用上の効果が大
きい。
Since the contact type surface profile measuring instrument of the present invention is constructed and operates as described above, it is possible to perform highly accurate measurement such as nm order. In addition, since it is not easily affected by disturbance such as heat and highly reliable measurement can be performed, it has a great practical effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の全体構成を示す図。FIG. 1 is a diagram showing the overall configuration of the present invention.

【図2】測定手段を示す側面図。FIG. 2 is a side view showing a measuring unit.

【図3】コーナーキューブの上面並びに側面を示す図。FIG. 3 is a view showing an upper surface and a side surface of a corner cube.

【図4】検出手段を示す図。FIG. 4 is a diagram showing a detection means.

【図5】本考案の第二実施例の要部を示す図。FIG. 5 is a diagram showing a main part of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被測定物 2 測定手段 3 光源手段 4 光学手段 5 検出手段 6 横軸 7 アーム 8 探針 9 アイソレーター 10 1/2波長板 11 偏波面保持ファイバー 12 第一の偏光ビームスプリッタ 13 第一の反射鏡 14 1/4波長板 15 第三の反射鏡 16 コーナーキューブ 17 第二の反射鏡 18 第一の反射面 19 第二の反射面 20 第三の反射面 21 直角プリズム 22 第一のビームスプリッタ 23 第二のビームスプリッタ 24 第二の偏光ビームスプリッタ 25 第三の偏光ビームスプリッタ 26 第一の光電変換素子 27 第二の光電変換素子 28 第三の光電変換素子 29 第四の光電変換素子 30 1/4波長板 31 移動ステージ1 Object to be Measured 2 Measuring Means 3 Light Source Means 4 Optical Means 5 Detecting Means 6 Horizontal Axis 7 Arms 8 Probes 9 Isolators 10 1/2 Wave Plates 11 Polarization Preserving Fibers 12 First Polarizing Beam Splitters 13 First Reflecting Mirrors 14 1/4 Wave Plate 15 Third Reflecting Mirror 16 Corner Cube 17 Second Reflecting Mirror 18 First Reflecting Surface 19 Second Reflecting Surface 20 Third Reflecting Surface 21 Right Angle Prism 22 First Beam Splitter 23 Second beam splitter 24 Second polarization beam splitter 25 Third polarization beam splitter 26 First photoelectric conversion element 27 Second photoelectric conversion element 28 Third photoelectric conversion element 29 Fourth photoelectric conversion element 30 1/4 Wave plate 31 Moving stage

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 被測定物に対する相対移動自在で、この
被測定物の表面形状に応じて変位する測定手段と、光源
手段と、この光源手段から出射した光束を、参照光と上
記測定手段の変位を測定する為の測定光とに分割すると
共に、上記測定手段の変位に伴なって変化する上記測定
光の光路長を増幅させる光学手段と、この光路長に基づ
いて上記被測定物の表面形状を算出する検出手段とを備
え、上記測定手段は、可動腕体と、この可動腕体の一端
に設けられ、被測定物の表面に接触した状態でこの表面
を追従する探針とを有し、上記光学手段は、上記光源手
段から出射した光束を、ほぼ共通な光路を進む上記参照
光と測定光とに分割する第一の偏光ビームスプリッタ及
び第一の反射鏡と、上記可動腕体の他端に設けられ、上
記測定光を変位させて入射方向と逆向きに送り出すコー
ナーキューブと、このコ−ナ−キュ−ブを出射した測定
光、及び上記参照光を透過させる1/4波長板と、この
1/4波長板を出射した測定光を逆行させるべく反射さ
せる第二の反射鏡と、上記1/4波長板を透過した上記
参照光を逆行させるべく反射させる第三の反射鏡と、こ
の第三の反射鏡で反射して逆行し上記第一の偏光ビーム
スプリッタで反射した参照光、及び上記第二の反射鏡で
反射して逆行し上記コーナーキューブを経て上記第一の
偏光ビームスプリッタを透過した測定光を、この第一の
偏光ビームスプリッタに向け反射させる反射部材とを有
し、上記検出手段は、参照光と測定光との干渉強度を電
気信号に変換し、この電気信号の位相差から上記被測定
物の表面形状を算出するものであり、上記参照光は、第
一の反射鏡で反射後、第三の反射鏡と反射部材との間を
2往復した後、上記検出手段に入る光路を取り、上記測
定光は、第一の偏光ビームスプリッタを出射後、第二の
反射鏡と反射部材との間を2往復する事でその光路長を
増幅した後、上記検出手段に入る光路を取る事を特徴と
する、接触式表面形状測定器。
1. A measuring unit which is movable relative to an object to be measured and which is displaced according to the surface shape of the object to be measured, a light source unit, and a light beam emitted from the light source unit, which is a reference beam and the measuring unit. Optical means for dividing the measuring light for measuring the displacement and amplifying the optical path length of the measuring light that changes with the displacement of the measuring means, and the surface of the object to be measured based on this optical path length The measuring means includes a movable arm and a probe that is provided at one end of the movable arm and follows the surface of the object to be measured in contact with the surface of the object to be measured. The optical means splits the light flux emitted from the light source means into the reference light and the measurement light traveling along a substantially common optical path, a first polarizing beam splitter and a first reflecting mirror, and the movable arm. Is provided at the other end of the Corner cube that sends out in the direction opposite to the incident direction, the measurement light emitted from this corner cube, and the quarter-wave plate that transmits the reference light, and the measurement emitted from this quarter-wave plate. A second reflecting mirror that reflects light so as to go backward, a third reflecting mirror that reflects the reference light that has passed through the quarter-wave plate so as to go backward, and a third reflecting mirror that reflects and goes backward. Then, the reference light reflected by the first polarizing beam splitter, and the measuring light reflected by the second reflecting mirror and passing backward through the corner cube and passing through the first polarizing beam splitter, And a reflection member for reflecting the light toward the polarization beam splitter, the detection means converts the interference intensity of the reference light and the measurement light into an electric signal, and determines the surface shape of the object to be measured from the phase difference of the electric signal. To calculate, The reference light is reflected by the first reflecting mirror and then reciprocates twice between the third reflecting mirror and the reflecting member, and then takes an optical path that enters the detecting means. The contact type surface profile measuring device characterized in that after the light is emitted from the splitter, the optical path length is amplified by making two round trips between the second reflecting mirror and the reflecting member, and then the optical path entering the detecting means is taken. .
JP1992088549U 1992-12-02 1992-12-02 Contact type profilometer Expired - Lifetime JPH0754802Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992088549U JPH0754802Y2 (en) 1992-12-02 1992-12-02 Contact type profilometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992088549U JPH0754802Y2 (en) 1992-12-02 1992-12-02 Contact type profilometer

Publications (2)

Publication Number Publication Date
JPH0649954U JPH0649954U (en) 1994-07-08
JPH0754802Y2 true JPH0754802Y2 (en) 1995-12-18

Family

ID=13945945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992088549U Expired - Lifetime JPH0754802Y2 (en) 1992-12-02 1992-12-02 Contact type profilometer

Country Status (1)

Country Link
JP (1) JPH0754802Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030346B2 (en) * 2012-05-31 2016-11-24 株式会社ミツトヨ Shape measuring instruments
CN115854889B (en) * 2023-03-08 2023-06-06 上海拜安传感技术有限公司 Contact type displacement measuring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160266A (en) * 1978-06-09 1979-12-18 Olympus Optical Co Ltd Measuring pressure control unit
JPS62233704A (en) * 1986-03-28 1987-10-14 ジゴ− コ−ポレ−シヨン Differential plane-mirror interferometer system

Also Published As

Publication number Publication date
JPH0649954U (en) 1994-07-08

Similar Documents

Publication Publication Date Title
EP2163906B1 (en) Method of detecting a movement of a measuring probe and measuring instrument
KR102061632B1 (en) Grid measuring device
CN107806821B (en) With the difference single-frequency interference signal processing unit and method of integrated four photodetectors
JPH03223609A (en) Touch probe
JP5669182B2 (en) Vibration measuring apparatus and vibration measuring method by white interference method
US8441649B2 (en) Multi-beam interferometer displacement measuring system utilized in a large measuring range
EP0244275A2 (en) Angle measuring interferometer
US10365298B2 (en) Optical knife-edge detector with large dynamic range
JPH07101166B2 (en) Interferometer
US4334778A (en) Dual surface interferometer
EP1225420A2 (en) Laser-based interferometric measuring apparatus and method
US4509858A (en) Compact, linear measurement interferometer with zero abbe error
JPH09113217A (en) Optical heterodyne type displacement amount detection device
JPH0754802Y2 (en) Contact type profilometer
JPH095059A (en) Flatness measuring device
JP2721812B2 (en) Surface shape measurement method
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
JP2001264036A (en) Measuring apparatus and measuring method for surface shape
JPH095018A (en) Device for measuring moving quantity
EP0050144B1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body
KR100332035B1 (en) distance measuring apparatus and method using double pass of homodyne laser
JP3739121B2 (en) Laser measuring machine
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP2949377B2 (en) Branch prism and interference straightness meter using it
JPH09196619A (en) Method and instrument for measuring minute displacement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term