JPH09233679A - Corona discharge detector in power installation - Google Patents

Corona discharge detector in power installation

Info

Publication number
JPH09233679A
JPH09233679A JP8034567A JP3456796A JPH09233679A JP H09233679 A JPH09233679 A JP H09233679A JP 8034567 A JP8034567 A JP 8034567A JP 3456796 A JP3456796 A JP 3456796A JP H09233679 A JPH09233679 A JP H09233679A
Authority
JP
Japan
Prior art keywords
sound
corona discharge
signal
discharge
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8034567A
Other languages
Japanese (ja)
Other versions
JP3334780B2 (en
Inventor
Kiyoyoshi Suenaga
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03456796A priority Critical patent/JP3334780B2/en
Publication of JPH09233679A publication Critical patent/JPH09233679A/en
Application granted granted Critical
Publication of JP3334780B2 publication Critical patent/JP3334780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to analyze corona discharge without a stoppage in power, by detecting a position of noise generation and its conditions in corona discharge on the basis of a containing rate of a frequency factor that is twice the power supply frequency in strong and weak factors. SOLUTION: A direction of sound in discharge is discriminated by an acoustic direction detecting unit 10. An acoustic detecting unit 1 is turned to the direction of sound to receive the sound in discharge. The sound is amplified in a first stage amplifier 2, passed through a high-frequency passing filter 3 to remove noises, and amplified again in a second stage amplifier 4. After the sound signal without noises is rectified by a rectifier 5, the sound signal is subjected to envelope detection, and an analog signal as strong and weak factors of the sound is converted into a digital signal by an A/D converter 7. The digital signal is fed to a CPU 8, and fast Fourier transform is carried out to obtain a stable waveform with frequency twice the power-supply frequency. As a result, the generating position of corona discharge can be judged from the acoustic signal and the conditions can be detected, and the analysis can be carried out without a failure in power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、稼働中の電力設備
のコロナ放電による絶縁劣化等の異常を検出する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting an abnormality such as insulation deterioration due to corona discharge in a power facility in operation.

【0002】[0002]

【従来の技術】従来、稼働中の電力設備のコロナ放電に
よる絶縁劣化等の異常を検出する装置としては、例えば
特開昭49− 50969号公報に開示されているように、コロ
ナ放電をコロナ検出素子で検出し、電源と同期したタイ
ミングで信号をサンプリングすることで、コロナ放電の
信号だけを検出する方法や、あるいは特開昭58− 21173
号公報のように、コロナ放電を接地線から検出し、商用
周波数電源から生成した定位相のタイミングで信号をサ
ンプリングし、その積算量でコロナ放電を検出する方法
などが知られている。
2. Description of the Related Art Conventionally, as a device for detecting an abnormality such as insulation deterioration due to corona discharge in a power facility in operation, as disclosed in Japanese Patent Laid-Open No. 49-50969, for example, corona discharge is detected. A method of detecting only the corona discharge signal by detecting with a device and sampling the signal at the timing synchronized with the power supply, or JP-A-58-21173.
As disclosed in Japanese Patent Laid-Open Publication No. 2003-242242, a method is known in which corona discharge is detected from a ground line, a signal is sampled at a constant phase timing generated from a commercial frequency power supply, and the corona discharge is detected by the integrated amount.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
た特開昭49− 50969号や特開昭58− 21173号の従来技術
にはそれぞれ以下のような問題がある。すなわち、前者
の特開昭49− 50969号の技術によってコロナを検出した
例を図6に、またコロナ放電以外のノイズを検出した例
を図7に示す。図6において、(a) はコロナ検出素子で
検出したコロナ放電信号、(b) はノイズ除去部で低域ノ
イズを除去した後の信号A、(c) は電源と同期して波高
値付近で1、他の区間は0となる矩形波B、(d) はAと
Bを乗じて得られる信号である。そして、コロナ検出素
子でコロナを検出した場合、AとBとを乗じて得られた
信号には、矩形波Bの周期で高周波信号が出現する。
However, the prior arts of the above-mentioned JP-A-49-50969 and JP-A-58-21173 have the following problems, respectively. That is, FIG. 6 shows an example of detecting corona by the former technique of Japanese Patent Laid-Open No. 49-50969, and FIG. 7 shows an example of detecting noise other than corona discharge. In Fig. 6, (a) is the corona discharge signal detected by the corona detection element, (b) is the signal A after the low frequency noise is removed by the noise eliminator, and (c) is near the peak value in synchronization with the power supply. The rectangular wave B is 1, which is 1 in other sections and 0 in other sections, and (d) is a signal obtained by multiplying A and B. Then, when corona is detected by the corona detecting element, a high frequency signal appears in the signal obtained by multiplying A and B in the cycle of the rectangular wave B.

【0004】また、図7において、(a) はコロナ検出素
子で検出した定常的ノイズ信号、(b) はノイズ除去部で
低域ノイズを除去した後の信号C、(c) は電源と同期し
て波高値付近で1、他の区間は0となる矩形波D、(d)
はCとDを乗じて得られる信号である。そして、コロナ
検出素子で定常的に生じるノイズ信号を検出した場合、
CとDとを乗じて得られた信号には、矩形波Dの周期で
高周波信号が出現する。
Further, in FIG. 7, (a) is a stationary noise signal detected by the corona detecting element, (b) is a signal C after the low frequency noise is removed by the noise removing section, and (c) is a power source synchronized. Then, a square wave D that becomes 1 near the peak value and 0 in other sections, (d)
Is a signal obtained by multiplying C and D. Then, when a noise signal that constantly occurs is detected by the corona detection element,
In the signal obtained by multiplying C and D, a high frequency signal appears in the cycle of the rectangular wave D.

【0005】これらの図に示す通り、真のコロナ放電の
信号であっても、定常的に発生するノイズであっても、
サンプリングした後の信号は、まったく同じ様相を呈す
るため、コロナ放電の信号を検出していてもそれがコロ
ナ放電であることを判定することが困難である。したが
って、定常的なノイズの発生する環境(交流モータのス
リップリングノイズ等の電源系統にある場合)では使用
できないという問題をもっている。また、コロナを検出
しようとする対象物が1点に限定されるため、例えば変
電所全体の異常を監視しようとすると、各機器ごとに検
出装置を接地しなければならず、経済的にも問題があっ
た。
As shown in these figures, whether the signal is a true corona discharge signal or noise that is constantly generated,
Since the signal after sampling has exactly the same aspect, it is difficult to determine that it is corona discharge even if the signal of corona discharge is detected. Therefore, there is a problem that it cannot be used in an environment where constant noise is generated (when it is in the power supply system such as slip ring noise of an AC motor). In addition, since the target object for detecting corona is limited to one point, for example, when trying to monitor the abnormality of the entire substation, the detection device must be grounded for each device, which is economically problematic. was there.

【0006】また、後者の特開昭58− 21173号の方法
は、接地変圧器が接続された系統の機器すべてが検出対
象になるため、対象物が1点に限定されるという欠点は
解決されているものの、コロナ放電を検出する方法が商
用周波数電源から生成した定位相のタイミングで信号の
サンプリングを行うため、前述の方法と同様に、サンプ
リングした後の信号は、真のコロナ放電の信号であって
も、定常的に発生するノイズであっても、まったく同じ
様相を呈するため、コロナ放電を判定することができな
い。特に高調波を含む系統においては、高調波ノイズが
定常的に接地線に重畳しており、微弱なコロナ放電の信
号を検出することが困難である。
In the latter method of Japanese Patent Laid-Open No. 58-21173, all the devices of the system to which the grounding transformer is connected are to be detected, so the drawback that the object is limited to one point is solved. However, since the method of detecting corona discharge samples the signal at the constant phase timing generated from the commercial frequency power supply, the signal after sampling is a true corona discharge signal as in the previous method. Even if there is noise, which is constantly generated, the same appearance is exhibited, and therefore corona discharge cannot be determined. Particularly in a system including harmonics, harmonic noises are constantly superposed on the ground line, and it is difficult to detect a weak corona discharge signal.

【0007】ところで、本出願人は上記した従来技術の
欠点を克服し、コロナ放電を正確に検出し得る手段とし
て、既に特願平7−282078号で電力設備のコロナ放電検
出装置を提案した。その内容は、電力設備のコロナ放電
を検出する装置において、コロナ放電が発生した時に生
じる音響を検出する音響検出部と、該音響検出部の検出
信号から高周波成分を抽出して周辺ノイズを除去するノ
イズ除去部と、ノイズ除去後の信号を整流によって包絡
線検波し、コロナ放電音の強弱成分として電源周波数の
2倍の周期のものを抽出する強弱成分抽出部と、強弱成
分の中の電源周波数成分の大きさから、その音響がコロ
ナ放電音であることを判定する判定部と、を具備したこ
とを特徴とするものであり、配電盤内での絶縁劣化を無
停電な状態で検知するには非常に有効な手段である。
By the way, the present applicant has proposed a corona discharge detecting device for electric power equipment in Japanese Patent Application No. 7-282078 as means for overcoming the above-mentioned drawbacks of the prior art and accurately detecting corona discharge. The contents are, in a device for detecting corona discharge of electric power equipment, a sound detection unit that detects a sound generated when the corona discharge occurs, and a high frequency component is extracted from a detection signal of the sound detection unit to remove ambient noise. The noise removal unit, the envelope detection of the signal after noise removal by rectification, and the strong and weak component extraction unit that extracts the thing of the period of twice the power supply frequency as the strong and weak component of the corona discharge sound, and the power supply frequency in the strong and weak components It is characterized by including a determination unit that determines whether the sound is a corona discharge sound from the size of the component, and to detect insulation deterioration in a switchboard in an uninterruptible state. This is a very effective means.

【0008】しかし、この特願平7−282078号の場合
は、電気保全員がたとえば監視センターにおいてコロナ
放電の音響を検知した情報を入手した後、その現場に赴
き放電の有無を確認しようとしたとき、放電がどの部位
で生じているのか、またどのような様相で生じているの
かを確認するためには、大元の電源を停止してから確認
せざるを得ないのである。
However, in the case of this Japanese Patent Application No. 7-282078, an electric maintenance worker, for example, obtained information on detecting the sound of corona discharge at a monitoring center and then went to the site to check the presence or absence of discharge. At this time, in order to confirm in which part the discharge is occurring and in what manner the discharge is occurring, it is inevitable to stop after turning off the power source.

【0009】たとえば、放電が碍子などの母線機器で発
生する場合は、変電設備全体を停電して対処する必要が
あるが、放電がケーブルなどの沿面放電による場合は、
該当のフィーダだけを停電して対処すればよい。しか
し、前記特願平7−282078号の場合はいずれの放電か判
定ができないため、常に、変電設備全体を停電して対処
する必要がある。また、放電が接触部の過熱から生じる
ようなアーク放電に発展するような放電の場合は、速や
かに対処する緊急性があるが、ケーブルの沿面放電のよ
うに絶縁体のボイドが原因で生じる放電の場合は、比較
的長時間放置しても絶縁破壊に至らないものもある。
[0009] For example, when the electric discharge occurs in a busbar device such as an insulator, it is necessary to take a power outage for the entire substation equipment, but when the electric discharge is caused by a creeping discharge such as a cable,
Only the applicable feeder should be cut off and dealt with. However, in the case of the above-mentioned Japanese Patent Application No. 7-282078, it is not possible to determine which one of the discharges, and therefore it is necessary to always take a power outage of the entire substation equipment to deal with it. Also, in the case of discharge that develops into arc discharge that occurs from overheating of the contact part, there is an urgent need to promptly deal with it, but discharge that occurs due to voids in the insulator, such as creeping discharge of a cable. In some cases, dielectric breakdown may not occur even if left for a relatively long time.

【0010】このように、放電の部位とその様相によっ
て対処方法が異なるにもかかわらず、前記した特願平7
−282078号では、放電の検知は可能であるものの放電の
部位と様相を分析することができないために、結局は変
電設備全体を速やかに停電して対処する必要があるので
ある。本発明は、上記のような従来技術の有する課題を
解決すべくしてなされたものであって、放電の部位とそ
の様相を音響によって無停電で分析することの可能な電
力設備のコロナ放電検出装置を提供することを目的とす
る。
As described above, although the coping method differs depending on the site of discharge and its aspect, the above-mentioned Japanese Patent Application No.
In −282078, it is possible to detect discharge, but it is not possible to analyze the location and aspect of discharge, so it is necessary to promptly take a power outage for the entire substation equipment in the end. The present invention has been made in order to solve the above-mentioned problems of the conventional technology, and is a corona discharge detection device for electric power equipment capable of acoustically analyzing a discharge site and its aspect without interruption. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、コロナ放電が発生した時に生じる音響を
検出する受音部が揺動自在とされる音響検出部と、該音
響検出部の近傍に取り付けられて音響の発生方向を検出
する音響方位検出部と、前記音響検出部の検出信号から
高周波成分を抽出して周辺ノイズを除去するノイズ除去
部と、ノイズ除去後の信号を整流によって包絡線検波
し、コロナ放電音の強弱成分を抽出する強弱成分抽出部
と、強弱成分中での電源周波数の2倍周波数成分の含有
割合から当該コロナ放電音の発生部位およびその様相を
判定する判定部と、を一体的に可搬できるように構成し
たことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a sound detecting section in which a sound receiving section for detecting a sound generated when a corona discharge occurs is swingable, and the sound detecting section. The acoustic azimuth detecting section which is attached in the vicinity of the section to detect the direction of sound generation, the noise removing section which extracts high frequency components from the detection signal of the acoustic detecting section to remove ambient noise, and the signal after noise removal Envelope detection is performed by rectification, and the strength component extraction unit that extracts the strength component of the corona discharge sound, and the generation location of the corona discharge sound and its appearance are determined from the content ratio of twice the power supply frequency component in the strength component. It is characterized in that it is configured so as to be integrally portable.

【0012】[0012]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について、図面を参照して詳しく説明する。図1は本
発明に係るコロナ放電検出装置の構成を示すブロック図
であり、図2はコロナ放電検出装置の各要素での出力波
形を示す特性図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a corona discharge detection device according to the present invention, and FIG. 2 is a characteristic diagram showing output waveforms at respective elements of the corona discharge detection device.

【0013】これらの図において、1はコロナ放電によ
る音響を検出する指向性の強い超音波マイクロホンなど
の音響検出部で、その受音部が揺動自在とされる。2は
1段目のアンプ、3は遮断周波数が例えば10kHz の高域
通過フィルタ、4は2段目のアンプ、5は整流器、6は
遮断周波数が例えば200Hz の低域通過フィルタ、7はA
/D変換器、8は中央演算処理装置、9はディスプレー
である。10はレーザダイオードによるポインタなどの音
響方位検出部で、音響検出部1の近傍に取り付けられ
て、コロナ放電による音響の方向を表示器11に光などで
指示することによって、放電音の発生部位を視覚で確認
することができる。これらの機器は、可搬が容易な寸法
に一体的に組み立てられ、電気保全員が現場に持ち運ん
で測定できるように構成される。
In these figures, reference numeral 1 designates a sound detection unit such as an ultrasonic microphone having a strong directivity for detecting sound due to corona discharge, the sound receiving unit of which can be swung freely. 2 is a first-stage amplifier, 3 is a high-pass filter with a cut-off frequency of 10 kHz, 4 is a second-stage amplifier, 5 is a rectifier, 6 is a low-pass filter with a cut-off frequency of 200 Hz, 7 is A
A / D converter, 8 is a central processing unit, and 9 is a display. Reference numeral 10 denotes an acoustic direction detection unit such as a pointer using a laser diode, which is attached in the vicinity of the acoustic detection unit 1 and indicates the direction of the acoustic due to the corona discharge to the display unit 11 by light or the like, so that the location where the discharge sound is generated is detected. It can be visually confirmed. These devices are integrally assembled to a size that is easy to carry and are configured so that an electric maintenance person can carry them to the site for measurement.

【0014】次に、このように構成された本発明のコロ
ナ放電検出装置の動作について説明すると、まず、音響
方位検出部10を用いて放電音の発生方向を確認して、そ
の方向に音響検出部1を向けて、図2(a) に示すような
波形の放電音を採取する。この音響検出部1で採取され
た放電音は、まず、1段目のアンプ2で図2(b) に示す
ような波形に増幅され、高域通過フィルタ3を通過して
ノイズが除去される。ノイズ除去された後、2段目のア
ンプ4で再度増幅される。このときの信号を図2(c) に
示す。ここで、高域通過フィルタ3でのノイズ除去の機
能について説明すると、通常、コロナ放電で生じる音響
は10kHz 以上の高い周波数で広い周波数帯域にわたって
存在するが、一般の変電設備の環境音は大半が10kHz 以
下の周波数成分であるため、高域通過フィルタ3で容易
にコロナ音だけ抽出することができるのである。
Next, the operation of the corona discharge detecting device of the present invention thus constructed will be described. First, the direction of discharge sound is confirmed by using the acoustic direction detector 10 and the acoustic detection is performed in that direction. With the part 1 facing, a discharge sound having a waveform as shown in FIG. 2 (a) is collected. The discharge sound sampled by the acoustic detector 1 is first amplified by the amplifier 2 in the first stage into a waveform as shown in FIG. 2 (b), passes through the high-pass filter 3 and is removed of noise. . After the noise is removed, it is amplified again by the second-stage amplifier 4. The signal at this time is shown in Fig. 2 (c). Here, to explain the function of noise removal in the high-pass filter 3, normally, the sound generated by corona discharge exists at a high frequency of 10 kHz or more over a wide frequency band, but most of the environmental noise of general transformer equipment is Since the frequency component is 10 kHz or less, only the corona sound can be easily extracted by the high pass filter 3.

【0015】そして、ノイズ除去後の信号を整流器5で
図2(d) のような波形に整流してから低域通過フィルタ
6によって包絡線検波し、図2(e) に示すような放電音
の強弱成分を抽出する。さらに、この放電音の強弱成分
のアナログ信号をA/D変換器7でデジタル信号に変換
して中央演算処理装置8に導く。ここで、A/D変換器
7を用いて包絡線検波した後のアナログ信号をデジタル
信号に変換するのは、包絡線検波前の信号は超音波領域
(40kHz 程度) まで広域の信号になるのに対し、包絡線
検波した後の信号は電源電圧の周波数の数倍(200Hz 程
度)であり、サンプリングレートを低く設定でき、中央
演算処理装置8の負荷を軽減できるためである。
Then, the noise-removed signal is rectified by the rectifier 5 into a waveform as shown in FIG. 2 (d), and then envelope detection is performed by the low-pass filter 6 to generate a discharge sound as shown in FIG. 2 (e). The strength component of is extracted. Further, the analog signal of the intensity component of the discharge sound is converted into a digital signal by the A / D converter 7 and guided to the central processing unit 8. Here, the analog signal after envelope detection using the A / D converter 7 is converted into a digital signal because the signal before envelope detection becomes a wide-range signal up to the ultrasonic region (about 40 kHz). On the other hand, the signal after envelope detection is several times the frequency of the power supply voltage (about 200 Hz), the sampling rate can be set low, and the load on the central processing unit 8 can be reduced.

【0016】さらに、中央演算処理装置8では、FFT
(高速フーリエ変換)処理により信号の周波数成分をス
ペクトル表示するとともに、信号の位相の転移の有無を
視覚で確認できる信号波形の表示を行う。以下に、この
中央演算処理装置8での処理内容について具体的に説明
する。まず、図3は包絡線検波後のボイド放電の波形を
示したものであるが、電源周波数(60Hz)の2倍周波数
成分である120Hz の安定した波形となることがわかる。
また、図4は包絡線検波後の碍子沿面放電の波形を示し
たもので、ボイド放電に比較して音圧が大きく、その周
期が転位する場合があることが特徴的であることがわか
る。
Further, in the central processing unit 8, the FFT
The frequency component of the signal is displayed as a spectrum by (Fast Fourier Transform) processing, and the signal waveform is displayed so that the presence or absence of the phase transition of the signal can be visually confirmed. The processing contents of the central processing unit 8 will be specifically described below. First, FIG. 3 shows the waveform of the void discharge after envelope detection, and it can be seen that the waveform is stable at 120 Hz, which is a frequency component twice the power supply frequency (60 Hz).
Further, FIG. 4 shows the waveform of the insulator creeping discharge after envelope detection, and it can be seen that it is characteristic that the sound pressure is larger than that of the void discharge and the period thereof may be displaced.

【0017】一方、これらのボイド放電と碍子沿面放電
の周波数成分比を調査したところ、下記の表1に示すよ
うな割合であることがわかった。
On the other hand, when the frequency component ratios of the void discharge and the insulator creeping discharge were investigated, it was found that the ratio was as shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】特に、放電音の大きさと電源周波数の2倍
周波数成分の含有率に注目すると、およそ、図5のよう
な関係があることがわかる。そこで、この図5の関係を
予め中央演算処理装置8に記憶させておくことにより、
発生する放電音の音圧によって放電の様相を、火花放電
か碍子沿面放電かあるいはボイド放電かの判別を行うこ
とができる。これによって、碍子沿面放電の場合は碍子
の汚損・湿潤によるものとして処置がなされ、またボイ
ド放電の場合はケーブルやエポキシなどに絞って対処す
ることができる。
In particular, paying attention to the volume of the discharge sound and the content rate of the double frequency component of the power supply frequency, it is understood that there is a relation as shown in FIG. Therefore, by storing the relationship of FIG. 5 in the central processing unit 8 in advance,
By the sound pressure of the generated discharge sound, it is possible to determine the aspect of the discharge, that is, spark discharge, insulator creeping discharge, or void discharge. By this, in the case of the insulator surface discharge, the treatment is performed as being due to the contamination / wetting of the insulator, and in the case of the void discharge, it can be dealt with by focusing on the cable or epoxy.

【0020】[0020]

【発明の効果】以上説明したように、本発明のコロナ放
電検出装置によれば、音響によって検出されるコロナ放
電の発生部位およびその様相を判別することができるの
で、変電設備の運転を停止させることなく、絶縁劣化に
起因する地絡・短絡事故を初期段階で検出し、事故の拡
大を未然に防止することが可能である。
As described above, according to the corona discharge detecting apparatus of the present invention, it is possible to discriminate the corona discharge occurrence site and its appearance detected by the sound, so that the operation of the substation equipment is stopped. Without it, it is possible to detect a ground fault / short circuit accident due to insulation deterioration at an early stage and prevent the accident from spreading.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコロナ放電検出装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a corona discharge detection device according to the present invention.

【図2】(a) 〜(e) はコロナ放電検出装置の各要素での
出力波形を示す特性図である。
2A to 2E are characteristic diagrams showing output waveforms at respective elements of the corona discharge detection device.

【図3】ボイド放電での波形の特性図である。FIG. 3 is a characteristic diagram of a waveform in void discharge.

【図4】碍子沿面放電での波形の特性図である。FIG. 4 is a characteristic diagram of a waveform in insulator creeping discharge.

【図5】放電音の音圧と電源周波数の2倍周波数成分の
含有率との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the sound pressure of a discharge sound and the content rate of a frequency component twice the power supply frequency.

【図6】従来例でのコロナを検出した例を示す特性図で
ある。
FIG. 6 is a characteristic diagram showing an example of detecting corona in a conventional example.

【図7】従来例でのコロナ放電以外のノイズを検出した
例をを示す特性図である。
FIG. 7 is a characteristic diagram showing an example of detecting noise other than corona discharge in the conventional example.

【符号の説明】[Explanation of symbols]

1 音響検出部 2 1段目のアンプ 3 高域通過フィルタ(ノイズ除去部) 4 2段目のアンプ 5 整流器(強弱成分抽出部) 6 低域通過フィルタ(強弱成分抽出部) 7 A/D変換器 8 中央演算処理装置(判定部) 9 ディスプレー 10 音響方位検出部 11 表示器 1 Acoustic Detection Unit 2 1st Stage Amplifier 3 High Pass Filter (Noise Removing Unit) 4 2nd Stage Amplifier 5 Rectifier (Strength Component Extraction Unit) 6 Low Pass Filter (Strength Component Extraction Unit) 7 A / D Conversion Device 8 Central processing unit (judgment unit) 9 Display 10 Acoustic direction detection unit 11 Display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力設備のコロナ放電を検出する装置に
おいて、 コロナ放電が発生した時に生じる音響を検出する受音部
が揺動自在とされる音響検出部と、該音響検出部の近傍
に取り付けられて音響の発生方向を検出する音響方位検
出部と、前記音響検出部の検出信号から高周波成分を抽
出して周辺ノイズを除去するノイズ除去部と、ノイズ除
去後の信号を整流によって包絡線検波し、コロナ放電音
の強弱成分を抽出する強弱成分抽出部と、強弱成分中で
の電源周波数の2倍周波数成分の含有割合から当該コロ
ナ放電音の発生部位およびその様相を判定する判定部
と、を一体的に可搬できるように構成したことを特徴と
する電力設備のコロナ放電検出装置。
1. A device for detecting corona discharge of electric power equipment, wherein a sound detecting part for detecting a sound generated when corona discharge occurs is swingable, and a sound detecting part is mounted in the vicinity of the sound detecting part. An acoustic azimuth detecting section for detecting the direction of sound generation, a noise removing section for extracting high frequency components from the detection signal of the acoustic detecting section to remove ambient noise, and an envelope detection by rectifying the signal after noise removal. Then, a strength component extraction unit that extracts the strength component of the corona discharge sound, and a determination unit that determines the generation location of the corona discharge sound and its appearance from the content ratio of the frequency component twice the power supply frequency in the strength component. A corona discharge detection device for electric power equipment, characterized in that it is configured so that it can be carried integrally.
JP03456796A 1996-02-22 1996-02-22 Corona discharge detector for power equipment Expired - Fee Related JP3334780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03456796A JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03456796A JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Publications (2)

Publication Number Publication Date
JPH09233679A true JPH09233679A (en) 1997-09-05
JP3334780B2 JP3334780B2 (en) 2002-10-15

Family

ID=12417909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03456796A Expired - Fee Related JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Country Status (1)

Country Link
JP (1) JP3334780B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197326A (en) * 1997-01-10 1998-07-31 Chubu Electric Power Co Inc Apparatus and method for discrimination of stain on insulator
JP2005201669A (en) * 2004-01-13 2005-07-28 Fanuc Ltd Motor drive apparatus
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
JP2009239984A (en) * 2008-03-25 2009-10-15 Jfe Steel Corp Discharge aspect judger
JP2012247309A (en) * 2011-05-27 2012-12-13 Chihiro Ishibashi Partial discharge detection device and partial discharge inspection method for power receiving facility
US8475219B2 (en) 2008-12-17 2013-07-02 Hubbell Incorporated Data collecting connection
US9697724B2 (en) 2010-09-22 2017-07-04 Hubbell Incorporated Transmission line measuring device and method for connectivity and monitoring
US10228001B2 (en) 2010-09-22 2019-03-12 Hubbell Incorporated Transmission line measuring device and method for connectivity
JP6508436B1 (en) * 2018-08-10 2019-05-08 中国電力株式会社 Apparatus for specifying location of corona discharge, method for specifying location of corona discharge
JP2020136120A (en) * 2019-02-21 2020-08-31 三菱重工業株式会社 Spark plug inspection device, inspection method, and internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092878B2 (en) * 2008-03-25 2012-12-05 Jfeスチール株式会社 Discharge detection / identification device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197326A (en) * 1997-01-10 1998-07-31 Chubu Electric Power Co Inc Apparatus and method for discrimination of stain on insulator
JP2005201669A (en) * 2004-01-13 2005-07-28 Fanuc Ltd Motor drive apparatus
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
JP2009239984A (en) * 2008-03-25 2009-10-15 Jfe Steel Corp Discharge aspect judger
US8475219B2 (en) 2008-12-17 2013-07-02 Hubbell Incorporated Data collecting connection
US9697724B2 (en) 2010-09-22 2017-07-04 Hubbell Incorporated Transmission line measuring device and method for connectivity and monitoring
US9767685B2 (en) 2010-09-22 2017-09-19 Hubbell Incorporated Transmission line measuring device and method for connectivity and monitoring
US9928730B2 (en) 2010-09-22 2018-03-27 Hubbell Incorporated Transmission line measuring device and method for connectivity and monitoring
US10228001B2 (en) 2010-09-22 2019-03-12 Hubbell Incorporated Transmission line measuring device and method for connectivity
JP2012247309A (en) * 2011-05-27 2012-12-13 Chihiro Ishibashi Partial discharge detection device and partial discharge inspection method for power receiving facility
JP6508436B1 (en) * 2018-08-10 2019-05-08 中国電力株式会社 Apparatus for specifying location of corona discharge, method for specifying location of corona discharge
WO2020031369A1 (en) * 2018-08-10 2020-02-13 中国電力株式会社 Device for specifying generation point of corona discharge, and method for specifying generation point of corona discharge
JP2020136120A (en) * 2019-02-21 2020-08-31 三菱重工業株式会社 Spark plug inspection device, inspection method, and internal combustion engine

Also Published As

Publication number Publication date
JP3334780B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
US5578931A (en) ARC spectral analysis system
US9046563B2 (en) Arcing event detection
EP2806518B1 (en) Serial arc detection based on harmonic content of DC current signal
JP3334780B2 (en) Corona discharge detector for power equipment
KR20130004477A (en) Evaluating noise and excess current on a power line
US10359466B2 (en) Device for detecting an electric arc based on its acoustic signature
US20170184655A1 (en) Method of detecting an electric arc by analysis of its acoustic signature
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
US6545485B1 (en) Ultrasonic pinpointer for power system sources of interference
JP2007057319A (en) Ground fault position detection system
JP4062939B2 (en) Rotor abnormality detection method and rotor abnormality detection apparatus for AC motor
JP2005147890A (en) Insulation abnormality diagnostic device
JPH11174110A (en) Portable corona discharge detecting apparatus
KR102009993B1 (en) Intelligent fire prevention diagnosis system and method
JP4663846B2 (en) Pattern recognition type partial discharge detector
JP4969319B2 (en) Method and apparatus for partial discharge diagnosis of gas insulated switchgear
JP5092878B2 (en) Discharge detection / identification device
KR19980069423A (en) Electrical Equipment Fault Diagnosis Device Using Frequency Characteristics and Its Method
JPH11174111A (en) Apparatus for detecting insulation deterioration of a.c. electric motor
KR100765449B1 (en) Method and apparatus for eliminating the noise from high voltage electric equipment partial discharge monitoring system
JP2003232826A (en) Leak detection device
JP5130985B2 (en) Discharge aspect judgment device
JPH07107627A (en) Partial discharge detector for switchgear
JPH0627182A (en) Partial discharge monitoring apparatus
JP4351516B2 (en) Discharge sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees