JP3334780B2 - Corona discharge detector for power equipment - Google Patents

Corona discharge detector for power equipment

Info

Publication number
JP3334780B2
JP3334780B2 JP03456796A JP3456796A JP3334780B2 JP 3334780 B2 JP3334780 B2 JP 3334780B2 JP 03456796 A JP03456796 A JP 03456796A JP 3456796 A JP3456796 A JP 3456796A JP 3334780 B2 JP3334780 B2 JP 3334780B2
Authority
JP
Japan
Prior art keywords
sound
discharge
corona discharge
signal
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03456796A
Other languages
Japanese (ja)
Other versions
JPH09233679A (en
Inventor
清佳 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03456796A priority Critical patent/JP3334780B2/en
Publication of JPH09233679A publication Critical patent/JPH09233679A/en
Application granted granted Critical
Publication of JP3334780B2 publication Critical patent/JP3334780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、稼働中の電力設備
のコロナ放電による絶縁劣化等の異常を検出する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting an abnormality such as insulation deterioration due to corona discharge of an operating power facility.

【0002】[0002]

【従来の技術】従来、稼働中の電力設備のコロナ放電に
よる絶縁劣化等の異常を検出する装置としては、例えば
特開昭49− 50969号公報に開示されているように、コロ
ナ放電をコロナ検出素子で検出し、電源と同期したタイ
ミングで信号をサンプリングすることで、コロナ放電の
信号だけを検出する方法や、あるいは特開昭58− 21173
号公報のように、コロナ放電を接地線から検出し、商用
周波数電源から生成した定位相のタイミングで信号をサ
ンプリングし、その積算量でコロナ放電を検出する方法
などが知られている。
2. Description of the Related Art Conventionally, as an apparatus for detecting an abnormality such as insulation deterioration due to corona discharge of an operating power facility, as disclosed in, for example, Japanese Patent Application Laid-Open No. 49-50969, a corona discharge is detected. A method of detecting only a corona discharge signal by detecting a signal with an element and sampling a signal at a timing synchronized with a power supply, or a method disclosed in Japanese Patent Application Laid-Open No. 58-21173.
As disclosed in Japanese Patent Application Laid-Open Publication No. H11-163, there is known a method in which a corona discharge is detected from a ground line, a signal is sampled at a constant phase timing generated from a commercial frequency power supply, and the corona discharge is detected based on the integrated amount.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
た特開昭49− 50969号や特開昭58− 21173号の従来技術
にはそれぞれ以下のような問題がある。すなわち、前者
の特開昭49− 50969号の技術によってコロナを検出した
例を図6に、またコロナ放電以外のノイズを検出した例
を図7に示す。図6において、(a) はコロナ検出素子で
検出したコロナ放電信号、(b) はノイズ除去部で低域ノ
イズを除去した後の信号A、(c) は電源と同期して波高
値付近で1、他の区間は0となる矩形波B、(d) はAと
Bを乗じて得られる信号である。そして、コロナ検出素
子でコロナを検出した場合、AとBとを乗じて得られた
信号には、矩形波Bの周期で高周波信号が出現する。
However, the above-mentioned prior arts of JP-A-49-50969 and JP-A-58-21173 each have the following problems. That is, FIG. 6 shows an example in which a corona is detected by the former technique of JP-A-49-50969, and FIG. 7 shows an example in which noise other than corona discharge is detected. In FIG. 6, (a) shows a corona discharge signal detected by a corona detecting element, (b) shows a signal A after low-frequency noise has been removed by a noise removing unit, and (c) shows a signal near a peak value synchronized with a power supply. 1, a rectangular wave B having 0 in other sections, and (d) are signals obtained by multiplying A and B. When a corona is detected by the corona detecting element, a high-frequency signal appears at a cycle of a rectangular wave B in a signal obtained by multiplying A and B.

【0004】また、図7において、(a) はコロナ検出素
子で検出した定常的ノイズ信号、(b) はノイズ除去部で
低域ノイズを除去した後の信号C、(c) は電源と同期し
て波高値付近で1、他の区間は0となる矩形波D、(d)
はCとDを乗じて得られる信号である。そして、コロナ
検出素子で定常的に生じるノイズ信号を検出した場合、
CとDとを乗じて得られた信号には、矩形波Dの周期で
高周波信号が出現する。
In FIG. 7, (a) shows a stationary noise signal detected by a corona detecting element, (b) shows a signal C after low-frequency noise has been removed by a noise removing section, and (c) shows a signal synchronized with a power supply. Square wave D, which is 1 near the peak value and 0 in other sections, (d)
Is a signal obtained by multiplying C and D. Then, when a noise signal that constantly occurs in the corona detecting element is detected,
In a signal obtained by multiplying C and D, a high-frequency signal appears at a period of the rectangular wave D.

【0005】これらの図に示す通り、真のコロナ放電の
信号であっても、定常的に発生するノイズであっても、
サンプリングした後の信号は、まったく同じ様相を呈す
るため、コロナ放電の信号を検出していてもそれがコロ
ナ放電であることを判定することが困難である。したが
って、定常的なノイズの発生する環境(交流モータのス
リップリングノイズ等の電源系統にある場合)では使用
できないという問題をもっている。また、コロナを検出
しようとする対象物が1点に限定されるため、例えば変
電所全体の異常を監視しようとすると、各機器ごとに検
出装置を接地しなければならず、経済的にも問題があっ
た。
[0005] As shown in these figures, whether the signal is a true corona discharge signal or a stationary noise,
Since the signal after sampling has exactly the same appearance, it is difficult to determine that the signal is a corona discharge even if a corona discharge signal is detected. Therefore, there is a problem that it cannot be used in an environment where stationary noise is generated (in a power supply system such as a slip ring noise of an AC motor). In addition, since only one object is to be detected for corona detection, for example, when monitoring an abnormality in the entire substation, the detection device must be grounded for each device, which is economically problematic. was there.

【0006】また、後者の特開昭58− 21173号の方法
は、接地変圧器が接続された系統の機器すべてが検出対
象になるため、対象物が1点に限定されるという欠点は
解決されているものの、コロナ放電を検出する方法が商
用周波数電源から生成した定位相のタイミングで信号の
サンプリングを行うため、前述の方法と同様に、サンプ
リングした後の信号は、真のコロナ放電の信号であって
も、定常的に発生するノイズであっても、まったく同じ
様相を呈するため、コロナ放電を判定することができな
い。特に高調波を含む系統においては、高調波ノイズが
定常的に接地線に重畳しており、微弱なコロナ放電の信
号を検出することが困難である。
The method disclosed in Japanese Patent Application Laid-Open No. 58-21173 solves the disadvantage that only one device can be detected because all devices in the system to which the grounding transformer is connected are to be detected. However, since the method of detecting corona discharge samples the signal at a constant phase timing generated from the commercial frequency power supply, the signal after sampling is a true corona discharge signal, as in the method described above. Even if the noise is constantly generated, the corona discharge cannot be determined because the noise looks exactly the same. Particularly in a system including harmonics, the harmonic noise is constantly superimposed on the ground line, and it is difficult to detect a weak corona discharge signal.

【0007】ところで、本出願人は上記した従来技術の
欠点を克服し、コロナ放電を正確に検出し得る手段とし
て、既に特願平7−282078号で電力設備のコロナ放電検
出装置を提案した。その内容は、電力設備のコロナ放電
を検出する装置において、コロナ放電が発生した時に生
じる音響を検出する音響検出部と、該音響検出部の検出
信号から高周波成分を抽出して周辺ノイズを除去するノ
イズ除去部と、ノイズ除去後の信号を整流によって包絡
線検波し、コロナ放電音の強弱成分として電源周波数の
2倍の周期のものを抽出する強弱成分抽出部と、強弱成
分の中の電源周波数成分の大きさから、その音響がコロ
ナ放電音であることを判定する判定部と、を具備したこ
とを特徴とするものであり、配電盤内での絶縁劣化を無
停電な状態で検知するには非常に有効な手段である。
By the way, the present applicant has already proposed a corona discharge detecting device for electric power equipment in Japanese Patent Application No. 7-282078 as a means for overcoming the above-mentioned disadvantages of the prior art and accurately detecting corona discharge. The contents are as follows. In a device for detecting corona discharge of electric power equipment, a sound detection unit that detects sound generated when corona discharge occurs, and a high-frequency component is extracted from a detection signal of the sound detection unit to remove peripheral noise. A noise removing unit, a strong component extracting unit that performs envelope detection by rectifying the signal after noise removal, and extracts a component having a period twice as long as the power frequency as a strong component of the corona discharge sound, and a power frequency within the strong component. A determination unit that determines that the sound is a corona discharge sound from the magnitude of the component, characterized in that it is characterized by the fact that insulation deterioration in the switchboard is detected in an uninterrupted state. This is a very effective means.

【0008】しかし、この特願平7−282078号の場合
は、電気保全員がたとえば監視センターにおいてコロナ
放電の音響を検知した情報を入手した後、その現場に赴
き放電の有無を確認しようとしたとき、放電がどの部位
で生じているのか、またどのような様相で生じているの
かを確認するためには、大元の電源を停止してから確認
せざるを得ないのである。
However, in the case of Japanese Patent Application No. 7-282078, after an electrical maintenance person obtains information on the detection of corona discharge sound at a monitoring center, for example, he or she goes to the site to check for the presence or absence of discharge. At that time, in order to confirm where the discharge is occurring and in what manner the discharge is occurring, it is necessary to confirm after stopping the power source.

【0009】たとえば、放電が碍子などの母線機器で発
生する場合は、変電設備全体を停電して対処する必要が
あるが、放電がケーブルなどの沿面放電による場合は、
該当のフィーダだけを停電して対処すればよい。しか
し、前記特願平7−282078号の場合はいずれの放電か判
定ができないため、常に、変電設備全体を停電して対処
する必要がある。また、放電が接触部の過熱から生じる
ようなアーク放電に発展するような放電の場合は、速や
かに対処する緊急性があるが、ケーブルの沿面放電のよ
うに絶縁体のボイドが原因で生じる放電の場合は、比較
的長時間放置しても絶縁破壊に至らないものもある。
For example, when a discharge occurs in a bus device such as an insulator, it is necessary to take measures by stopping the entire substation equipment, but when the discharge is caused by a creeping discharge of a cable or the like,
Only the corresponding feeder needs to be dealt with after a power outage. However, in the case of the aforementioned Japanese Patent Application No. 7-282078, it is not possible to determine which type of discharge, and it is necessary to always take measures by stopping the power of the entire substation facility. In addition, in the case of a discharge that develops into an arc discharge that occurs due to overheating of the contact portion, there is an urgent need to deal with the discharge immediately, but a discharge that is caused by voids in the insulator, such as a creeping discharge of a cable. In some cases, the dielectric breakdown does not occur even if left for a relatively long time.

【0010】このように、放電の部位とその様相によっ
て対処方法が異なるにもかかわらず、前記した特願平7
−282078号では、放電の検知は可能であるものの放電の
部位と様相を分析することができないために、結局は変
電設備全体を速やかに停電して対処する必要があるので
ある。本発明は、上記のような従来技術の有する課題を
解決すべくしてなされたものであって、放電の部位とそ
の様相を音響によって無停電で分析することの可能な電
力設備のコロナ放電検出装置を提供することを目的とす
る。
As described above, despite the fact that the countermeasures are different depending on the location of the discharge and the aspect thereof, the above-mentioned Japanese Patent Application No. Hei.
In -282078, although it is possible to detect a discharge, it is not possible to analyze the location and appearance of the discharge, and eventually, it is necessary to take measures immediately after a blackout of the entire substation equipment. SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above, and is a corona discharge detection device for electric power equipment capable of analyzing a discharge site and its appearance by sound without interruption. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、コロナ放電が発生した時に生じる音響を
検出する受音部が揺動自在とされる音響検出部と、該音
響検出部の近傍に取り付けられて音響の発生方向を検出
する音響方位検出部と、前記音響検出部の検出信号から
高周波成分を抽出して周辺ノイズを除去するノイズ除去
部と、ノイズ除去後の信号を整流によって包絡線検波
し、コロナ放電音の強弱成分を抽出する強弱成分抽出部
と、強弱成分中での電源周波数の2倍周波数成分の含有
割合と放電音の音圧とから当該コロナ放電が火花放電か
碍子沿面放電かあるいはボイド放電かの判別を行う判定
部と、を一体的に可搬できるように構成したことを特徴
とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a sound detecting section in which a sound receiving section for detecting sound generated when corona discharge occurs is swingable, A sound direction detecting unit attached near the unit for detecting a sound generation direction, a noise removing unit for extracting high frequency components from a detection signal of the sound detecting unit to remove peripheral noise, and a signal after noise removal. The corona discharge sparks based on the envelope detection by rectification and the strong and weak component extraction unit that extracts the strong and weak components of the corona discharge sound, and the content ratio of the frequency component twice the power supply frequency in the strong and weak components and the sound pressure of the discharge sound. Discharge
It is characterized in that it is configured such that a determination unit for determining whether the surface discharge is an insulator surface discharge or a void discharge can be integrally carried.

【0012】[0012]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について、図面を参照して詳しく説明する。図1は本
発明に係るコロナ放電検出装置の構成を示すブロック図
であり、図2はコロナ放電検出装置の各要素での出力波
形を示す特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a corona discharge detection device according to the present invention, and FIG. 2 is a characteristic diagram showing output waveforms at respective elements of the corona discharge detection device.

【0013】これらの図において、1はコロナ放電によ
る音響を検出する指向性の強い超音波マイクロホンなど
の音響検出部で、その受音部が揺動自在とされる。2は
1段目のアンプ、3は遮断周波数が例えば10kHz の高域
通過フィルタ、4は2段目のアンプ、5は整流器、6は
遮断周波数が例えば200Hz の低域通過フィルタ、7はA
/D変換器、8は中央演算処理装置、9はディスプレー
である。10はレーザダイオードによるポインタなどの音
響方位検出部で、音響検出部1の近傍に取り付けられ
て、コロナ放電による音響の方向を光などで指示するこ
とによって、放電音の発生部位を視覚で確認することが
できる。これらの機器は、可搬が容易な寸法に一体的に
組み立てられ、電気保全員が現場に持ち運んで測定でき
るように構成される。
In these figures, reference numeral 1 denotes a sound detection unit such as an ultrasonic microphone having a high directivity for detecting sound due to corona discharge, and its sound receiving unit is swingable. 2 is a first-stage amplifier, 3 is a high-pass filter having a cutoff frequency of, for example, 10 kHz, 4 is a second-stage amplifier, 5 is a rectifier, 6 is a low-pass filter having a cutoff frequency of, for example, 200 Hz, and 7 is A
A / D converter, 8 is a central processing unit, and 9 is a display. Reference numeral 10 denotes an acoustic azimuth detecting unit such as a pointer using a laser diode, which is attached near the acoustic detecting unit 1 and indicates the direction of the sound due to corona discharge with light or the like, thereby visually confirming the location where the discharge sound is generated. be able to. These devices are integrally assembled to easily transportable dimensions, and are configured so that electrical maintenance personnel can carry them to the site and measure them.

【0014】次に、このように構成された本発明のコロ
ナ放電検出装置の動作について説明すると、まず、レー
ザポインタ等の音響方位検出部10を用いて放電音の発生
方向をポイント指示することで確認して、その方向に音
響検出部1を向けて、図2(a) に示すような波形の放電
音を採取する。この音響検出部1で採取された放電音
は、まず、1段目のアンプ2で図2(b) に示すような波
形に増幅され、高域通過フィルタ3を通過してノイズが
除去される。ノイズ除去された後、2段目のアンプ4で
再度増幅される。このときの信号を図2(c) に示す。こ
こで、高域通過フィルタ3でのノイズ除去の機能につい
て説明すると、通常、コロナ放電で生じる音響は10kHz
以上の高い周波数で広い周波数帯域にわたって存在する
が、一般の変電設備の環境音は大半が10kHz 以下の周波
数成分であるため、高域通過フィルタ3で容易にコロナ
音だけ抽出することができるのである。
[0014] Next, the operation of the corona discharge detector of the present invention configured as above, first, Leh
The direction of discharge sound generation is confirmed by pointing to the direction using the sound direction detection unit 10 such as a pointer , and the sound detection unit 1 is pointed in that direction, and the discharge sound having a waveform as shown in FIG. Collect. The discharge sound collected by the sound detection unit 1 is first amplified by the first-stage amplifier 2 into a waveform as shown in FIG. 2 (b) and passed through the high-pass filter 3 to remove noise. . After the noise is removed, the signal is amplified again by the second-stage amplifier 4. The signal at this time is shown in FIG. Here, the function of removing noise in the high-pass filter 3 will be described. Usually, the sound generated by corona discharge is 10 kHz.
Although the above-mentioned high frequencies exist over a wide frequency band, most of the environmental sounds of general substation equipment have frequency components of 10 kHz or less, so that only the corona sound can be easily extracted by the high-pass filter 3. .

【0015】そして、ノイズ除去後の信号を整流器5で
図2(d) のような波形に整流してから低域通過フィルタ
6によって包絡線検波し、図2(e) に示すような放電音
の強弱成分を抽出する。さらに、この放電音の強弱成分
のアナログ信号をA/D変換器7でデジタル信号に変換
して中央演算処理装置8に導く。ここで、A/D変換器
7を用いて包絡線検波した後のアナログ信号をデジタル
信号に変換するのは、包絡線検波前の信号は超音波領域
(40kHz 程度) まで広域の信号になるのに対し、包絡線
検波した後の信号は電源電圧の周波数の数倍(200Hz 程
度)であり、サンプリングレートを低く設定でき、中央
演算処理装置8の負荷を軽減できるためである。
The signal from which noise has been removed is rectified by the rectifier 5 into a waveform as shown in FIG. 2 (d), and then subjected to envelope detection by the low-pass filter 6 to produce a discharge sound as shown in FIG. 2 (e). Extract the strong and weak components of. Further, the analog signal of the strong and weak components of the discharge sound is converted into a digital signal by the A / D converter 7 and guided to the central processing unit 8. Here, the reason why the analog signal after the envelope detection using the A / D converter 7 is converted into a digital signal is that the signal before the envelope detection becomes a signal in a wide range up to the ultrasonic range (about 40 kHz). On the other hand, the signal after the envelope detection is several times the frequency of the power supply voltage (about 200 Hz), the sampling rate can be set low, and the load on the central processing unit 8 can be reduced.

【0016】さらに、中央演算処理装置8では、FFT
(高速フーリエ変換)処理により信号の周波数成分をス
ペクトル表示するとともに、信号の位相の転移の有無を
視覚で確認できる信号波形の表示を行う。以下に、この
中央演算処理装置8での処理内容について具体的に説明
する。まず、図3は包絡線検波後のボイド放電の波形を
示したものであるが、電源周波数(60Hz)の2倍周波数
成分である120Hz の安定した波形となることがわかる。
また、図4は包絡線検波後の碍子沿面放電の波形を示し
たもので、ボイド放電に比較して音圧が大きく、その周
期が転位する場合があることが特徴的であることがわか
る。
Further, in the central processing unit 8, the FFT
The spectrum of the frequency component of the signal is displayed by (Fast Fourier Transform) processing, and the signal waveform is displayed so that the presence or absence of the transition of the phase of the signal can be visually confirmed. Hereinafter, the processing contents of the central processing unit 8 will be specifically described. First, FIG. 3 shows the waveform of the void discharge after the envelope detection, and it can be seen that the waveform is a stable waveform of 120 Hz, which is twice the frequency component of the power supply frequency (60 Hz).
FIG. 4 shows the waveform of the surface discharge of the insulator after the envelope detection. It can be seen that the sound pressure is larger than that of the void discharge, and the period thereof may be transposed.

【0017】一方、これらのボイド放電と碍子沿面放電
の周波数成分比を調査したところ、下記の表1に示すよ
うな割合であることがわかった。
On the other hand, when the frequency component ratio of the void discharge and the surface discharge of the insulator was examined, it was found that the ratio was as shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】特に、放電音の大きさと電源周波数の2倍
周波数成分の含有率に注目すると、およそ、図5のよう
な関係があることがわかる。そこで、この図5の関係を
予め中央演算処理装置8に記憶させておくことにより、
発生する放電音の音圧によって放電の様相を、火花放電
か碍子沿面放電かあるいはボイド放電かの判別を行うこ
とができる。これによって、碍子沿面放電の場合は碍子
の汚損・湿潤によるものとして処置がなされ、またボイ
ド放電の場合はケーブルやエポキシなどに絞って対処す
ることができる。
In particular, when attention is paid to the magnitude of the discharge sound and the content of the frequency component twice as high as the power supply frequency, it can be seen that there is a relationship approximately as shown in FIG. Therefore, by storing the relationship of FIG. 5 in the central processing unit 8 in advance,
Based on the sound pressure of the generated discharge sound, it is possible to determine whether the discharge is spark discharge, insulator surface discharge, or void discharge. Thus, in the case of the surface discharge of the insulator, a measure is taken as being caused by the soiling and wetting of the insulator, and in the case of the void discharge, it is possible to deal with the problem by focusing on the cable or the epoxy.

【0020】[0020]

【発明の効果】以上説明したように、本発明のコロナ放
電検出装置によれば、音響によって検出されるコロナ放
電の発生部位およびその様相を判別することができるの
で、変電設備の運転を停止させることなく、絶縁劣化に
起因する地絡・短絡事故を初期段階で検出し、事故の拡
大を未然に防止することが可能である。
As described above, according to the corona discharge detecting device of the present invention, the location of the corona discharge detected by sound and its appearance can be determined, and the operation of the substation equipment is stopped. Without detecting an earth fault or short circuit accident due to insulation deterioration at an early stage, it is possible to prevent the accident from spreading.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るコロナ放電検出装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a corona discharge detection device according to the present invention.

【図2】(a) 〜(e) はコロナ放電検出装置の各要素での
出力波形を示す特性図である。
FIGS. 2A to 2E are characteristic diagrams showing output waveforms at respective elements of the corona discharge detection device.

【図3】ボイド放電での波形の特性図である。FIG. 3 is a characteristic diagram of a waveform in a void discharge.

【図4】碍子沿面放電での波形の特性図である。FIG. 4 is a characteristic diagram of a waveform in an insulator surface discharge.

【図5】放電音の音圧と電源周波数の2倍周波数成分の
含有率との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a sound pressure of a discharge sound and a content of a frequency component twice as high as a power supply frequency.

【図6】従来例でのコロナを検出した例を示す特性図で
ある。
FIG. 6 is a characteristic diagram showing an example in which a corona is detected in a conventional example.

【図7】従来例でのコロナ放電以外のノイズを検出した
例をを示す特性図である。
FIG. 7 is a characteristic diagram showing an example in which noise other than corona discharge is detected in a conventional example.

【符号の説明】[Explanation of symbols]

1 音響検出部 2 1段目のアンプ 3 高域通過フィルタ(ノイズ除去部) 4 2段目のアンプ 5 整流器(強弱成分抽出部) 6 低域通過フィルタ(強弱成分抽出部) 7 A/D変換器 8 中央演算処理装置(判定部) 9 ディスプレー 10 音響方位検出 Reference Signs List 1 sound detection unit 2 first-stage amplifier 3 high-pass filter (noise removal unit) 4 second-stage amplifier 5 rectifier (strong and weak component extraction unit) 6 low-pass filter (strong and weak component extraction unit) 7 A / D conversion 8 Central processing unit (judgment unit) 9 Display 10 Sound direction detection unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電力設備のコロナ放電を検出する装置に
おいて、 コロナ放電が発生した時に生じる音響を検出する受音部
が揺動自在とされる音響検出部と、該音響検出部の近傍
に取り付けられて音響の発生方向を検出する音響方位検
出部と、前記音響検出部の検出信号から高周波成分を抽
出して周辺ノイズを除去するノイズ除去部と、ノイズ除
去後の信号を整流によって包絡線検波し、コロナ放電音
の強弱成分を抽出する強弱成分抽出部と、強弱成分中で
の電源周波数の2倍周波数成分の含有割合と放電音の音
圧とから当該コロナ放電が火花放電か碍子沿面放電かあ
るいはボイド放電かの判別を行う判定部と、を一体的に
可搬できるように構成したことを特徴とする電力設備の
コロナ放電検出装置。
1. An apparatus for detecting corona discharge in an electric power facility, comprising: a sound detector for detecting a sound generated when the corona discharge occurs; a sound detector that is swingable; and a sound detector mounted near the sound detector. A sound azimuth detecting unit for detecting a direction in which the sound is generated, a noise removing unit for extracting a high-frequency component from a detection signal of the sound detecting unit to remove peripheral noise, and an envelope detection by rectifying the signal after noise removal. Then, the corona discharge is spark discharge or insulator surface discharge based on the strength component extraction unit that extracts the strength component of the corona discharge sound, and the sound frequency of the discharge sound and the content ratio of the frequency component twice the power supply frequency in the strength component. Oh
A corona discharge detection device for electric power equipment, wherein a determination unit for determining whether the discharge is void discharge or not is configured to be integrally portable.
JP03456796A 1996-02-22 1996-02-22 Corona discharge detector for power equipment Expired - Fee Related JP3334780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03456796A JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03456796A JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Publications (2)

Publication Number Publication Date
JPH09233679A JPH09233679A (en) 1997-09-05
JP3334780B2 true JP3334780B2 (en) 2002-10-15

Family

ID=12417909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03456796A Expired - Fee Related JP3334780B2 (en) 1996-02-22 1996-02-22 Corona discharge detector for power equipment

Country Status (1)

Country Link
JP (1) JP3334780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261202A (en) * 2008-03-25 2009-11-05 Jfe Steel Corp Electric discharge detection/identification device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197326A (en) * 1997-01-10 1998-07-31 Chubu Electric Power Co Inc Apparatus and method for discrimination of stain on insulator
JP4053501B2 (en) * 2004-01-13 2008-02-27 ファナック株式会社 Motor drive device
JP2009129674A (en) * 2007-11-22 2009-06-11 Sony Corp Electrode body inspection method and electrode body inspection device
JP5130985B2 (en) * 2008-03-25 2013-01-30 Jfeスチール株式会社 Discharge aspect judgment device
US8002592B2 (en) 2008-12-17 2011-08-23 Hubbell Incorporated Data collecting connection
US9697724B2 (en) 2010-09-22 2017-07-04 Hubbell Incorporated Transmission line measuring device and method for connectivity and monitoring
US10228001B2 (en) 2010-09-22 2019-03-12 Hubbell Incorporated Transmission line measuring device and method for connectivity
JP2012247309A (en) * 2011-05-27 2012-12-13 Chihiro Ishibashi Partial discharge detection device and partial discharge inspection method for power receiving facility
WO2020031369A1 (en) * 2018-08-10 2020-02-13 中国電力株式会社 Device for specifying generation point of corona discharge, and method for specifying generation point of corona discharge
JP7210319B2 (en) * 2019-02-21 2023-01-23 三菱重工業株式会社 SPARK PLUG INSPECTION DEVICE, INSPECTION METHOD, AND INTERNAL COMBUSTION ENGINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261202A (en) * 2008-03-25 2009-11-05 Jfe Steel Corp Electric discharge detection/identification device

Also Published As

Publication number Publication date
JPH09233679A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
CN100476449C (en) Device and method for monitoring and/or analyzing electric machines in operation
US9046563B2 (en) Arcing event detection
EP2050212B1 (en) Detection and monitoring of partial discharge of a power line
JP3334780B2 (en) Corona discharge detector for power equipment
US9025287B2 (en) Arc fault detection equipment and method using low frequency harmonic current analysis
CN111624437B (en) Integrated comprehensive underground cable maintenance detection method, detection system and detection instrument
KR20130004477A (en) Evaluating noise and excess current on a power line
KR20130055077A (en) Partial discharge monitoring equipment using rogowsky coil
JPH09127181A (en) Detecting device for corona discharge of electric power equipment
KR100584020B1 (en) A variable frequency inverter-type high power ground resistance measuring device and measuring method based on PC
JPH11174110A (en) Portable corona discharge detecting apparatus
JP4663846B2 (en) Pattern recognition type partial discharge detector
JP2010230497A (en) Insulation deterioration diagnostic device of high voltage power receiving facility
JP4969319B2 (en) Method and apparatus for partial discharge diagnosis of gas insulated switchgear
KR20190061425A (en) Intelligent fire prevention diagnosis system and method
JP5092878B2 (en) Discharge detection / identification device
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
JP3176000B2 (en) Partial discharge detection device for switchgear
JPH11174111A (en) Apparatus for detecting insulation deterioration of a.c. electric motor
JP3682930B2 (en) Insulation deterioration diagnosis device
JP5130985B2 (en) Discharge aspect judgment device
JP3854783B2 (en) Partial discharge diagnostic device
JP4319953B2 (en) Discharge tracking detection system
JP2002196030A (en) Method for diagnosing deterioration of power cable
JPH0533607U (en) Kyu Bicycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees