JPH09230391A - Re-dispersion of electric field arrangeable particle - Google Patents

Re-dispersion of electric field arrangeable particle

Info

Publication number
JPH09230391A
JPH09230391A JP8038279A JP3827996A JPH09230391A JP H09230391 A JPH09230391 A JP H09230391A JP 8038279 A JP8038279 A JP 8038279A JP 3827996 A JP3827996 A JP 3827996A JP H09230391 A JPH09230391 A JP H09230391A
Authority
JP
Japan
Prior art keywords
voltage
transparent electrode
light
particles
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8038279A
Other languages
Japanese (ja)
Inventor
Kenji Furuichi
健二 古市
Takayuki Imai
隆之 今井
Moritaka Goto
守孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8038279A priority Critical patent/JPH09230391A/en
Publication of JPH09230391A publication Critical patent/JPH09230391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to rapidly re-disperse EA particles and to exactly attain a light shielding state by impressing a first voltage to generate an electric field arrangement effect between transparent electrode plates to increase the quantity of transmitted light and impressing a second voltage to generate an electrophoresis effect between these transparent electrode plates to decrease the quantity of transmission. SOLUTION: When the first voltage is impressed between the electrodes 5 and 7, the EA particles 11 are perpendicularly arranged between the transparent electrode layers 53 and 73 by the EA effect and chain bodies are formed. Namely, a light controller section 1 attains the light transmission state as the attenuation to the incident light quantity decreases. On the other hand, the EA particles 11 executes electrophoresis and eventually stick to the one-side surfaces of the transparent electrode layers 53, 73 when the second voltage is impressed between the transparent electrodes 5 and 7. Namely, the light controller section 1 attains the light shielding state as the attenuation to the incident light quantity increases in the state that the second voltage is impressed thereon. The light shielding state is exactly and rapidly attained by impressing the second voltage different from the first voltage between the electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気感応型光機能
性流体組成物(以下、EA流体と略称する)を使用した
透過光量制御装置においてEA流体内に含有する電界配
列性粒子(以下、EA粒子と略称する)を配列状態から
再分散させる電界配列性粒子の再分散方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric field arranging particle (hereinafter, referred to as "electric field-aligned particle") contained in an EA fluid in a transmitted light amount control device using an electro-sensitive optical functional fluid composition (hereinafter referred to as "EA fluid"). EA particles) is redispersed from the array state.

【0002】[0002]

【従来の技術】EA流体を使用したこの種の透過光量制
御装置としては、例えば特願平6−193435号およ
び特願平6−193448号に記載されているものがあ
り、またEA流体については特願平6−192633号
に記載されている。
2. Description of the Related Art As a transmitted light amount control device of this type using an EA fluid, there are those described in Japanese Patent Application No. 6-193435 and Japanese Patent Application No. 6-193448, for example. It is described in Japanese Patent Application No. 6-192633.

【0003】従来のこの種の透過光量制御装置は、対向
する一対の透明電極板の間にEA粒子を透明な電気絶縁
性媒体の中に含有してなるEA流体を充填して構成さ
れ、一対の透明電極板の間に電圧を印加しない状態にお
いては透明電極板間のEA流体内にEA粒子が浮遊して
不規則に分散しているため、透明電極板に対して光を照
射しても、この光は電極板間のEA流体内に不規則に分
散しているEA粒子によって遮られ、透過することはで
きない。すなわち、透過光量制御装置は、電極板間に電
圧を印加されていない状態においては、入射光量に対す
る減衰が大きくなり、光を十分に透過することができな
い。
A conventional transmitted light quantity control device of this type is constructed by filling an EA fluid containing EA particles in a transparent electrically insulating medium between a pair of transparent electrode plates facing each other. When no voltage is applied between the electrode plates, EA particles are suspended and irregularly dispersed in the EA fluid between the transparent electrode plates. It is blocked by the EA particles that are randomly dispersed in the EA fluid between the electrode plates and cannot penetrate. That is, in the transmitted light amount control device, in the state where no voltage is applied between the electrode plates, the attenuation with respect to the incident light amount is large, and the light cannot be sufficiently transmitted.

【0004】一方、一対の透明電極板間に電圧を印加す
ると、透明電極板間のEA流体内のEA粒子は垂直に配
列し、互いに間隔をあけて複数の鎖状体になり、鎖状体
の間の隙間部にはEA粒子が存在せず、透明な電気絶縁
媒体のみとなるため、透明電極板に対して照射された光
はEA粒子の存在しない透明な電気絶縁媒体部分を通っ
て一対の電極板間を透過することができる。すなわち、
透過光量制御装置は、電極板間に電圧を印加された場合
には、入射光量に対する減衰が小さくなり、光を十分に
透過し得るようになる。
On the other hand, when a voltage is applied between the pair of transparent electrode plates, the EA particles in the EA fluid between the transparent electrode plates are vertically arranged and are spaced apart from each other to form a plurality of chain-like bodies. Since the EA particles do not exist in the gap between them and only the transparent electric insulating medium is present, the light radiated to the transparent electrode plate passes through the transparent electric insulating medium portion where the EA particles do not exist to form a pair. Can be transmitted between the electrode plates. That is,
When a voltage is applied between the electrode plates, the transmitted light amount control device has a small attenuation with respect to the incident light amount and can sufficiently transmit light.

【0005】[0005]

【発明が解決しようとする課題】上述したように、一対
の透明電極板間に電圧を印加すると、透明電極板間のE
A流体内のEA粒子は垂直に配列し、互いに間隔をあけ
て複数の鎖状体になり、この鎖状体の間を光が透過し得
るようになるが、この光透過状態から元の光遮断状態に
するために、透明電極板間の印加電圧を除去またはゼロ
にしても、鎖状体に配列されたEA粒子はすぐにはこの
配列を崩さず、そのまま並んだ状態にあり、この配列状
態を解除し、元の光遮断状態にするには、従来、透明電
極板を振動させたり、または長時間放置する以外に方法
がなかった。
As described above, when a voltage is applied between the pair of transparent electrode plates, E between the transparent electrode plates is increased.
The EA particles in the A fluid are arranged vertically and are spaced apart from each other to form a plurality of chain-like bodies, which allows light to pass through between the chain-like bodies. Even if the applied voltage between the transparent electrode plates is removed or set to zero in order to bring it into the cutoff state, the EA particles arranged in a chain do not immediately break this arrangement and are in a state of being aligned as is. In order to release the state and return to the original light blocking state, conventionally, there was no method other than vibrating the transparent electrode plate or leaving it for a long time.

【0006】本発明は、上記に鑑みてなされたもので、
その目的とするところは、電圧を印加されて光透過配列
状態になったEA粒子を迅速に再分散させて、適確に光
遮断状態にし得る電界配列性粒子の再分散方法を提供す
ることにある。
[0006] The present invention has been made in view of the above,
It is an object of the present invention to provide a method of redispersing electric field array particles that can appropriately redisperse EA particles that have been in a light transmitting array state by applying a voltage, and can appropriately bring them into a light blocking state. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の本発明は、対向する一対の透明電極
板の間に電界配列性粒子を透明な電気絶縁性媒体の中に
含有してなる電気感応型光機能性流体組成物を充填し、
前記透明電極板間に電圧を印加することにより前記電界
配列性粒子の配列を制御して前記一対の透明電極板を透
過する透過光量を制御する透過光量制御装置における電
界配列性粒子の再分散方法であって、電界配列効果を生
じさせる第1の電圧を前記透明電極板間に印加すること
により前記透過光量を増加させ、電気泳動効果を生じさ
せる第2の電圧を前記透明電極板間に印加することによ
り前記透過光量を減少させることを要旨とする。
In order to achieve the above-mentioned object, the present invention according to claim 1 contains electric field array particles in a transparent electrically insulating medium between a pair of opposing transparent electrode plates. Filled with the electro-sensitive optical functional fluid composition,
A method of redispersing electric field array particles in a transmitted light amount control device for controlling the array of the electric field array particles by applying a voltage between the transparent electrode plates to control the amount of transmitted light that passes through the pair of transparent electrode plates. And applying a first voltage that causes an electric field array effect between the transparent electrode plates to increase the amount of transmitted light and applying a second voltage that causes an electrophoretic effect between the transparent electrode plates. The purpose of this is to reduce the amount of transmitted light.

【0008】すなわち、請求項1記載の本発明にあって
は、電気感応型光機能性流体組成物を充填された透明電
極板間に第1の電圧を印加すると、電気感応型光機能性
流体組成物内の電界配列性粒子は電界配列効果を生じて
配列され、透明電極板間の透過光量は増加し、透明電極
板間に第2の電圧を印加すると、電界配列性粒子は電気
泳動効果を生じて透明電極板に貼り付き、透過光量を減
少させる。
That is, according to the first aspect of the present invention, when the first voltage is applied between the transparent electrode plates filled with the electro-sensitive optical functional fluid composition, the electro-sensitive optical functional fluid is applied. The electric field arranging particles in the composition are arranged by causing an electric field arranging effect, the amount of transmitted light between the transparent electrode plates increases, and when a second voltage is applied between the transparent electrode plates, the electric field arranging particles have an electrophoretic effect. Occurs and adheres to the transparent electrode plate to reduce the amount of transmitted light.

【0009】また、請求項2記載の本発明は、請求項1
記載の発明において、前記第1の電圧が前記第2の電圧
と極性が逆の電圧であることを要旨とする。すなわち、
請求項2記載の本発明にあっては、電界配列性粒子に電
気泳動効果を生じさせて透過光量を減少させるために、
第1の電圧と極性が逆の第2の電圧を透明電極板間に印
加している。
Further, the present invention according to claim 2 is based on claim 1.
In the invention described above, the gist is that the first voltage has a polarity opposite to that of the second voltage. That is,
According to the second aspect of the present invention, in order to reduce the amount of transmitted light by causing an electrophoretic effect in the electric field array particles,
A second voltage having a polarity opposite to that of the first voltage is applied between the transparent electrode plates.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る一実施の形態
を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to the drawings.

【0011】図1は、本発明の一実施の形態例に係る電
界配列性粒子の再分散方法を実施する透過光量制御装置
の構成を示す図である。同図に示す透過光量制御装置
は、光制御装置部1と電気回路部3から構成されてい
る。光制御装置部1は、対向した一対の透明電極板5,
7を有し、該透明電極板5,7間にはEA流体9が充填
されている。このEA流体9は、透明な電気絶縁性媒体
13内にEA粒子11が分散されたものであり、図1に
示す状態ではEA粒子11は電気絶縁性媒体13内にラ
ンダムに分散され、これによりEA流体9は光を透過し
ない不透明な状態になっている。
FIG. 1 is a diagram showing a configuration of a transmitted light amount control apparatus for carrying out a method for redispersing electric field array particles according to an embodiment of the present invention. The transmitted light amount control device shown in the figure comprises a light control device section 1 and an electric circuit section 3. The light control device unit 1 includes a pair of transparent electrode plates 5 facing each other.
EA fluid 9 is filled between the transparent electrode plates 5 and 7. This EA fluid 9 is a transparent electrically insulating medium 13 in which EA particles 11 are dispersed, and in the state shown in FIG. 1, the EA particles 11 are randomly dispersed in the electrically insulating medium 13, and The EA fluid 9 is in an opaque state that does not transmit light.

【0012】また、前記透明電極板5,7はそれぞれ2
層構成に形成されている。すなわち、第1の透明電極板
5は透明ガラス層51と透明電極層53から構成され、
透明電極層53がEA流体9に接する側に配設されてい
る。また、第2の透明電極板7も透明ガラス層71と透
明電極層73から構成され、透明電極層73がEA流体
9に接する側に配設されている。透明電極層53,73
は、例えばITO膜、酸化スズ等を透明ガラス層51,
71上にそれぞれ蒸着して形成される。
Further, the transparent electrode plates 5 and 7 are each 2
It is formed in a layered structure. That is, the first transparent electrode plate 5 is composed of the transparent glass layer 51 and the transparent electrode layer 53,
The transparent electrode layer 53 is arranged on the side in contact with the EA fluid 9. The second transparent electrode plate 7 is also composed of a transparent glass layer 71 and a transparent electrode layer 73, and the transparent electrode layer 73 is arranged on the side in contact with the EA fluid 9. Transparent electrode layers 53, 73
Is a transparent glass layer 51, such as an ITO film or tin oxide.
It is formed by vapor deposition on 71 respectively.

【0013】上述したように、EA流体9を間に挟んで
対向して配設された透明電極板5,7の両側部にはシー
ル部材27,29が固定され、これにより透明電極板
5,7の間にEA流体9を封入している。
As described above, the seal members 27 and 29 are fixed to both sides of the transparent electrode plates 5 and 7 which are arranged to face each other with the EA fluid 9 interposed therebetween, whereby the transparent electrode plates 5 and 5 are fixed. The EA fluid 9 is enclosed between 7 and 7.

【0014】また、透明電極板5,7をそれぞれ構成す
る透明電極層53,73は、それぞれ第1および第2の
リード線15,17を介して電気回路部3に接続されて
いる。詳しくは、第1の透明電極板5の透明電極層53
は第1のリード線15を介して第1の電源19の正極側
および第2の電源23の負極側に接続され、また第2の
透明電極板7の透明電極層73は第2のリード線17を
介して第1のスイッチ21および第2のスイッチ25の
一端に接続され、更に第1のスイッチ21の他端は第1
の電源19の負極側に接続され、第2のスイッチ25の
他端は第2の電源23の正極側に接続されている。な
お、第1の電源19は、後述するようにEA効果を前記
EA粒子11に生じさせるような第1の電圧、例えば1
0ボルトの電圧を発生し、第2の電源23は、後述する
ように電気泳動効果をEA粒子11に生じさせるような
第2の電圧、例えば100ボルトの電圧を発生するもの
であり、第1の電圧は第2の電圧と極性が逆になってい
る。
Further, the transparent electrode layers 53 and 73 constituting the transparent electrode plates 5 and 7, respectively, are connected to the electric circuit portion 3 via the first and second lead wires 15 and 17, respectively. Specifically, the transparent electrode layer 53 of the first transparent electrode plate 5
Is connected to the positive electrode side of the first power supply 19 and the negative electrode side of the second power supply 23 via the first lead wire 15, and the transparent electrode layer 73 of the second transparent electrode plate 7 is the second lead wire. It is connected to one end of the first switch 21 and the second switch 25 via 17, and the other end of the first switch 21 is connected to the first switch 21.
Is connected to the negative side of the power source 19, and the other end of the second switch 25 is connected to the positive side of the second power source 23. The first power supply 19 has a first voltage, for example, 1 to generate an EA effect on the EA particles 11, as described later.
The second power supply 23 generates a voltage of 0 volt and the second power supply 23 generates a second voltage, for example, a voltage of 100 volt, which causes an electrophoretic effect on the EA particles 11 as described later. Has a polarity opposite to that of the second voltage.

【0015】次に、以上のように構成される透過光量制
御装置の作用について説明する。
Next, the operation of the transmitted light amount control device configured as described above will be described.

【0016】まず、図1に示すように、第1および第2
のスイッチ21,25がオフであり、光制御装置部1の
透明電極板5,7の間に電圧が印加されていない状態に
おいては、透明電極板5,7間のEA流体9内のEA粒
子11は電気絶縁性媒体13内をランダムに分散して浮
遊しているため、透明電極板5,7の一方の外側から透
明電極板5,7に向けて光を照射しても、この光は分散
浮遊しているEA流体9によって遮られ、光制御装置部
1を透過することはできない。すなわち、光制御装置部
1は、電圧を印加されていない状態においては、入射光
量に対する減衰が大きくなり、光遮断状態になる。
First, as shown in FIG. 1, first and second
EA particles in the EA fluid 9 between the transparent electrode plates 5 and 7 when the switches 21 and 25 are off and no voltage is applied between the transparent electrode plates 5 and 7 of the light control device section 1. Since 11 is randomly dispersed in the electrically insulating medium 13 and floats, even if light is radiated from one outer side of the transparent electrode plates 5 and 7 toward the transparent electrode plates 5 and 7, this light is It is blocked by the dispersed and suspended EA fluid 9 and cannot pass through the light control device section 1. That is, the light control device unit 1 is in a light blocking state in which the attenuation with respect to the amount of incident light is large in a state where no voltage is applied.

【0017】このような状態において、次に図2に示す
ように、第1のスイッチ21をオンにすると、第1の電
源19のEA効果用の第1の電圧、例えば10ボルトが
透明電極板5,7間に印加される。この場合、具体的に
は、第1の透明電極板5の透明電極層53には第1の電
源19の第1の電圧の正極側が印加され、第2の透明電
極板7の透明電極層73には第1の電圧の負極側が印加
される。
In this state, as shown in FIG. 2, when the first switch 21 is turned on, the first voltage for the EA effect of the first power source 19, for example 10 volts, is applied to the transparent electrode plate. It is applied between 5 and 7. In this case, specifically, the positive electrode side of the first voltage of the first power source 19 is applied to the transparent electrode layer 53 of the first transparent electrode plate 5, and the transparent electrode layer 73 of the second transparent electrode plate 7 is applied. Is applied to the negative side of the first voltage.

【0018】このように透明電極板5,7間に第1の電
圧が印加されると、EA粒子11は電界によるEA効果
により透明電極層53,73間に図示のように垂直に配
列し、互いに間隔をあけて鎖状体31を形成する。この
結果、鎖状体31の間の隙間部にはEA粒子11は存在
せず、透明な電気絶縁性媒体13のみとなる。従って、
この場合に透明電極板5,7の一方の外側から透明電極
板5,7に向けて光を照射すると、この光は鎖状体31
の間の隙間部を通って光制御装置部1を透過することが
できる。すなわち、光制御装置部1は、第1の電圧を印
加された状態においては、入射光量に対する減衰が小さ
くなり、光透過状態になる。
When the first voltage is applied between the transparent electrode plates 5 and 7 as described above, the EA particles 11 are vertically arranged between the transparent electrode layers 53 and 73 by the EA effect by the electric field as shown in the figure, The chain-like bodies 31 are formed at intervals. As a result, the EA particles 11 do not exist in the gaps between the chain-like bodies 31 and only the transparent electrically insulating medium 13 remains. Therefore,
In this case, when light is radiated from one outer side of the transparent electrode plates 5 and 7 toward the transparent electrode plates 5 and 7, the light is emitted from the chain-like body 31.
The light control device unit 1 can be transmitted through the gap between the two. That is, in the state where the first voltage is applied, the light control device unit 1 has a small attenuation with respect to the amount of incident light and is in a light transmitting state.

【0019】次に、図3に示すように、第1のスイッチ
21をオフにし、第2のスイッチ25をオンにすると、
第2の電源23の電気泳動効果用の第2の電圧、例えば
100ボルトが透明電極板5,7に印加される。この場
合、具体的には、第1の透明電極板5の透明電極層53
には第2の電源23の第2の電圧の負極側が印加され、
第2の透明電極板7の透明電極層73には第2の電圧の
正極側が印加される。
Next, as shown in FIG. 3, when the first switch 21 is turned off and the second switch 25 is turned on,
A second voltage for the electrophoretic effect of the second power source 23, for example 100 V, is applied to the transparent electrode plates 5 and 7. In this case, specifically, the transparent electrode layer 53 of the first transparent electrode plate 5 is
Is applied to the negative side of the second voltage of the second power supply 23,
The positive electrode side of the second voltage is applied to the transparent electrode layer 73 of the second transparent electrode plate 7.

【0020】このように透明電極板5,7間に第2の電
圧が印加されると、EA粒子11は電気泳動を行い、図
示のように透明電極層53,73の一面に貼り付くこと
になる。従って、この場合に透明電極板5,7の一方の
外側から透明電極板5,7に向けて光を照射しても、こ
の光は透明電極層53,73に貼り付いたEA粒子11
によって遮られ、光制御装置部1を透過することはでき
ない。すなわち、光制御装置部1は、第2の電圧を印加
された状態においては、入射光量に対する減衰が大きく
なり、光遮断状態になる。
When the second voltage is applied between the transparent electrode plates 5 and 7 in this manner, the EA particles 11 are electrophoresed and adhere to one surface of the transparent electrode layers 53 and 73 as shown in the figure. Become. Therefore, in this case, even if light is radiated from one outer side of the transparent electrode plates 5 and 7 toward the transparent electrode plates 5 and 7, the light will be emitted from the EA particles 11 adhered to the transparent electrode layers 53 and 73.
The light control device unit 1 cannot be transmitted through the light control device unit 1. That is, in the state where the second voltage is applied, the light control device section 1 has a large attenuation with respect to the amount of incident light and is in a light blocking state.

【0021】上述したように、EA効果用の第1の電圧
を透明電極板5,7間に印加して、EA粒子11を鎖状
体にし、光制御装置部1を光透過状態にした後に、光制
御装置部1を光遮断状態にするには、第1の電圧とは異
なる電気泳動効果用の第2の電圧を印加することによ
り、光制御装置部1を適確かつ迅速に光透過状態から光
遮断状態にすることができる。すなわち、従来は、光制
御装置部1を光透過状態から光遮断状態にするために、
第1の電圧をオフまたはゼロにしていたが、このように
第1の電圧をオフまたはゼロにするだけでは、EA粒子
11はしばらくの間並んだ鎖状体のままであって、光制
御装置部1はすぐに光遮断状態になることはできなかっ
たが、本実施例のように第1の電圧と異なる第2の電圧
を透明電極板5,7に印加することにより、適確かつ迅
速に光遮断状態にすることができるのである。
As described above, after the first voltage for the EA effect is applied between the transparent electrode plates 5 and 7, the EA particles 11 are made into a chain body, and the light control device section 1 is brought into the light transmitting state. In order to put the light control device unit 1 into the light blocking state, by applying a second voltage for the electrophoretic effect different from the first voltage, the light control device unit 1 is properly and quickly transmitted light. The state can be changed to the light blocking state. That is, conventionally, in order to change the light control device unit 1 from the light transmitting state to the light blocking state,
Although the first voltage was turned off or zero, if the first voltage was turned off or zero in this way, the EA particles 11 would remain as a chain for a while, and the light control device The part 1 was not able to be in the light blocking state immediately, but by applying the second voltage different from the first voltage to the transparent electrode plates 5 and 7 as in the present embodiment, the part 1 can be properly and quickly. The light can be turned off.

【0022】なお、EA効果用の第1の電圧および電気
泳動効果用の第2の電圧の大きさを適宜調整することに
より、光制御装置部1の光透過および遮断応答特性およ
び光減衰特性を調整することができる。また、EA粒子
11の濃度によっても光の減衰量を調整することができ
る。
By appropriately adjusting the magnitudes of the first voltage for the EA effect and the second voltage for the electrophoretic effect, the light transmission and blocking response characteristics and the light attenuation characteristics of the light control device section 1 can be improved. Can be adjusted. Further, the amount of light attenuation can be adjusted by the concentration of the EA particles 11.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
透明電極板間に第1の電圧を印加して、電界配列効果に
より電界配列性粒子を鎖状体に配列させた光透過状態に
おいて、透明電極板間に第2の電圧を印加することによ
り、電界配列性粒子を電気泳動効果により透明電極板に
貼り付かせ、光透過状態を適確かつ迅速に光遮断状態に
することができるとともに、この場合透明電極板間に単
に第1の電圧と極性の異なる第2の電圧を印加するだけ
であるので、透過光量制御装置の電極構造の変更は不要
であり、更に電界配列性粒子は何を使用してもよいとい
う利点がある。更に、印加電圧を調整することにより、
光透過減衰量や応答特性を調整することも可能である。
As described above, according to the present invention,
By applying a first voltage between the transparent electrode plates and applying a second voltage between the transparent electrode plates in a light transmission state in which electric field array particles are arranged in a chain by the electric field array effect, The electric field arranging particles can be attached to the transparent electrode plate by the electrophoretic effect, and the light transmission state can be appropriately and quickly switched to the light blocking state. In this case, the first voltage and the polarity are simply applied between the transparent electrode plates. Since it is only necessary to apply the second voltage different from the above, there is no need to change the electrode structure of the transmitted light amount control device, and there is an advantage that any electric field array particles may be used. Furthermore, by adjusting the applied voltage,
It is also possible to adjust the amount of light transmission attenuation and the response characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施の形態の電界配列性粒子の再
分散方法を実施する透過光量制御装置の構成を示す図で
ある。
FIG. 1 is a diagram showing a configuration of a transmitted light amount control device that implements a method for redispersing electric field array particles according to an embodiment of the present invention.

【図2】図1の透過光量制御装置の作用、特にEA効果
による光透過状態の作用を示す図である。
FIG. 2 is a diagram showing an operation of the transmitted light amount control device of FIG. 1, particularly an operation in a light transmitting state by an EA effect.

【図3】図1の透過光量制御装置の作用、特に電気泳動
効果による光遮断状態の作用を示す図である。
FIG. 3 is a diagram showing an operation of the transmitted light amount control device of FIG. 1, particularly an operation in a light blocking state due to an electrophoretic effect.

【符号の説明】[Explanation of symbols]

1 光制御装置部 3 電気回路部 5,7 透明電極板 9 EA流体 11 EA粒子 13 電気絶縁性媒体 19 第1の電源 21 第1のスイッチ 23 第2の電源 25 第2のスイッチ 31 鎖状体 1 Light Control Device Section 3 Electric Circuit Section 5, 7 Transparent Electrode Plate 9 EA Fluid 11 EA Particle 13 Electrical Insulating Medium 19 First Power Supply 21 First Switch 23 Second Power Supply 25 Second Switch 31 Chain-Shaped Body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向する一対の透明電極板の間に電界配
列性粒子を透明な電気絶縁性媒体の中に含有してなる電
気感応型光機能性流体組成物を充填し、前記透明電極板
間に電圧を印加することにより前記電界配列性粒子の配
列を制御して前記一対の透明電極板を透過する透過光量
を制御する透過光量制御装置における電界配列性粒子の
再分散方法であって、 電界配列効果を生じさせる第1の電圧を前記透明電極板
間に印加することにより前記透過光量を増加させ、 電気泳動効果を生じさせる第2の電圧を前記透明電極板
間に印加することにより前記透過光量を減少させること
を特徴とする電界配列性粒子の再分散方法。
1. An electrosensitive optical functional fluid composition containing electric field array particles in a transparent electrically insulating medium between a pair of opposed transparent electrode plates, and the space between the transparent electrode plates. A method of redispersing electric field arranging particles in a transmitted light amount control device for controlling an arrangement of the electric field arranging particles by applying a voltage to control an amount of transmitted light passing through the pair of transparent electrode plates, the method comprising: The amount of transmitted light is increased by applying a first voltage that produces an effect between the transparent electrode plates, and the amount of transmitted light is applied by applying a second voltage that produces an electrophoretic effect between the transparent electrode plates. A method for redispersing electric field-arranged particles, characterized in that
【請求項2】 前記第1の電圧は、前記第2の電圧と極
性が逆の電圧であることを特徴とする請求項1記載の電
界配列性粒子の再分散方法。
2. The method for redispersing electric field array particles according to claim 1, wherein the first voltage has a polarity opposite to that of the second voltage.
JP8038279A 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle Pending JPH09230391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8038279A JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8038279A JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Publications (1)

Publication Number Publication Date
JPH09230391A true JPH09230391A (en) 1997-09-05

Family

ID=12520885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8038279A Pending JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Country Status (1)

Country Link
JP (1) JPH09230391A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010767A1 (en) * 1997-08-28 1999-03-04 E-Ink Corporation Electrophoretic displays and materials
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9564088B2 (en) 2001-11-20 2017-02-07 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9620067B2 (en) 2003-03-31 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US10909936B2 (en) 1999-04-30 2021-02-02 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010767A1 (en) * 1997-08-28 1999-03-04 E-Ink Corporation Electrophoretic displays and materials
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US10909936B2 (en) 1999-04-30 2021-02-02 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9881564B2 (en) 2001-11-20 2018-01-30 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9564088B2 (en) 2001-11-20 2017-02-07 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9886886B2 (en) 2001-11-20 2018-02-06 E Ink Corporation Methods for driving electro-optic displays
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US9620067B2 (en) 2003-03-31 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US9542895B2 (en) 2003-11-25 2017-01-10 E Ink Corporation Electro-optic displays, and methods for driving same
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11733580B2 (en) 2010-05-21 2023-08-22 E Ink Corporation Method for driving two layer variable transmission display

Similar Documents

Publication Publication Date Title
JPH09230391A (en) Re-dispersion of electric field arrangeable particle
KR101713812B1 (en) Transparent electrochromic systems with a plurality of polarisation electrodes
DE69332862D1 (en) ELECTROCHROME MATERIALS AND DISPLAYS
US7301524B2 (en) Electrophoretic display and method of producing the same
US3883227A (en) Liquid crystal display devices
KR20120040722A (en) Transparent electrochromic system
JPH0823644B2 (en) Driving method for electrophoretic display device
JP2705235B2 (en) Driving method of electrophoretic display element
JPH01248182A (en) Electrophoretic display device
JPH02284124A (en) Electrophoretic display device and production thereof
JP2012533098A (en) Optically addressed light valve comprising two photoconductive layers placed on both sides of an electro-optic modulator
KR0172267B1 (en) Spacer scattering method for lcd
US3708286A (en) Photoelectrophoretic imaging with ultrasonic vibration during imaging
JP7438358B2 (en) Autostereoscopic device and method for generating 3D images
CA2473955C (en) Method and apparatus for light modulation by means of a granular gas
JPH01269923A (en) Electrophoretic type optical shutter
JPH06110088A (en) Driving system of electrophoretic display device
WO1986005002A1 (en) Elimination of field-induced instabilities in electrooptic modulators
JPS6037720A (en) Manufacture of semiconductor device
JPH0486784A (en) Electrophoresis display liquid and electrophoretic display device using the liquid
JPS6183521A (en) Image displaying method
JPH01251086A (en) Electrophoresis display device
JPH1090732A (en) Electrophoresis display device
JPH0456883A (en) Charge image information transfer device
JPH09230804A (en) Display device