JP2705235B2 - Driving method of electrophoretic display element - Google Patents

Driving method of electrophoretic display element

Info

Publication number
JP2705235B2
JP2705235B2 JP1233846A JP23384689A JP2705235B2 JP 2705235 B2 JP2705235 B2 JP 2705235B2 JP 1233846 A JP1233846 A JP 1233846A JP 23384689 A JP23384689 A JP 23384689A JP 2705235 B2 JP2705235 B2 JP 2705235B2
Authority
JP
Japan
Prior art keywords
electrode layer
transparent electrode
voltage
display element
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1233846A
Other languages
Japanese (ja)
Other versions
JPH0396925A (en
Inventor
秀章 植野
和夫 戸島
直樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1233846A priority Critical patent/JP2705235B2/en
Publication of JPH0396925A publication Critical patent/JPH0396925A/en
Application granted granted Critical
Publication of JP2705235B2 publication Critical patent/JP2705235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気泳動表示素子の駆動方法に関する。The present invention relates to a method for driving an electrophoretic display element.

[従来の技術] 電気泳動型表示素子は、透明電極を有する一対のガラ
ス基板の間に、絶縁液体中に粒子を分散させた分散液層
を封入したものであって、分散液層中の粒子が表面電荷
を持つことを利用して、電気泳動によって粒子を移動さ
せて信号を可視化するものである。
[Prior Art] An electrophoretic display element is a device in which a dispersion layer in which particles are dispersed in an insulating liquid is sealed between a pair of glass substrates having transparent electrodes, and the particles in the dispersion layer are Utilizing that has a surface charge, the particles are moved by electrophoresis to visualize the signal.

従来の電気泳動型表示体としては、例えば第4図に示
すようなものが知られている(特開昭62−299824号公
報)。第4図において、Aは視認側を示すが、一対の基
板1aおよび1bが相対向するように配置され、少なくとも
視認側の基板1aは透明であって、それぞれの基板1aおよ
び1bの相対向する面には透明電極層2aおよび2bが設けら
れている。基板1aおよび1bの間でセルを形成すべく基板
1aおよび1bの周縁部内面にはスペーサ5が固着されてい
る。分散液層は絶縁液体からなる分散媒4に正または負
に帯電する分散粒子3を分散させたもので、基板1aおよ
び1bの間に形成されるセル中に注入されて形成される。
As a conventional electrophoretic display, for example, the one shown in FIG. 4 is known (Japanese Patent Application Laid-Open No. 62-299824). In FIG. 4, A indicates the viewing side, but a pair of substrates 1a and 1b are arranged so as to face each other, and at least the viewing side substrate 1a is transparent and the respective substrates 1a and 1b face each other. The transparent electrode layers 2a and 2b are provided on the surface. Substrate to form cell between substrates 1a and 1b
Spacers 5 are fixed to the inner surfaces of the peripheral edges of 1a and 1b. The dispersion layer is obtained by dispersing positively or negatively charged dispersed particles 3 in a dispersion medium 4 made of an insulating liquid, and is formed by being injected into a cell formed between the substrates 1a and 1b.

透明電極層2aと2bの間で直流電圧を印加すると、分散
媒4の中で正または負に帯電した分散粒子3は、電圧の
極性に応じて、第4図の右半分または左半分に示したよ
うに、いずれかの電極の方に泳動して付着する。第4図
の右半分に示したように、視認側の透明電極層2aに分散
粒子3が付着した場合は、表示素子は分散粒子3の色彩
が表示され、分散粒子3が分散媒4中に分散している場
合または第4図の左半分に示したように、反対の電極層
2bに分散粒子3が付着すると、視認側の基板は分散媒4
の色彩が表示される。
When a DC voltage is applied between the transparent electrode layers 2a and 2b, the dispersed particles 3 positively or negatively charged in the dispersion medium 4 are shown in the right half or the left half of FIG. 4, depending on the polarity of the voltage. As described above, it migrates and attaches to one of the electrodes. As shown in the right half of FIG. 4, when the dispersed particles 3 adhere to the transparent electrode layer 2a on the viewing side, the display element displays the color of the dispersed particles 3, and the dispersed particles 3 are dispersed in the dispersion medium 4. When dispersed or as shown in the left half of FIG. 4, the opposite electrode layer
When the dispersed particles 3 adhere to 2b, the substrate on the viewing side becomes the dispersion medium 4
Is displayed.

このように従来の電気泳動型表示素子においては、電
極層に電圧を印加しない場合は、分散粒子が分散媒中に
分散し、表示側の基板は分散媒の染料の色彩を表示し、
電極層に電圧を印加した場合、電極層を形成した表示部
には分散粒子が付着して分散粒子の色彩表示されるもの
であって、表示素子としては反射型のものであり、その
ままでは透過型の表示素子としては使用できなかった。
Thus, in the conventional electrophoretic display element, when no voltage is applied to the electrode layer, the dispersed particles are dispersed in the dispersion medium, and the display-side substrate displays the color of the dye of the dispersion medium,
When a voltage is applied to the electrode layer, the dispersed particles adhere to the display portion on which the electrode layer is formed, and the color of the dispersed particles is displayed. The display element is of a reflective type, and is transmitted as it is. It could not be used as a type display element.

[発明が解決しようとする課題] そこで、従来の電気泳動表示素子を透過型の表示素子
とするため、透明の分散媒を使用するとともに、一方の
透明電極層を網目状または縞状とするか、あるいは一方
の透明基板を鋸歯状にし光の進行方向に平行な面に透明
電極層を形成した提案がなされている(実願昭63−7602
1、実願昭63−79064、実願昭63−86709など)。これら
提案においては、網目状または縞状の透明電極層に分散
粒子を付着させたときは、分散粒子の集積した透明電極
層の間を通り抜けた光が透明な分散媒を透過し、透過型
表示が可能となる。
[Problems to be Solved by the Invention] Therefore, in order to use a conventional electrophoretic display element as a transmissive display element, a transparent dispersion medium is used, and one of the transparent electrode layers is formed in a mesh shape or a stripe shape. Alternatively, a proposal has been made in which one of the transparent substrates is saw-toothed and a transparent electrode layer is formed on a surface parallel to the light traveling direction (Japanese Utility Model Application No. 63-7602).
1, Jpn. 63-79064, Jpn. 63-86709). In these proposals, when the dispersed particles are attached to a mesh-shaped or striped transparent electrode layer, light passing between the transparent electrode layers on which the dispersed particles are accumulated passes through the transparent dispersion medium, and the transmission-type display is performed. Becomes possible.

しかしながら、一方の透明電極層を網目状または縞状
にした前記提案においては、透過状態における光線の透
過率を向上させるため、電極パターンの開口率を上げる
と、電圧印加時にセル内で電界が不均一となり、着色状
態で分散粒子が全面電極上に均一に広がらず、着色時の
遮光率を劣化させるという問題点がある。また、透過状
態にする際に、応答速度を上げるためには高電圧を印加
する必要があるが、過剰電荷のため電極に電流が流れて
電荷が減少するいわゆる分散粒子のチャージアップや不
平等電界のため、分散粒子が縞状または網目状の電極か
ら遊離して電極から染み出して、入射光線の透過率が低
下するという問題点があった。
However, in the above proposal in which one of the transparent electrode layers has a mesh shape or a stripe shape, if the aperture ratio of the electrode pattern is increased in order to improve the transmittance of light in a transmission state, an electric field is not generated in the cell when a voltage is applied. There is a problem in that the particles become uniform, and the dispersed particles do not spread uniformly on the entire surface of the electrode in a colored state, thereby deteriorating the light shielding ratio at the time of coloring. In order to increase the response speed in the transmission state, it is necessary to apply a high voltage.However, a current flows through the electrode due to excessive charge, and the charge is reduced. Therefore, there is a problem that the dispersed particles are released from the striped or mesh-shaped electrode and exude from the electrode, thereby lowering the transmittance of incident light.

本発明は一方の透明基板に形成された透明電極層を網
目状または縞状とした透過型電気泳動表示素子の透過状
態または遮光状態における前記のごとき問題点を解決す
べくなされたものであって、優れた応答速度で、着色状
態において分散粒子が全面電極層に均一に付着し、良好
な遮光状態が得られると共に、透過状態においても分散
粒子が縞状または網目状の透明電極層から遊離すること
なく付着し良好な透過状態が得られる透過型電気泳動表
示素子の駆動方法を提供することを目的とする。
The present invention has been made to solve the above-described problems in a transmission state or a light-shielding state of a transmission type electrophoretic display element in which a transparent electrode layer formed on one transparent substrate has a mesh shape or a stripe shape. With an excellent response speed, the dispersed particles uniformly adhere to the entire electrode layer in the colored state to obtain a good light-shielding state, and the dispersed particles are released from the striped or mesh-shaped transparent electrode layer even in the transmission state. It is an object of the present invention to provide a driving method of a transmissive electrophoretic display element which adheres without causing a good transmission state.

[課題を解決するための手段] 本発明の透過型電気泳動表示素子の駆動方法は、2枚
の相対向して配置された透明基板と、前記2枚の透明基
板の相対向する面にそれぞれ形成され一方が全面に形成
され他方が網目状または縞状に形成された透明電極層
と、前記透明基板の間にセルを形成すべく前記透明基板
の周縁部に固着されたスペーサと、前記セル中に封入さ
れた高絶縁性の分散媒と、前記分散媒中に分散された分
散粒子とからなる透過型電気泳動表示素子の駆動方法で
あって、 前記網目状または縞状の透明電極層の極性が分散粒子
の帯電の極性と逆になるように第1の直流高電圧を印加
した後、第2の直流低電圧を印加して保持し表示素子の
透過状態を得、前記全面に形成された透明電極層の極性
が前記分散粒子の帯電の極性と逆になるように第1の直
流高電圧を印加した後、第2の直流低電圧を印加して保
持し表示素子の着色状態を得ることを要旨とする。
[Means for Solving the Problems] A driving method of a transmissive electrophoretic display element according to the present invention includes a method of driving a transparent substrate disposed opposite to two transparent substrates and a surface of the transparent substrate opposite to each other. A transparent electrode layer formed on one side and formed on the entire surface and the other on a mesh or stripe shape; a spacer fixed to a peripheral portion of the transparent substrate to form a cell between the transparent substrates; A method for driving a transmissive electrophoretic display element comprising a highly insulating dispersion medium encapsulated therein and dispersed particles dispersed in the dispersion medium, wherein the mesh-shaped or striped transparent electrode layer is After applying the first DC high voltage so that the polarity is opposite to the polarity of the charging of the dispersed particles, the second DC low voltage is applied and held to obtain the transmission state of the display element, and the display element is formed on the entire surface. The polarity of the transparent electrode layer is opposite to the polarity of the charging of the dispersed particles. After applying the first high DC voltage, as it is summarized in that to obtain a colored state of the display element is held by applying a second low DC voltage.

本発明において、網目状または縞状の透明電極層ある
いは全面に形成された透明電極層に印加される第1の直
流高電圧は、表示素子の透過状態または着色状態を得る
ために十分な応答速度が得られる程度でなければならな
い。この直流高電圧はセルギャップの厚みに応じて、20
0〜500Vの間で適宜な値が選ばれる。第1の直流高電圧
の印加時間は分散粒子が分散媒の中を泳動し網目状また
は縞状の透明電極層あるいは全面に形成された透明電極
層の近傍に達するに十分な時間であって、セルギャップ
に応じて0.5秒〜1分の間で適宜選ばれる。
In the present invention, the first direct current high voltage applied to the mesh-like or striped transparent electrode layer or the transparent electrode layer formed on the entire surface has a sufficient response speed to obtain a transmission state or a colored state of the display element. Must be obtained. This high DC voltage can be increased by 20 depending on the thickness of the cell gap.
An appropriate value is selected between 0 and 500V. The application time of the first DC high voltage is a time sufficient for the dispersed particles to migrate in the dispersion medium and reach the vicinity of the mesh-shaped or striped transparent electrode layer or the transparent electrode layer formed on the entire surface, It is appropriately selected from 0.5 seconds to 1 minute according to the cell gap.

第2の直流低電圧は、分散粒子にチャージアップを起
こさせず、網目状または縞状の透明電極層あるいは全面
に形成された透明電極層に分散粒子を吸着させるに十分
な電圧であれば良く、第1の直流高電圧のほぼ半分程度
以下であることが好ましい。なお、第1の直流高電圧を
印加した後に、第1の直流高電圧と第2の直流低電圧の
中間の直流電圧で一時保持してから第2の直流低電圧を
印加しても良い。
The second direct current low voltage may be any voltage that does not cause charge-up of the dispersed particles and is sufficient to cause the dispersed particles to be adsorbed on the mesh-like or striped transparent electrode layer or the transparent electrode layer formed on the entire surface. , Is preferably about half or less of the first DC high voltage. After applying the first high DC voltage, the second low DC voltage may be applied after temporarily holding the DC voltage between the first high DC voltage and the second low DC voltage.

電気泳動表示素子を透過状態にする場合も、着色状態
にする場合も、透明電極層の正負の極性が異なるだけ
で、同一の電圧印加のパターンで直流電圧が印加され
る。
Regardless of whether the electrophoretic display element is in the transmissive state or in the colored state, a DC voltage is applied in the same voltage application pattern only by changing the positive and negative polarities of the transparent electrode layer.

[作用] 網目状または縞状の透明電極膜の極性が分散粒子の帯
電の極性と逆になるように、第1の直流高電圧を印加す
ると、高電圧であるため、分散媒中に分散しまたは全面
電極に付着ていた分散粒子は、素早く分散中を泳動して
素早い応答速度で網目状または縞状の透明電極層に到達
する。
[Operation] When the first direct current high voltage is applied so that the polarity of the mesh-like or striped transparent electrode film is opposite to the polarity of the charging of the dispersed particles, the first direct current high voltage is applied to the high-voltage, so that it is dispersed in the dispersion medium. Alternatively, the dispersed particles adhered to the entire surface electrode migrate quickly during the dispersion and reach the mesh-like or stripe-like transparent electrode layer at a quick response speed.

続いて、網目状または縞状の透明電極層の極性が分散
粒子の帯電の極性と逆になるように、第2の直流低電圧
を印加すると、網目状または縞状の透明電極層に到達し
た分散粒子はチャージアップを起こすことなく、透明電
極層に付着するので、応答性を悪化させずにかつ分散粒
子が遊離することなく、透過率の優れた透過状態が得ら
れる。
Subsequently, when a second direct current low voltage was applied so that the polarity of the mesh or striped transparent electrode layer was opposite to the polarity of the charging of the dispersed particles, the mesh or the striped transparent electrode layer was reached. Since the dispersed particles adhere to the transparent electrode layer without causing charge-up, a transmission state having an excellent transmittance can be obtained without deteriorating the responsiveness and without releasing the dispersed particles.

また、全面透明電極層の極性が分散粒子の帯電の極性
と逆になるように、第1の直流高電圧を印加すると、高
電圧であるため、分散媒中に分散しあるいは縞状または
網目状または縞状の透明電極層に付着していた分散粒子
は、素早く分散媒中を泳動して早い応答速度で全面透明
電極層に到達する。
When the first DC high voltage is applied so that the polarity of the entire surface transparent electrode layer is opposite to the polarity of the charging of the dispersed particles, since the high voltage is applied, the first DC high voltage is dispersed in the dispersion medium or is striped or meshed. Alternatively, the dispersed particles adhering to the striped transparent electrode layer migrate quickly in the dispersion medium and reach the entire transparent electrode layer at a high response speed.

続いて、全面透明電極層の極性が分散粒子の帯電の極
性と逆になるように、第2の直流低電圧を印加すると、
全面透明電極層に到達した分散粒子はチャージアップを
起こすことなく、速やかに透明電極層に付着するので、
応答性を悪化させずに優れた着色状態が得られる。
Subsequently, when a second DC low voltage is applied so that the polarity of the entire surface transparent electrode layer is opposite to the polarity of the charging of the dispersed particles,
The dispersed particles that have reached the entire transparent electrode layer quickly adhere to the transparent electrode layer without causing charge-up,
An excellent colored state can be obtained without deteriorating the response.

[実施例] 本発明の好適な一実施例について以下図面に従って説
明する。なお、本発明が以下に述べる実施例の記載によ
って何等限定的に解釈されるものではない。
Embodiment A preferred embodiment of the present invention will be described below with reference to the drawings. The present invention is not construed as being limited by the description of the embodiments described below.

第1図は本発明の一実施例の駆動方法および比較例の
駆動方法の時間の経過に対する電圧の変化を示す線図、
第2図は第1図の本発明の実施例および比較例で表示素
子を駆動した場合の時間の経過に対する透過率の変化を
示す線図、第3図は本発明が適用される透過型電気泳動
表示素子のの断面図である。
FIG. 1 is a diagram showing a change in voltage over time of a driving method according to an embodiment of the present invention and a driving method according to a comparative example;
FIG. 2 is a diagram showing a change in transmittance with the passage of time when a display element is driven in the embodiment and the comparative example of the present invention shown in FIG. 1, and FIG. 3 is a transmission type electricity to which the present invention is applied. It is sectional drawing of a migration display element.

先ず、第3図の透過型電気泳動表示素子について説明
する。図において矢印は光の入射方向を示し、Aは視認
側を示す。2枚の透明基板1aおよび1bは厚さ1.8mmのソ
ーダ石灰ガラス(旭ガラス製)であって、2枚が所望の
ギャップを隔てて相対向するように配置されている。
First, the transmission type electrophoretic display device shown in FIG. 3 will be described. In the figure, arrows indicate the direction of incidence of light, and A indicates the viewing side. The two transparent substrates 1a and 1b are soda-lime glass (manufactured by Asahi glass) having a thickness of 1.8 mm, and are arranged so as to face each other with a desired gap.

それぞれの透明基板1aおよび1bの相対向する面には、
ITOからなる透明電極層2aおよび2bが1500Åの厚さで形
成されている。視認側の透明電極層2aは透明基板1aの全
面に形成されているが、光源側の透明電極層2bはストラ
イプ状であって、線幅を400μm、線間を1000μmとし
て、スクリーン印刷とエッチングの手法でパターン化し
て形成されたものである。
On opposing surfaces of the respective transparent substrates 1a and 1b,
Transparent electrode layers 2a and 2b made of ITO are formed with a thickness of 1500 °. The transparent electrode layer 2a on the viewing side is formed on the entire surface of the transparent substrate 1a, while the transparent electrode layer 2b on the light source side is in the form of a stripe, the line width is 400 μm, and the distance between the lines is 1000 μm. It is formed by patterning using a technique.

透明基板1aおよび1bの周縁部内面には基板の間でセル
を形成すべく、厚さ100μmのポリエステルフィルム
(東レ製)からなるスペーサ5が固着されている。ま
た、スペーサ5および透明基板1aおよび1bの外周にはエ
ポキシ系接着剤からなるシール剤6が接着されている。
A spacer 5 made of a 100 μm-thick polyester film (manufactured by Toray Industries Inc.) is fixed to the inner surfaces of the peripheral portions of the transparent substrates 1a and 1b so as to form cells between the substrates. A sealant 6 made of an epoxy adhesive is adhered to the outer periphery of the spacer 5 and the transparent substrates 1a and 1b.

セルの中には分散粒子3および分散媒4が封入されて
いる。分散粒子3には日本チバガイギー製顔料violet B
を用い、これは分散媒4中では負に帯電する。また、分
散媒4にはキシレン/テトラクロロエチレン(ナカライ
テスク社製)を用いた。
A dispersion particle 3 and a dispersion medium 4 are sealed in the cell. Pigment violet B manufactured by Ciba-Geigy Japan
Which is negatively charged in the dispersion medium 4. Xylene / tetrachloroethylene (manufactured by Nacalai Tesque) was used as the dispersion medium 4.

この透過型電気泳動表示素子を用い、第1図に示す駆
動方法により、透過状態および着色状態に駆動した。
Using this transmissive electrophoretic display element, it was driven into a transmissive state and a colored state by the driving method shown in FIG.

すなわち、まず本発明例としてストライプ状の透明電
極膜2bの極性が分散粒子3の帯電の極性と逆になるよう
に、透明電極2a−2b間に第1の直流高電圧が300Vで、印
加時間を10秒間として印加した。続いて、ストライプ状
の透明電極膜2bの極性が分散粒子3の帯電の極性と逆に
なるように、透明電極2a−2b間に第2の直流低電圧の10
0Vを印加して保持したところ、表示素子の透過状態が得
られた。第1の直流電圧印加された後透過状態が保持さ
れるまでの間の表示素子の透過率を測定した。
That is, first, as an example of the present invention, the first DC high voltage is 300 V between the transparent electrodes 2a and 2b, and the application time is set so that the polarity of the stripe-shaped transparent electrode film 2b is opposite to the polarity of the charging of the dispersed particles 3. For 10 seconds. Subsequently, the second direct current low voltage of 10 V is applied between the transparent electrodes 2 a and 2 b so that the polarity of the stripe-shaped transparent electrode film 2 b is opposite to the polarity of the charging of the dispersed particles 3.
When a voltage of 0 V was applied and held, a transmission state of the display element was obtained. The transmittance of the display element was measured until the transmission state was maintained after the first DC voltage was applied.

続いて、全面透明電極層2aの極性が分散粒子3の帯電
の極性と逆になるように、透明電極2a−2b間に第1の直
流高電圧が300Vで、印加時間を10秒間として印加した。
続いて、全面透明電極層2aの極性が分散粒子3の帯電の
極性と逆になるように、透明電極2a−2b間に第2の直流
低電圧の100Vを印加して保持したところ、分散粒子3が
全面透明電極層2aに付着し表示素子の着色状態が得られ
た。第1の直流電圧を印加した後遮光状態が保持される
間の表示素子の透過率を前と同様に測定した。
Subsequently, the first DC high voltage was applied between the transparent electrodes 2a and 2b at 300 V and the application time was set to 10 seconds so that the polarity of the entire surface transparent electrode layer 2a was opposite to the polarity of the charging of the dispersed particles 3. .
Subsequently, the second direct current low voltage of 100 V was applied between the transparent electrodes 2a and 2b so that the polarity of the transparent electrode layer 2a on the entire surface was opposite to the polarity of the charging of the dispersed particles 3. 3 adhered to the entire surface of the transparent electrode layer 2a, and a colored state of the display element was obtained. The transmittance of the display element while the light-shielded state was maintained after the application of the first DC voltage was measured as before.

次いで、第3図の透過型電気泳動表示素子を用い、第
1図の比較例1および比較例2に示す従来の駆動方法に
より、透過状態および着色状態に駆動した。なお、第1
図に示したように、比較例1は高電圧印加であって、30
0Vの直流を印加するものであり、比較例2は低電圧印加
であって、100Vの直流を印加するものである。
Next, the transmission type electrophoretic display device shown in FIG. 3 was driven into a transmission state and a colored state by the conventional driving methods shown in Comparative Examples 1 and 2 in FIG. The first
As shown in FIG.
In the comparative example 2, a low voltage was applied, and a direct current of 100 V was applied.

すなわち、ストライプ状の透明電極膜2bの極性が分散
粒子3の帯電の極性と逆になるように、透明電極2a−2b
間に比較例1では直流電圧として300Vを、比較例2では
直流電圧として100Vを印加して保持し、透過状態を得
た。
That is, the transparent electrodes 2 a-2 b are arranged such that the polarity of the stripe-shaped transparent electrode film 2 b is opposite to the polarity of the charging of the dispersed particles 3.
In the meantime, in Comparative Example 1, a DC voltage of 300 V was applied and in Comparative Example 2, a DC voltage of 100 V was applied and held, thereby obtaining a transmission state.

この電圧印加後透過状態が得られるまでの透過率を測
定した後、全面電極膜2aの極性が分散粒子3の帯電の極
性と逆になるように、比較例1では直流300Vを、比較例
2では直流100Vを印加して保持して、着色状態を得た。
前と同様に電圧印加後着色状態の得られるまでの透過率
を測定した。
After the transmittance was measured until the transmission state was obtained after the application of the voltage, Comparative Example 1 applied DC 300 V and Comparative Example 2 so that the polarity of the entire surface electrode film 2 a was opposite to the polarity of the charging of the dispersed particles 3. Then, a colored state was obtained by applying and maintaining a direct current of 100 V.
As before, the transmittance until the colored state was obtained after voltage application was measured.

実施例1で示す本発明方法の駆動方法と、比較例1お
よび比較例2で示す従来方法の駆動方法で得られた、第
1の直流高電圧印加後の、透過状態および着色状態の、
時間の経過に対する透過率の変化を第2図に示した。
In the transmission state and the colored state after the application of the first DC high voltage obtained by the driving method of the method of the present invention shown in Example 1 and the driving methods of the conventional methods shown in Comparative Examples 1 and 2,
FIG. 2 shows the change in transmittance with time.

第2図に示したように、比較例1は高電圧であったた
め、応答速度が非常に速いが、過剰電荷のためチャージ
アップが起こり、分散粒子が電極から遊離して、透過状
態での透過率が低く、また着色状態での遮光率が低下し
ている。また、比較例2は低電圧であったため、応答速
度が遅く、透過率および遮光率は優れているものの、完
全な透過状態または着色状態になるのに、本発明例の4
倍近く時間がかかっている。
As shown in FIG. 2, the response speed of Comparative Example 1 was very high because of the high voltage, but the charge-up occurred due to excessive charge, and the dispersed particles were released from the electrode, and the transmission in the transmission state occurred. The ratio is low, and the light blocking ratio in the colored state is low. Further, Comparative Example 2 had a low voltage, so that the response speed was slow and the transmittance and the light-shielding ratio were excellent, but a completely transparent state or a colored state was obtained.
It is taking almost twice as long.

これに対して本発明例である実施例1では、応答速度
は高電圧の比較例1に匹敵して優れたものであり、かつ
透過状態における透過率および着色状態における遮光率
は共に比較例1と同程度に優れたものであって、本発明
の効果が確認された。
On the other hand, in Example 1, which is an example of the present invention, the response speed was superior to Comparative Example 1 of high voltage, and both the transmittance in the transmission state and the light-shielding rate in the colored state were different from those of Comparative Example 1. It was as excellent as the above, and the effect of the present invention was confirmed.

なお、本実施例においては、第1の直流高電圧を印加
した後、直ちに第2の直流低電圧を印加したが、第1の
直流高電圧を印加した後、第1の直流高電圧と第2の直
流低電圧の中間の直流電圧で一時保持してから第2の直
流低電圧を印加しても同様の結果が得られる。
In this embodiment, the second DC low voltage is applied immediately after the first DC high voltage is applied. However, after the first DC high voltage is applied, the first DC high voltage and the second DC high voltage are applied. The same result can be obtained by temporarily holding at the intermediate DC voltage of the DC low voltage of No. 2 and then applying the second DC low voltage.

[発明の効果] 本発明の透過型電気泳動表示素子の駆動方法は、一方
の透明基板には全面に透明電極層を形成し、他方の透明
基板には網目状または縞状に透明電極層を形成した透過
型電気泳動表示素子の駆動方法であって、前記網目状ま
たは縞状の透明電極層の極性が前記分散粒子の帯電の極
性と逆になるように第1の直流高電圧を印加した後、第
2の直流低電圧を印加して保持し表示素子の透過状態を
得、前記全面に形成された透明電極層の極性が前記分散
粒子の帯電の極性と逆になるように第1の直流高電圧を
印加した後、第2の直流低電圧を印加して保持し表示素
子の着色状態を得ることを特徴とするものであって、着
色状態において分散粒子が全面電極に均一に付着し、遮
光率の高い良好な遮光状態が得られると共に、透過状態
においても分散粒子が縞状または網目状の透明電極層か
ら遊離することなく付着するので、透過率の高い良好な
透過状態が速い応答速度で得られるという優れた効果が
ある。
[Effects of the Invention] In the method for driving a transmissive electrophoretic display element of the present invention, a transparent electrode layer is formed on the entire surface of one transparent substrate, and the transparent electrode layer is formed in a mesh or stripe on the other transparent substrate. In the method for driving a formed transmissive electrophoretic display element, a first direct current high voltage is applied such that the polarity of the mesh-like or striped transparent electrode layer is opposite to the polarity of charging of the dispersed particles. Thereafter, a second direct current low voltage is applied and held to obtain a transmission state of the display element, and the first electrode is formed such that the polarity of the transparent electrode layer formed on the entire surface is opposite to the polarity of the charging of the dispersed particles. After applying a high DC voltage, a second DC low voltage is applied and maintained to obtain a colored state of the display element. In the colored state, the dispersed particles uniformly adhere to the entire surface electrode. In addition to obtaining a good light-shielding state with a high light-shielding rate, Even in this case, since the dispersed particles adhere to the striped or mesh-shaped transparent electrode layer without being separated, there is an excellent effect that a good transmission state having a high transmittance can be obtained at a high response speed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の駆動方法と比較例の駆動方法の時間の
経過に対する電圧の変化を示す線図、第2図は第1図の
本発明例および比較例で第3図の表示素子を駆動した場
合の時間の経過に対する透過率の変化を示す線図、第3
図は本発明が適用される透過型電気泳動表示素子のの断
面図、第4図は従来の電気泳動表示素子の断面図であ
る。 1aおよび1b……透明基板、2aおよび2b……透明電極層、
3……分散媒、4……分散粒子、5……スペーサ
FIG. 1 is a diagram showing a change in voltage over time of the driving method of the present invention and the driving method of the comparative example, and FIG. 2 is a diagram showing the display element of FIG. 3 according to the present invention and the comparative example of FIG. FIG. 3 is a graph showing a change in transmittance with time over time when the driving is performed.
FIG. 1 is a sectional view of a transmission type electrophoretic display device to which the present invention is applied, and FIG. 4 is a sectional view of a conventional electrophoretic display device. 1a and 1b: transparent substrate, 2a and 2b: transparent electrode layer,
3 dispersion medium, 4 dispersion particles, 5 spacer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2枚の相対向して配置された透明基板と、
前記2枚の透明基板の相対向する面にそれぞれ形成され
一方が全面に形成され他方が網目状または縞状に形成さ
れた透明電極層と、前記透明基板の間にセルを形成すべ
く前記透明基板の周縁部に固着されたスペーサと、前記
セル中に封入された高絶縁性の分散媒と、前記分散媒中
に分散された分散粒子とからなる透過型電気泳動表示素
子の駆動方法であって、 前記網目状または縞状の透明電極層の極性が前記分散粒
子の帯電の極性と逆になるように第1の直流高電圧を印
加した後、第2の直流低電圧を印加して保持し表示素子
の透過状態を得、前記全面に形成された透明電極層の極
性が前記分散粒子の帯電の極性と逆になるように第1の
直流高電圧を印加した後、第2の直流低電圧を印加して
保持し表示素子の着色状態を得ることを特徴とする透過
型電気泳動表示素子の駆動方法。
1. A transparent substrate disposed opposite to two substrates,
A transparent electrode layer formed on opposing surfaces of the two transparent substrates, one formed over the entire surface and the other formed in a mesh or stripe shape, and the transparent electrode layer is formed to form cells between the transparent substrates. A method for driving a transmissive electrophoretic display element comprising: a spacer fixed to a peripheral portion of a substrate; a highly insulating dispersion medium sealed in the cell; and dispersed particles dispersed in the dispersion medium. After applying a first DC high voltage so that the polarity of the mesh-like or striped transparent electrode layer is opposite to the polarity of the charging of the dispersed particles, a second DC low voltage is applied and held. After obtaining a transmission state of the display element and applying a first DC high voltage so that the polarity of the transparent electrode layer formed on the entire surface is opposite to the polarity of charging of the dispersed particles, the second DC low voltage is applied. It is characterized in that a voltage is applied and held to obtain a colored state of the display element. For driving a transmissive electrophoretic display device.
JP1233846A 1989-09-08 1989-09-08 Driving method of electrophoretic display element Expired - Fee Related JP2705235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233846A JP2705235B2 (en) 1989-09-08 1989-09-08 Driving method of electrophoretic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233846A JP2705235B2 (en) 1989-09-08 1989-09-08 Driving method of electrophoretic display element

Publications (2)

Publication Number Publication Date
JPH0396925A JPH0396925A (en) 1991-04-22
JP2705235B2 true JP2705235B2 (en) 1998-01-28

Family

ID=16961486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233846A Expired - Fee Related JP2705235B2 (en) 1989-09-08 1989-09-08 Driving method of electrophoretic display element

Country Status (1)

Country Link
JP (1) JP2705235B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402145A (en) * 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
CA2329173A1 (en) * 1998-04-27 1999-11-04 E Ink Corporation Shutter mode microencapsulated electrophoretic display
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
CN105654889B (en) 2010-04-09 2022-01-11 伊英克公司 Method for driving electro-optic display
JP7148324B2 (en) * 2017-12-11 2022-10-05 Tianma Japan株式会社 LIGHT DIRECTION CONTROLLER AND METHOD FOR DRIVING LIGHT DIRECTION CONTROL ELEMENT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823644B2 (en) * 1989-09-04 1996-03-06 トヨタ自動車株式会社 Driving method for electrophoretic display device

Also Published As

Publication number Publication date
JPH0396925A (en) 1991-04-22

Similar Documents

Publication Publication Date Title
JPH0823644B2 (en) Driving method for electrophoretic display device
JP2705235B2 (en) Driving method of electrophoretic display element
CA2153143C (en) Electrophoretic display panel with interleaved cathode and anode
US3756693A (en) Electrophoretic display device
JPH01267525A (en) Electrophoretic display element
JPS61162080A (en) Electrophoretic display unit
JPS5987488A (en) Electrooptic display
CN110286527B (en) Dye liquid crystal dimming panel, manufacturing method thereof and double-layer dye liquid crystal dimming panel
JPH0618931A (en) Color liquid crystal display panel
JP2000122103A (en) Display device
JP3189958B2 (en) Electrophoretic display device
JP2004061831A (en) Electrophoretic light quantity adjusting element
US4447133A (en) Electrochromic device
JPH0641222Y2 (en) Electrophoretic display element
JPH0749469Y2 (en) Electrophoretic display element
JPH1138420A (en) Production of liquid crystal display device
JP2501692Y2 (en) Electrophoretic light control glass
JPH0641220Y2 (en) Electrophoretic display element
JPH04212990A (en) Electrophoretic display element
JP2541547Y2 (en) Particle-dispersed display device
JPH075466Y2 (en) Electrophoretic display element
JPH0641219Y2 (en) Electrophoretic display element
JP2004012590A (en) Rewritable double-sided display apparatus
JP3554222B2 (en) Display device
JPS5991480A (en) Electrooptic display

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees