JPH09213662A - Method of splitting wafer and method of manufacturing semiconductor device - Google Patents

Method of splitting wafer and method of manufacturing semiconductor device

Info

Publication number
JPH09213662A
JPH09213662A JP8016037A JP1603796A JPH09213662A JP H09213662 A JPH09213662 A JP H09213662A JP 8016037 A JP8016037 A JP 8016037A JP 1603796 A JP1603796 A JP 1603796A JP H09213662 A JPH09213662 A JP H09213662A
Authority
JP
Japan
Prior art keywords
wafer
chip
semiconductor device
envelope
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8016037A
Other languages
Japanese (ja)
Inventor
Shigeo Sasaki
栄夫 佐々木
Shinya Taku
真也 田久
Koichi Yajima
興一 矢嶋
Keisuke Tokubuchi
圭介 徳渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8016037A priority Critical patent/JPH09213662A/en
Publication of JPH09213662A publication Critical patent/JPH09213662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method of splitting a wafer and the method of manufacturing a semiconductor device that is prevented from chipping in dicing. SOLUTION: The grooves of predetermined depth are formed on the side the semiconductor elements are formed along the dicing lines arranged as grille patterns formed on a wafer 21 on which the semiconductor elements are formed, a holding sheet 26 is adhered to the surface of the wafer 21 on the side semiconductor elements are formed, the back surface of the wafer 21 is ground and polished by the depth to reach the grooves and the wafer is split to individual chips. The wafer 21 is split into individual chips by grinding and polishing the back side of the wafer 21 by the depth to the reach the grooves, so that compared to the conventional splitting method of cracking by external force the wafer that is diced with half cut method or cutting the wafer by the depth to reach a sheet with full cut method and splitting it, chipping at the dicing can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はウェーハの分割方
法及び半導体装置の製造方法に関するもので、特に、ウ
ェーハ上に形成された半導体素子を個々のチップに切断
分離し、外囲器に封止する工程に係り、外囲器の小型薄
厚化やウェーハの大口径化時に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dividing a wafer and a method for manufacturing a semiconductor device, and in particular, a semiconductor element formed on a wafer is cut into individual chips and sealed in an envelope. It is suitable for reducing the size and thickness of the envelope and increasing the diameter of the wafer in the process.

【0002】[0002]

【従来の技術】半導体装置の製造工程は、ウェーハ(半
導体基板)上に種々の半導体素子のパターンを形成する
工程と、ウェーハ上に形成された半導体素子を個々のチ
ップに切断分離し、外囲器に封止する工程とに大別でき
る。近年、製造コストの低減を図るためにウェーハの大
口径化が推進されるとともに、実装密度を高めるために
外囲器の小型薄厚化が望まれている。従来は、薄厚化し
た外囲器に封止するために、ウェーハを個々のチップに
切断分離するのに先立って、ウェーハのパターン形成面
(主表面)の反対側の面(ウェーハの裏面)を砥石によ
る研削及び遊離砥粒による研磨等により除去して薄く
し、その後ダイシングして切断分離している。研削時に
は、ウェーハのパターン形成面に粘着性のシートを貼り
付けたり、レジスト等を塗布することによって保護して
いる。この後、上記ウェーハの主表面に形成された切断
分離(ダイシング)ライン領域に溝を形成する。この溝
を形成する際には、ダイヤモンドスクライバー、ダイヤ
モンドブレード、あるいはレーザースクライバー等を用
いている。上記ダイシング工程には、ウェーハ単体でこ
のウェーハの厚さの1/2までダイシング、またはウェ
ーハが30μm程度残る状態までダイシングを行うハー
フカット法、ウェーハの裏面に粘着性のシートを貼り付
けて同様にダイシングするハーフカット法、粘着性のシ
ートを20〜30μm程度まで切り込み、ウェーハ厚全
てを切断するフルカット法等が用いられる。上記ハーフ
カット法は、分割作業が必要とされ、ウェーハ単体の場
合にはウェーハを柔軟性のあるフィルム等に挟み、ロー
ラー等で外力を加えて分割する。シートに貼り付けた場
合には、テープ越しにローラーその他で外力を加え分割
する。分割されたチップは、ダイボンディング装置に設
けられているピックアップニードルによってシート裏面
を突き上げ、このシートを貫通してチップ裏面にニード
ル(針)を直接接触させ、更に持ち上げてチップをシー
トから引き離す。引き離されたチップは、コレットと呼
ばれるツールでチップ表面を吸着し、リードフレームの
アイランドにマウントした後、ワイヤボンディングを行
ってチップの各パッドとリードフレームのインナーリー
ド部とを電気的に接続し、外囲器に封止している。上記
チップのアイランドへのマウント方法としては、アイラ
ンドへ導電性ペーストを予め塗布しておく方法、金−シ
リコンの共晶を利用してマウントする方法、及びウェー
ハの裏面に金属の薄膜を蒸着し、半田を用いてマウント
する方法等がある。
2. Description of the Related Art The manufacturing process of a semiconductor device includes the steps of forming various semiconductor element patterns on a wafer (semiconductor substrate) and cutting and separating the semiconductor elements formed on the wafer into individual chips. It can be roughly divided into a process of sealing in a container. In recent years, an increase in the diameter of wafers has been promoted in order to reduce the manufacturing cost, and it has been desired to reduce the size and thickness of the envelope in order to increase the packaging density. Conventionally, in order to seal the wafer in a thinned envelope, the surface opposite to the pattern formation surface (main surface) of the wafer (the back surface of the wafer) is cut before separating the wafer into individual chips. It is thinned by removing it by grinding with a grindstone, polishing with loose abrasive grains, and the like, and then cut and separated by dicing. During grinding, an adhesive sheet is attached to the pattern forming surface of the wafer, or a resist or the like is applied to protect the wafer. Thereafter, a groove is formed in the cutting and separating (dicing) line region formed on the main surface of the wafer. When forming this groove, a diamond scriber, a diamond blade, a laser scriber, or the like is used. In the dicing step, a single wafer is diced to a half of the thickness of the wafer, or a half-cut method of dicing until the wafer remains about 30 μm, and an adhesive sheet is attached to the back surface of the wafer in the same manner. A half-cut method of dicing, a full-cut method of cutting an adhesive sheet to about 20 to 30 μm, and cutting the entire wafer thickness are used. The half-cut method requires division work, and in the case of a single wafer, the wafer is sandwiched between flexible films or the like, and external force is applied by rollers or the like to divide the wafer. When it is attached to the sheet, it is divided by applying an external force through the tape with a roller or the like. The divided chips are pushed up on the back surface of the sheet by a pickup needle provided in the die bonding apparatus, penetrate the sheet to directly contact the needle (needle) with the back surface of the chip, and further lift the chip away from the sheet. The separated chip adsorbs the chip surface with a tool called a collet, mounts it on the island of the lead frame, and then performs wire bonding to electrically connect each pad of the chip and the inner lead part of the lead frame, It is sealed in an envelope. As a method of mounting the chip on the island, a method of applying a conductive paste to the island in advance, a method of mounting using a gold-silicon eutectic, and a metal thin film is vapor-deposited on the back surface of the wafer, There is a method of mounting using solder.

【0003】図9ないし図15はそれぞれ、上述したよ
うな従来のウェーハの分割方法及び半導体装置の製造方
法の詳細な例について説明するためのもので、図9はウ
ェーハの表面保護テープを貼り付ける工程、図10はウ
ェーハの裏面の研削及び研磨工程、図11は表面保護テ
ープを剥がす工程、図12(a),(b)はウェーハを
固定用シートに固着する工程、図13はウェーハのダイ
シング工程、図14は分離したチップをピックアップす
る工程、及び図15はダイボンディング工程をそれぞれ
示している。
9 to 15 are each for explaining a detailed example of the conventional method for dividing a wafer and the method for manufacturing a semiconductor device as described above. FIG. 9 shows a wafer surface protection tape attached. Step, FIG. 10 is a step of grinding and polishing the back surface of the wafer, FIG. 11 is a step of peeling the surface protection tape, FIGS. 12A and 12B are steps of fixing the wafer to a fixing sheet, and FIG. 13 is dicing of the wafer. 14 shows a step of picking up separated chips, and FIG. 15 shows a die bonding step.

【0004】図9ないし図15において、1は各種の半
導体素子が形成されたウェーハ、1´はパターン形成面
(ウェーハ1の主表面)、2はポーラスチャックテーブ
ル、3はパターン形成面の保護テープ、4は貼り付けロ
ーラー、5は裏面研削用のチャックテーブル、6は研削
用砥石、7は保護テープ3を剥がすためのテープ、8は
フラットリング、9はウェーハの固定用シート、10は
ダイシング用チャックテーブル、11はダイシング用ブ
レード、12は切断分離後のチップ、13はピックアッ
プニードル、14はリードフレームのアイランド、15
は導電性ペースト等のダイボンディング用接着剤であ
る。
In FIGS. 9 to 15, 1 is a wafer on which various semiconductor elements are formed, 1'is a pattern forming surface (main surface of the wafer 1), 2 is a porous chuck table, 3 is a protective tape for the pattern forming surface. 4, a sticking roller, 5 a chuck table for backside grinding, 6 a grinding wheel, 7 a tape for peeling off the protective tape 3, 8 a flat ring, 9 a sheet for fixing a wafer, 10 dicing Chuck table, 11 dicing blade, 12 chip after cutting and separation, 13 pickup needle, 14 lead frame island, 15
Is a die bonding adhesive such as a conductive paste.

【0005】まず、図9に示すように、ウェーハ1の裏
面をポーラスチャックテーブル2上に固定し、貼り付け
ローラー4を回転させながら図示矢印方向に移動させて
保護テープ3をウェーハ1のパターン形成面1´に貼り
付ける。次に、図10に示すように、上記保護テープ3
を貼り付けたパターン形成面1´を下にしてチャックテ
ーブル5に固定し、ウェーハ1の裏面を研削用砥石6で
所定の厚さ(最終的なチップ厚)まで研削及び研磨す
る。その後、図11に示すように、保護テープ3に保護
テープを剥がすためのテープ7を貼り付け、パターン形
成面1´から保護テープ3を剥離する。次に、図12
(a)に示すようなフラットリング8をウェーハの固定
用シート9に固着してシート9の弛みや皺などの発生を
防止した状態で、図12(b)に示す如くフラットリン
グ8の開口内のシート9上にチップ1を固着する。そし
て、上記チップ1を固着したシート9とフラットリング
をダイシング用のチャックテーブル10に固定し、ダイ
シング用ブレード11でダイシング(フルカット)し、
個々のチップ12に切断分離する(図13参照)。次
に、図14に示すようにシート9の下方からピックアッ
プニードル13をシート9を貫通させてチップ12の裏
面に当てて押圧することにより個々のチップ12をシー
ト9から剥離し、図15に示すようにリードフレームの
アイランド14に導電性ペースト等のダイボンディング
用接着剤を用いてマウントする。その後、リードフレー
ムのインナーリード部とチップ12の各パッドとをワイ
ヤボンディングし、樹脂製やセラミック製の外囲器に封
止して半導体装置を完成する。
First, as shown in FIG. 9, the back surface of the wafer 1 is fixed on the porous chuck table 2, and the sticking roller 4 is rotated and moved in the direction of the arrow shown in FIG. Stick on surface 1 '. Next, as shown in FIG.
The pattern forming surface 1 ′ attached with is fixed to the chuck table 5, and the back surface of the wafer 1 is ground and polished by a grinding stone 6 to a predetermined thickness (final chip thickness). Thereafter, as shown in FIG. 11, a tape 7 for peeling off the protective tape is attached to the protective tape 3, and the protective tape 3 is peeled off from the pattern forming surface 1 '. Next, FIG.
In the opening of the flat ring 8 as shown in FIG. 12 (b), the flat ring 8 as shown in (a) is fixed to the wafer fixing sheet 9 to prevent the sheet 9 from being loosened or wrinkled. The chip 1 is fixed on the sheet 9. Then, the sheet 9 to which the chip 1 is fixed and the flat ring are fixed to the chuck table 10 for dicing, and dicing (full cut) is performed with the dicing blade 11.
The individual chips 12 are cut and separated (see FIG. 13). Next, as shown in FIG. 14, the individual pickup chips 12 are peeled from the sheet 9 by penetrating the sheet 9 from below the sheet 9 and abutting and pressing the pickup needle 13 against the back surface of the chip 12, as shown in FIG. In this manner, the island 14 of the lead frame is mounted using a die bonding adhesive such as a conductive paste. After that, the inner lead portion of the lead frame and each pad of the chip 12 are wire-bonded and sealed in a resin or ceramic envelope to complete the semiconductor device.

【0006】しかしながら、上記のようなウェーハの分
割方法及び半導体装置の製造方法では、下記(a)〜
(c)に示すような問題がある。 (a)薄厚研削時にウェーハが割れ易い。保護テープを
貼り付けて研削を行っても、研削時の歪みによりウェー
ハが反ってしまい、このために研削装置内での搬送時に
引っ掛かったりして破損する。また、ウェーハが薄くな
ったり大口径化されるに従いウェーハの強度が低下する
ため、現状のようにウェーハを薄くした後、ウェーハ単
体を搬送して種々の処理を施す方法では破損する確率が
高くなる。例えば、ウェーハが400μmの厚さでは
1.6Kgf/mm2 程度まで耐えられるが、厚さが2
00μmになると0.4Kgf/mm2 と1/4にまで
低下する。
However, in the wafer dividing method and the semiconductor device manufacturing method as described above, the following (a) to
There is a problem as shown in (c). (A) The wafer is easily broken during thin-thickness grinding. Even if the protective tape is attached and the wafer is ground, the wafer is warped due to the distortion during the grinding, which causes the wafer to be caught or damaged during the transportation in the grinding machine. In addition, since the strength of the wafer decreases as the wafer becomes thinner or the diameter increases, the method of carrying out various treatments by transporting the wafer alone after the wafer is thinned as in the current situation increases the probability of damage. . For example, a wafer with a thickness of 400 μm can withstand up to about 1.6 kgf / mm 2 , but a thickness of 2
When it becomes 00 μm, it decreases to 0.4 Kgf / mm 2 and 1/4.

【0007】(b)パターン形成面の保護とダイシング
時のウェーハ保持用として二枚のシートを使用するた
め、これらの貼り付け、剥離、貼り付けと工程がそれぞ
れ必要となり、材料費が高くなり製造工程も増加する。
(B) Since two sheets are used to protect the pattern-formed surface and to hold the wafer during dicing, the steps of attaching, peeling, and attaching each of these are required, which increases the material cost and manufacture. The process also increases.

【0008】(c)ダイシングを行った場合、ウェーハ
の裏面側のチッピングが大きくなり、チップの抗折強度
の低下を招く。しかも、従来は種々の特性モニター用の
トランジスタ、抵抗、コンデンサー等(これらをTE
G:Test ElementGroupと称する)を
チップ内に配置していたが、高集積化を図るためにダイ
シングライン上に配置されるようになった。周知の通
り、これらの素子は酸化膜、アルミニウム等で構成され
ており、ダイヤモンドブレードを用いてダイシングを行
う際に、砥石の目詰まりを起こし易く、切れ味を阻害す
る材料である。このため、ダイシングライン上にTEG
が配置されている場合には、ウェーハの裏面側のチッピ
ングが更に大きくなる。一般に半導体基板として使用さ
れている材料はシリコンやGaAs等脆性材であるため
に、クラック等が存在すると抗折強度の低下を招きやす
い。
(C) When dicing is performed, chipping on the back surface side of the wafer becomes large, resulting in a decrease in chip bending strength. Moreover, conventionally, various characteristic monitoring transistors, resistors, capacitors, etc.
G: Test Element Group) was arranged in the chip, but it is now arranged on the dicing line in order to achieve high integration. As is well known, these elements are composed of an oxide film, aluminum, etc., and are materials that easily cause the grinding stone to be clogged when dicing using a diamond blade and impair the sharpness. Therefore, the TEG on the dicing line
Is arranged, the chipping on the back surface side of the wafer is further increased. In general, the material used as a semiconductor substrate is a brittle material such as silicon or GaAs, and therefore cracks or the like are likely to cause a decrease in bending strength.

【0009】[0009]

【発明が解決しようとする課題】上記のように従来のウ
ェーハの分割方法及び半導体装置の製造方法は、薄厚研
削時や搬送時にウェーハが割れやすいという問題があっ
た。また、パターン形成面の保護とウェーハの保持のた
めに二枚のシートを必要とするため、材料費が高くなり
製造工程も増加するという問題があった。更に、ダイシ
ングを行った場合、ウェーハの裏面側のチッピングが大
きくなり、チップの抗折応力の低下を招くという問題が
あった。
As described above, the conventional wafer dividing method and semiconductor device manufacturing method have a problem that the wafer is easily broken during thin-thickness grinding or during transportation. Further, since two sheets are required to protect the pattern formation surface and hold the wafer, there is a problem that the material cost is increased and the manufacturing process is increased. Furthermore, when dicing is performed, there is a problem that chipping on the back surface side of the wafer becomes large, resulting in a decrease in bending stress of the chip.

【0010】この発明は上記のような事情に鑑みてなさ
れたもので、その目的とするところは、薄厚研削時や搬
送時のウェーハの割れを抑制できるウェーハの分割方法
及び半導体装置の製造方法を提供することにある。
The present invention has been made in view of the above circumstances. An object of the present invention is to provide a wafer dividing method and a semiconductor device manufacturing method capable of suppressing the cracking of a wafer during thin-thickness grinding or during transportation. To provide.

【0011】また、この発明の他の目的は、製造工程と
コストの削減が図れるウェーハの分割方法及び半導体装
置の製造方法を提供することにある。この発明の更に他
の目的は、ウェーハの裏面側のチッピングを小さくで
き、チップの抗折応力の低下を抑制できるウェーハの分
割方法及び半導体装置の製造方法を提供することにあ
る。
Another object of the present invention is to provide a wafer dividing method and a semiconductor device manufacturing method capable of reducing the manufacturing process and cost. Still another object of the present invention is to provide a method for dividing a wafer and a method for manufacturing a semiconductor device, which can reduce chipping on the back surface side of the wafer and suppress a decrease in bending stress of a chip.

【0012】[0012]

【課題を解決するための手段】この発明の請求項1に記
載したウェーハの分割方法は、半導体素子が形成された
ウェーハのダイシングラインに沿って上記半導体素子の
形成面側から所定の深さの溝を形成する工程と、上記ウ
ェーハにおける半導体素子の形成面上に保持用のシート
を貼り付ける工程と、上記ウェーハの裏面を上記溝に達
するまで研削及び研磨し、ウェーハを個々のチップに分
離する工程とを具備することを特徴としている。
According to a first aspect of the present invention, there is provided a method of dividing a wafer, wherein a predetermined depth is provided from a semiconductor element formation surface side along a dicing line of a wafer on which a semiconductor element is formed. A step of forming a groove, a step of attaching a holding sheet on the formation surface of the semiconductor element in the wafer, and a back surface of the wafer is ground and polished until the groove is reached, and the wafer is separated into individual chips. And a process.

【0013】また、この発明の請求項2に記載した半導
体装置の製造方法は、ウェーハの主表面に半導体素子を
形成する工程と、ダイシングラインに沿って上記ウェー
ハの主表面側から所定の深さの溝を形成する工程と、上
記ウェーハの主表面上に粘着性のシートを貼り付ける工
程と、上記ウェーハの裏面を上記溝に達するまで研削及
び研磨し、ウェーハを個々のチップに分離する工程と、
分離した各チップを上記粘着性のシートから剥離して外
囲器に封止する工程とを具備することを特徴としてい
る。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device, which comprises a step of forming a semiconductor element on a main surface of a wafer and a predetermined depth from the main surface side of the wafer along a dicing line. A step of forming a groove, a step of sticking an adhesive sheet on the main surface of the wafer, a step of grinding and polishing the back surface of the wafer until the groove is reached, and a step of separating the wafer into individual chips; ,
And a step of peeling each separated chip from the adhesive sheet and sealing the chip in an envelope.

【0014】請求項3に示すように、前記分離した各チ
ップを前記粘着性のシートから剥離して外囲器に封止す
る工程は、ピックアップニードルを前記粘着性のシート
を介して前記チップの主表面に当てて押圧することによ
り前記チップを粘着性のシートから剥離し、チップ毎に
外囲器に封止するものであることを特徴とする。
According to a third aspect of the present invention, in the step of peeling each of the separated chips from the adhesive sheet and sealing the envelope in an envelope, a pickup needle of the chip is inserted through the adhesive sheet. It is characterized in that the chip is peeled from the adhesive sheet by being pressed against the main surface and sealed in an envelope for each chip.

【0015】請求項4に示すように、前記分離した各チ
ップを前記粘着性のシートから剥離して外囲器に封止す
る工程は、前記粘着性のシートから剥離したチップをリ
ードフレームのアイランドにマウントし、上記リードフ
レームのインナーリード部と前記チップの各パッドとを
ワイヤボンディングした後、外囲器に封止するものであ
ることを特徴とする。
According to a fourth aspect of the present invention, in the step of peeling each of the separated chips from the adhesive sheet and sealing in an envelope, the chips peeled from the adhesive sheet are used as islands of a lead frame. And wire-bonding the inner lead portion of the lead frame and each pad of the chip, and then sealing in an envelope.

【0016】あるいは、請求項5に示すように、前記分
離した各チップを前記粘着性のシートから剥離して外囲
器に封止する工程は、前記粘着性のシートから剥離した
チップの主表面上にリードの一端を接着し、上記リード
と前記チップの各パッドとをワイヤボンディングした
後、外囲器に封止するものであることを特徴とする。
Alternatively, as set forth in claim 5, the step of peeling each of the separated chips from the adhesive sheet and sealing in an envelope is performed by the main surface of the chip peeled from the adhesive sheet. One end of the lead is bonded to the upper part, the lead and each pad of the chip are wire-bonded, and then sealed in an envelope.

【0017】請求項6に示すように、前記チップの主表
面とリードとの間に介在される接着テープを更に備え、
前記接着テープの厚さは、前記ウェーハの裏面の研削及
び研磨工程で発生するシリコン屑よりも厚いことを特徴
とする。
As described in claim 6, further comprising an adhesive tape interposed between the main surface of the chip and the lead,
The thickness of the adhesive tape is thicker than silicon debris generated in the grinding and polishing process of the back surface of the wafer.

【0018】請求項1のようなウェーハの分割方法によ
れば、ウェーハの素子形成面側から所定の深さの溝を形
成し、このウェーハの裏面を溝に達するまで研削及び研
磨することによってウェーハを個々のチップに分離する
ので、ダイシングの際のチッピングを抑制できる。
According to the wafer dividing method of the first aspect, a wafer having a predetermined depth is formed from the element forming surface side of the wafer, and the back surface of the wafer is ground and polished until it reaches the groove. Since chips are separated into individual chips, chipping during dicing can be suppressed.

【0019】請求項2のような半導体装置の製造方法に
よれば、ウェーハ上に形成された半導体素子を個々のチ
ップ毎に切断分離して外囲器に封止する工程を、ダイシ
ング(ハーフカット)、ウェーハの裏面研削及び研磨、
ダイボンディングの順にしたので、ウェーハを個々のチ
ップに分離するのは、研削及び研磨によって行う。よっ
て、ウェーハの裏面を研削及び研磨して薄厚化した状態
での搬送や処理工程がないので、ウェーハの破損を防止
できる。シートは一枚で済むので材料費の低減と製造工
程の削減が図れ、低コスト化できる。外力を加えてウェ
ーハを分割する必要がないのでチッピングを抑制でき
る。また、ウェーハの裏面側を、切削及び研磨によって
除去して個々のチップに分離するので、ウェーハの裏面
側に発生するチッピングを抑制でき、抗折応力の低下を
抑制できる。
According to the method of manufacturing a semiconductor device as claimed in claim 2, the step of cutting and separating the semiconductor element formed on the wafer into individual chips and sealing them in the envelope is performed by dicing (half cut). ), Wafer backside grinding and polishing,
Since the order of die bonding is used, the wafer is separated into individual chips by grinding and polishing. Therefore, since there is no conveyance or treatment process in the state where the back surface of the wafer is ground and polished to be thinned, damage to the wafer can be prevented. Since only one sheet is required, the material cost and the manufacturing process can be reduced, and the cost can be reduced. Since it is not necessary to divide the wafer by applying an external force, chipping can be suppressed. Further, since the back surface side of the wafer is removed by cutting and polishing to be separated into individual chips, chipping that occurs on the back surface side of the wafer can be suppressed, and reduction in transverse stress can be suppressed.

【0020】請求項3に記載したように、ピックアップ
ニードルを粘着性のシートを介してチップの主表面に当
てて押圧し、チップを粘着性のシートから剥離しても、
ピックアップニードルの先端部の太さを最適化すれば粘
着性のシートを破ることなくチップを剥離することがで
き、半導体素子への損傷を防止できる。
As described in claim 3, even if the pickup needle is pressed against the main surface of the chip via the adhesive sheet and the chip is peeled from the adhesive sheet,
If the thickness of the tip of the pickup needle is optimized, the chip can be peeled off without breaking the adhesive sheet, and damage to the semiconductor element can be prevented.

【0021】請求項4に記載したように通常の樹脂パッ
ケージやセラミックパッケージに封止しても良く、請求
項5に記載したようにLOC(Lead On Chi
p)パッケージに封止しても良い。
As described in claim 4, it may be sealed in an ordinary resin package or ceramic package, and as described in claim 5, LOC (Lead On Chi).
p) The package may be sealed.

【0022】請求項6に記載したように、チップの主表
面とリードとの間にウェーハの裏面の研削及び研磨工程
で発生するシリコン屑よりも厚い接着テープを介在させ
れば、シリコン屑による不良を防止できる。
As described in claim 6, if an adhesive tape thicker than silicon chips generated in the grinding and polishing steps of the back surface of the wafer is interposed between the main surface of the chip and the leads, defects due to silicon chips are caused. Can be prevented.

【0023】[0023]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照して説明する。図1ないし図6はそれぞ
れ、この発明の第1の実施の形態に係るウェーハの分割
方法及び半導体装置の製造方法について説明するための
もので、図1はダイシングラインに沿ってウェーハに溝
を形成する工程、図2(a),(b)はウェーハに表面
保護テープを貼り付ける工程、図3はウェーハ裏面の研
削及び研磨工程(分割工程)、図4は分離したチップを
ピックアップする工程、図5はダイボンディング工程及
び図6は外囲器に封止する工程をそれぞれ示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 are each for explaining a wafer dividing method and a semiconductor device manufacturing method according to a first embodiment of the present invention. FIG. 1 shows a groove formed in a wafer along a dicing line. 2A and 2B are steps of attaching a surface protection tape to the wafer, FIG. 3 is a step of grinding and polishing the back surface of the wafer (dividing step), and FIG. 4 is a step of picking up separated chips. 5 shows a die bonding step, and FIG. 6 shows a step of sealing in an envelope.

【0024】図1ないし図6において、21は各種の半
導体素子が形成されたウェーハ、21´はパターン形成
面(ウェーハ21の主表面)、22はダイシングライン
に沿って形成された溝、23はダイシング用チャックテ
ーブル、24はダイシング用ブレード、25はフラット
リング、26はパターン形成面の表面保護テープ(粘着
性のシート)、27は裏面研削用チャックテーブル、2
8は裏面研削用砥石、29は切断分離後のチップ、30
はピックアップニードル、31はリードフレームのアイ
ランド(ベッド)、32は導電性ペースト等のダイボン
ディング用接着剤、33は樹脂パッケージまたはセラミ
ックパッケージ(外囲器)、34はリードフレーム、及
び35はボンディングワイヤである。
1 to 6, 21 is a wafer on which various semiconductor elements are formed, 21 'is a pattern forming surface (main surface of the wafer 21), 22 is a groove formed along the dicing line, and 23 is Dicing chuck table, 24 dicing blade, 25 flat ring, 26 surface protection tape (adhesive sheet) for pattern forming surface, 27 back surface chuck table, 2
8 is a grindstone for backside grinding, 29 is a chip after cutting and separating, 30
Is a pickup needle, 31 is an island (bed) of a lead frame, 32 is an adhesive for die bonding such as conductive paste, 33 is a resin package or ceramic package (envelope), 34 is a lead frame, and 35 is a bonding wire. Is.

【0025】先ず、図1に示す如く、各種の半導体素子
が形成されたウェーハ21をパターン形成面側を上にし
て、ダイシング装置のチャックテーブル23にバキュー
ムその他の方法で吸着して固定する。そして、ダイシン
グ用ブレード24を任意の回転数で回転させ、切削水を
掛けながら所定の深さまで溝22を切り込む。この溝2
2の深さは、最終的なチップの厚さと実質的に等しい
か、それより少し深くする。その後、ウェーハ21の洗
浄と乾燥処理を行う。
First, as shown in FIG. 1, the wafer 21 on which various semiconductor elements are formed is fixed to the chuck table 23 of the dicing device by vacuum suction or another method with the pattern forming surface side facing upward. Then, the dicing blade 24 is rotated at an arbitrary number of revolutions, and the groove 22 is cut to a predetermined depth while sprinkling cutting water. This groove 2
The depth of 2 should be substantially equal to or slightly deeper than the final chip thickness. Then, the wafer 21 is washed and dried.

【0026】次に、図2(a)に示すようなフラットリ
ング25を表面保護テープ26に貼り付けてこのテープ
26の弛みや皺を除去した状態で、図2(b)に示すよ
うに前工程で溝22を形成したウェーハ21のパターン
形成面21´をテープ26の接着剤側に貼り付けて固定
する。
Next, a flat ring 25 as shown in FIG. 2 (a) is attached to the surface protection tape 26, and the slack and wrinkles of the tape 26 are removed, as shown in FIG. 2 (b). The pattern forming surface 21 ′ of the wafer 21 having the groove 22 formed in the step is attached and fixed to the adhesive side of the tape 26.

【0027】その後、図3に示すように、上記フラット
リング25と表面保護テープ26とで保持されたウェー
ハ21を、研削装置のチャックテーブル27にバキュー
ム等の方法で吸着固定する。そして、チャックテーブル
27と研削用砥石28を回転させ、砥石28を降下させ
ながらウェーハ21の裏面を削る。一般にこの研削方法
はインフィード研削と呼ばれるものであるが、別の方法
としてスルーフィード研削またはクリープフィード研削
と呼ばれ、ウェーハの側面と砥石28を回転させながら
削る方法を用いても良い。
After that, as shown in FIG. 3, the wafer 21 held by the flat ring 25 and the surface protection tape 26 is attracted and fixed to the chuck table 27 of the grinding machine by a method such as vacuum. Then, the chuck table 27 and the grinding stone 28 are rotated, and the back surface of the wafer 21 is ground while lowering the grinding stone 28. Generally, this grinding method is called in-feed grinding, but as another method, it is called through-feed grinding or creep-feed grinding, and a method of grinding while rotating the side surface of the wafer and the grindstone 28 may be used.

【0028】次に、図4に示すように、ウェーハ21の
切断分離を終えて分割された個々のチップ29が接着固
定されているフラットリング25をダイボンディング装
置に設置し、このダイボンディング装置のピックアップ
ニードル30を用いて表面保護テープ26越しにパター
ン形成面22に圧力を加える。これによって、ピックア
ップニードル30は、テープ26を貫通することなくチ
ップ29のパターン形成面を押圧し、チップ29がテー
プ26から剥離される。上記ピックアップニードル30
は、先端曲率半径が0.35mm以上であれば18Nの
力が掛かっても(15mm×15mmチップ)、チップ
29中に形成されたアルミ配線等にダメージが発生しな
いことを本発明者等は実験により確認している。よっ
て、チップ29の主表面側から表面保護テープ26を介
してピックアップニードル30(金属製のピン)で押し
剥がしても、先端曲率半径を最適化することによりピッ
クアップニードル30がテープ26を破ることはなく、
特に問題は発生しない。
Next, as shown in FIG. 4, the flat ring 25 to which the individual chips 29 that have been cut and separated after the wafer 21 have been cut and bonded are fixedly attached to the die bonding apparatus. The pickup needle 30 is used to apply pressure to the pattern formation surface 22 through the surface protection tape 26. As a result, the pickup needle 30 presses the pattern forming surface of the chip 29 without penetrating the tape 26, and the chip 29 is separated from the tape 26. The pickup needle 30
The inventors of the present invention have conducted an experiment that if the radius of curvature of the tip is 0.35 mm or more, the aluminum wiring and the like formed in the chip 29 will not be damaged even if a force of 18 N is applied (15 mm × 15 mm chip). Have confirmed by. Therefore, even if the tip 29 is pushed off by the pickup needle 30 (metal pin) from the main surface side of the tip 29 via the surface protection tape 26, the pickup needle 30 does not break the tape 26 by optimizing the radius of curvature of the tip. Without
No particular problem occurs.

【0029】なお、本実施の形態では、チップ29をテ
ープ26から剥離する際に、チップ29が押し下げられ
る構成となっているが、押し上げて剥離するように構成
しても良く、一般的には後者の方法が多用されている。
In this embodiment, when the chip 29 is peeled off from the tape 26, the chip 29 is pushed down, but it may be pushed up and peeled off. The latter method is often used.

【0030】テープ26から剥離されたチップ29は、
ダイボンディング装置のコレットと呼ばれるツールで吸
着保持し、図5に示すようにリードフレームのアイラン
ド31にマウントする。この際、リードフレームのアイ
ランド31に予め接着固定用の導電性ペースト32を塗
布しておき、その上にチップ29をダイボンディングす
る。金−シリコンの共晶を利用してマウントしたり、ウ
ェーハの裏面に金属の薄膜を蒸着し、半田を用いてマウ
ントすることもできる。
The chip 29 separated from the tape 26 is
It is adsorbed and held by a tool called a collet of a die bonding apparatus, and mounted on an island 31 of a lead frame as shown in FIG. At this time, the conductive paste 32 for adhesive fixing is applied to the island 31 of the lead frame in advance, and the chip 29 is die-bonded thereon. It is also possible to mount using a eutectic of gold-silicon, or to deposit using a solder by depositing a thin metal film on the back surface of the wafer.

【0031】その後、ワイヤボンディングを行ってチッ
プ29の各パッドとリードフレーム34のインナーリー
ド部とをボンディングワイヤ35で電気的に接続する。
そして、チップ29、アイランド31及びリードフレー
ム34のインナーリード部を樹脂パッケージ33、また
はセラミックパッケージに封止し、リードフォーミング
を行って図6に示すような半導体装置を完成する。
Thereafter, wire bonding is performed to electrically connect each pad of the chip 29 and the inner lead portion of the lead frame 34 with the bonding wire 35.
Then, the chip 29, the island 31, and the inner lead portion of the lead frame 34 are sealed in a resin package 33 or a ceramic package, and lead forming is performed to complete a semiconductor device as shown in FIG.

【0032】図7(a),(b)はそれぞれ、ウェーハ
を個々のチップに分離した時の研削面の拡大図である。
(a)図は従来の分割方法及び製造方法を用いた場合を
示し、フルカットによってダイシングした時の研削面側
の拡大図である。図示する如く、ダイシング部に多数の
チッピングが発生している。(b)図はこの発明の分割
方法及び製造方法を用いた場合を示すもので、(a)図
に比べてシャープな切断面であり、チッピングは大幅に
減少している。
FIGS. 7A and 7B are enlarged views of the ground surface when the wafer is separated into individual chips.
FIG. 7A is a magnified view of the grinding surface side when the conventional dicing method and the manufacturing method are used and dicing is performed by full cutting. As shown in the figure, many chippings occur in the dicing portion. The figure (b) shows the case where the dividing method and the manufacturing method of the present invention are used, and the cutting surface is sharper than the figure (a), and the chipping is greatly reduced.

【0033】図8は、この発明の第2の実施の形態に係
る半導体装置の製造方法について説明するためのもの
で、LOC(Lead On Chip)パッケージに
適用したものである。LOCパッケージの場合には、図
4に示したピックアップ工程の後、チップ29上に接着
テープ36を介在させてリード37の一端を接着した
後、ワイヤボンディングを行ってチップ29の各パッド
とリード37とをボンディングワイヤ35で接続し、樹
脂パッケージ33またはセラミックパッケージに封止す
れば良い。
FIG. 8 is for explaining a method of manufacturing a semiconductor device according to the second embodiment of the present invention, which is applied to a LOC (Lead On Chip) package. In the case of the LOC package, after the pick-up step shown in FIG. 4, one end of the lead 37 is bonded onto the chip 29 with the adhesive tape 36 interposed therebetween, and then wire bonding is performed to bond each pad of the chip 29 and the lead 37. Are connected to each other with a bonding wire 35 and sealed in a resin package 33 or a ceramic package.

【0034】この際、チップ29上にシリコン屑が存在
すると、リード37の接着やワイヤボンディング時の荷
重により、シリコン屑がチップ29表面の保護膜を破
り、アルミ配線の段線やショート等の不良を起こす危険
がある。そこで、上記接着テープ36の厚さを上記シリ
コン屑よりも厚くすることにより、上述したような不良
の発生を抑制できる。
At this time, if silicon debris is present on the chip 29, the silicon debris breaks the protective film on the surface of the chip 29 due to the load at the time of adhesion of the leads 37 and wire bonding, and a defect such as a step line or short circuit of the aluminum wiring. There is a risk of causing Therefore, by making the thickness of the adhesive tape 36 thicker than the silicon scrap, it is possible to suppress the occurrence of the above-mentioned defects.

【0035】上記のようなウェーハの分割方法及び半導
体装置の製造方法によれば、下記(1)〜(5)に示す
ような効果が得られる。 (1)ウェーハの薄厚化時のウェーハ破損による不良率
の低減化が図れる。
According to the wafer dividing method and the semiconductor device manufacturing method as described above, the following effects (1) to (5) can be obtained. (1) It is possible to reduce the defect rate due to wafer breakage when the wafer is thinned.

【0036】下表1は、直径が6インチのウェーハを個
々のチップに分割した場合のチップ厚(溝の深さと実質
的に等しいか、あるいは少し深い)と破損率(ppm:
parts par million)との関係を示し
ている。
Table 1 below shows the chip thickness (substantially equal to or slightly deeper than the groove depth) and damage rate (ppm: when a wafer having a diameter of 6 inches is divided into individual chips).
The relationship with the "parts par million" is shown.

【0037】[0037]

【表1】 表1に示す如く、従来はチップ厚が薄くなると破損率が
高くなったが、この発明では最終的なチップ厚が薄くな
るほど破損率が低くなる。これは、チップ厚を薄くする
場合には溝を浅くすることができるので、溝の下に残存
するウェーハ厚が厚くなることに依るものである。直径
が6インチのウェーハの場合には、ウェーハの厚さは通
常600〜650μmである。従来の分割方法及び製造
方法では、例えば100μmの厚さのチップを形成しよ
うとすると、ウェーハを予め100μmの厚さに研削及
び研磨し、図11ないし図13に示した処理を行う。こ
れに対し、この発明の方法では、100μmの溝を形成
した後(溝の下には500〜550μmのウェーハが残
存されている)、研削及び研磨して個々のチップに分割
するので破損率が低くなる。
[Table 1] As shown in Table 1, the breakage rate becomes higher as the chip thickness becomes thinner in the past, but in the present invention, the breakage rate becomes lower as the final chip thickness becomes thinner. This is because the groove can be made shallower when the chip thickness is made thinner, so that the thickness of the wafer remaining under the groove becomes thicker. For a 6 inch diameter wafer, the thickness of the wafer is typically 600-650 μm. In the conventional dividing method and manufacturing method, for example, when a chip having a thickness of 100 μm is to be formed, the wafer is ground and polished in advance to a thickness of 100 μm, and the processing shown in FIGS. 11 to 13 is performed. On the other hand, in the method of the present invention, after forming a groove of 100 μm (a wafer of 500 to 550 μm remains under the groove), grinding and polishing are performed to divide into individual chips, so that the damage rate is Get lower.

【0038】(2)搬送時のトラブルがウェーハの口径
に左右されない。フラットリングに粘着性のシートを貼
り付け、これを保持用とする方式のため、チップ厚が薄
くなっても、あるいは同じ口径でも切削歪みによるウェ
ーハの反りの影響を受けることなく装置内搬送が可能で
ある。また、チップ厚が薄くなると溝の下に残存される
ウェーハが厚くなるので、この点からも搬送時のウェー
ハ破損等を低減できる。これにより下表2のような効果
が得られる。但し、ウェーハの直径が8インチで、チッ
プの厚さを100μmに仕上げる場合のものである。
(2) Trouble during transportation does not depend on the diameter of the wafer. Since an adhesive sheet is attached to the flat ring and used for holding, it can be transported inside the device without being affected by the warp of the wafer due to cutting strain even if the chip thickness becomes thin or the same diameter. Is. Further, as the chip thickness becomes thinner, the wafer left under the groove becomes thicker, and from this point as well, damage to the wafer during transportation can be reduced. As a result, the effects shown in Table 2 below are obtained. However, the diameter of the wafer is 8 inches, and the thickness of the chip is 100 μm.

【0039】[0039]

【表2】 この表2のデータから明らかなように、この発明はウェ
ーハの大口径化に有効であり、今後展開されるウェーハ
の12インチ化、または16インチ化への対応が容易に
なる。
[Table 2] As is clear from the data in Table 2, the present invention is effective for increasing the diameter of the wafer, and it is easy to cope with the 12-inch or 16-inch wafer that will be developed in the future.

【0040】(3)表面保護テープを一枚しか使用しな
いため、従来の方法に比して材料費と加工費を60%程
度削減でき、製造コストの低減が図れる。 (4)フルカット方式の場合、シートまで切り込むた
め、ブレードの切れ味の低下及びダイシング中のチップ
の飛散が生ずるため、一般的に80〜120mm/se
cであるが、この発明の方法では200mm/secま
で可能である。これによって、ダイシングスピードの向
上が図れ、10%程度の加工費の低減が図れる。
(3) Since only one surface protection tape is used, the material cost and the processing cost can be reduced by about 60% as compared with the conventional method, and the manufacturing cost can be reduced. (4) In the case of the full-cut method, since the sheet is cut, the sharpness of the blade is deteriorated and the chips are scattered during dicing. Therefore, it is generally 80 to 120 mm / se.
c, but the method of the present invention is possible up to 200 mm / sec. As a result, the dicing speed can be improved and the processing cost can be reduced by about 10%.

【0041】(5)ウェーハを分割するために、ダイシ
ングシートまで切り込む必要がなく、且つ裏面研削用の
砥石で研削して分割するため、裏面チッピングの大きさ
が従来の15μm程度から4μm程度へと小さくなり、
抗折応力値も45Kgf/mm2 と向上する。
(5) Since it is not necessary to cut into the dicing sheet to divide the wafer and the wafer is divided by grinding with a grindstone for backside grinding, the size of the backside chipping is changed from the conventional size of about 15 μm to about 4 μm. Getting smaller,
The bending stress value is also improved to 45 Kgf / mm 2 .

【0042】なお、この発明は上述した第1,第2の実
施の形態に限定されるものではなく、要旨を逸脱しない
範囲で種々変形して実施可能である。例えば、溝の形成
時にウェーハ21をダイシング用チャックテーブル23
に固着したが、従来の方法と同様にフラットリングを粘
着性のシートに貼り付けた状態で、ウェーハをダイシン
グ用チャックテーブルに固定するようにしても良い。あ
るいは、平板にウェーハを固定したり、平板に粘着性の
シートを用いてウェーハを固着した状態で溝を形成して
も良い。
The present invention is not limited to the above-described first and second embodiments, and various modifications can be made without departing from the scope of the invention. For example, when the groove is formed, the wafer 21 is chucked on the chuck table 23 for dicing.
However, as in the conventional method, the wafer may be fixed to the chuck table for dicing while the flat ring is attached to the adhesive sheet. Alternatively, the wafer may be fixed to the flat plate, or the groove may be formed while the wafer is fixed to the flat plate by using an adhesive sheet.

【0043】また、ウェーハ21のパターン形成面21
´を粘着性のシート(表面保護テープ26)に貼り付け
るようにしたが、ウェーハ21のパターン形成面21´
と粘着性のシートとの間に極薄のフィルムを介在させて
も良い。例えば、ウェーハのパターン形成面にシリテク
ト−IIと呼ばれる液体をスプレーで吹き付けて被膜を形
成した後、粘着性のシートを貼り付ける。あるいは、平
板上に両面あるいは片面の粘着テープを貼り付け、その
上にウェーハを固着するようにしても良い。
The pattern forming surface 21 of the wafer 21
′ Was attached to an adhesive sheet (surface protection tape 26), the pattern forming surface 21 ′ of the wafer 21
An extremely thin film may be interposed between the adhesive sheet and the adhesive sheet. For example, a liquid called Ciritect-II is sprayed on the pattern formation surface of the wafer to form a film, and then an adhesive sheet is attached. Alternatively, a double-sided or single-sided adhesive tape may be attached on a flat plate, and the wafer may be fixed thereon.

【0044】更に、チップを表面保護テープから剥離す
るためにピックアップニードルを用いたが、ピックアッ
プニードルの代わりにチップ裏面をバキュームで吸着
し、表面保護テープから剥離するようにしても良い。
Further, although the pickup needle was used for peeling the chip from the surface protection tape, instead of the pickup needle, the back surface of the chip may be sucked by vacuum and peeled from the surface protection tape.

【0045】[0045]

【発明の効果】以上説明したように、この発明によれ
ば、薄厚研削時や搬送時のウェーハの割れを抑制できる
ウェーハの分割方法及び半導体装置の製造方法が得られ
る。また、製造工程とコストの削減が図れるウェーハの
分割方法及び半導体装置の製造方法が得られる。更に、
ウェーハの裏面側のチッピングを小さくでき、チップの
抗折応力の低下を抑制できるウェーハの分割方法及び半
導体装置の製造方法が得られる。
As described above, according to the present invention, there can be obtained a wafer dividing method and a semiconductor device manufacturing method capable of suppressing the cracking of the wafer during thin-thickness grinding or during transportation. Further, there can be obtained a wafer dividing method and a semiconductor device manufacturing method capable of reducing the manufacturing process and cost. Furthermore,
A method of dividing a wafer and a method of manufacturing a semiconductor device can be obtained which can reduce chipping on the back surface side of a wafer and can suppress a decrease in bending stress of a chip.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、ダイシング
ラインに沿ってウェーハに溝を形成する工程を示す図。
FIG. 1 is a view for explaining a method of manufacturing a semiconductor device according to a first embodiment of the present invention, showing a step of forming a groove in a wafer along a dicing line.

【図2】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、ウェーハに
表面保護テープを貼り付ける工程を示す図。
FIG. 2 is a view for explaining the method of manufacturing the semiconductor device according to the first embodiment of the present invention, showing a step of attaching a surface protection tape to a wafer.

【図3】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、ウェーハ裏
面の研削及び研磨工程(分割工程)を示す図。
FIG. 3 is a view for explaining a method for manufacturing a semiconductor device according to the first embodiment of the present invention, which shows a grinding and polishing step (dividing step) on the back surface of a wafer.

【図4】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、分離したチ
ップをピックアップする工程を示す図。
FIG. 4 is a view for explaining the method for manufacturing the semiconductor device according to the first embodiment of the present invention, showing a step of picking up separated chips.

【図5】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、ダイボンデ
ィング工程を示す図。
FIG. 5 is a view for explaining the method of manufacturing the semiconductor device according to the first embodiment of the invention, showing a die bonding step.

【図6】この発明の第1の実施の形態に係る半導体装置
の製造方法について説明するためのもので、外囲器に封
止する工程を示す図。
FIG. 6 is a view for explaining the method for manufacturing the semiconductor device according to the first embodiment of the present invention, showing a step of sealing in an envelope.

【図7】従来とこの発明の方法でウェーハを個々のチッ
プに分離した時の研削面の拡大図。
FIG. 7 is an enlarged view of a ground surface when a wafer is separated into individual chips by the conventional method and the method of the present invention.

【図8】この発明の第2の実施の形態に係る半導体装置
の製造方法について説明するためのもので、この発明を
LOCパッケージに適用した時の半導体装置の断面図。
FIG. 8 is a cross-sectional view of a semiconductor device when the present invention is applied to a LOC package, for explaining the method for manufacturing the semiconductor device according to the second embodiment of the present invention.

【図9】従来の半導体装置の製造方法について説明する
ためのもので、ウェーハの表面保護テープを貼り付ける
工程を示す図。
FIG. 9 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a step of attaching a wafer surface protection tape.

【図10】従来の半導体装置の製造方法について説明す
るためのもので、ウェーハの裏面の研削及び研磨工程を
示す図。
FIG. 10 is a view for explaining a conventional method for manufacturing a semiconductor device, showing the steps of grinding and polishing the back surface of a wafer.

【図11】従来の半導体装置の製造方法について説明す
るためのもので、表面保護テープを剥がす工程を示す
図。
FIG. 11 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a step of peeling a surface protection tape.

【図12】従来の半導体装置の製造方法について説明す
るためのもので、ウェーハを固定用シートに固着する工
程を示す図。
FIG. 12 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a step of fixing a wafer to a fixing sheet.

【図13】従来の半導体装置の製造方法について説明す
るためのもので、ウェーハのダイシング工程を示す図。
FIG. 13 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a wafer dicing process.

【図14】従来の半導体装置の製造方法について説明す
るためのもので、分離したチップをピックアップする工
程を示す図。
FIG. 14 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a step of picking up separated chips.

【図15】従来の半導体装置の製造方法について説明す
るためのもので、ダイボンディング工程を示す図。
FIG. 15 is a view for explaining a conventional method for manufacturing a semiconductor device, showing a die bonding step.

【符号の説明】[Explanation of symbols]

21…ウェーハ、21´…パターン形成面、22…溝、
23…ダイシング用チャックテーブル、24…ダイシン
グ用ブレード、25…フラットリング、26…表面保護
テープ(粘着性のシート)、27…裏面研削用チャック
テーブル、28…裏面研削用砥石、29…チップ、30
…ピックアップニードル、31…アイランド、32…ダ
イボンディング用接着剤、33…樹脂パッケージまたは
セラミックパッケージ(外囲器)、34…リードフレー
ム、35…ボンディングワイヤ、36…接着テープ、3
7…リード。
21 ... Wafer, 21 '... Pattern forming surface, 22 ... Groove,
23 ... Dicing chuck table, 24 ... Dicing blade, 25 ... Flat ring, 26 ... Surface protective tape (adhesive sheet), 27 ... Back grinding chuck table, 28 ... Back grinding wheel, 29 ... Chip, 30
... Pickup needle, 31 ... Island, 32 ... Die bonding adhesive, 33 ... Resin package or ceramic package (enclosure), 34 ... Lead frame, 35 ... Bonding wire, 36 ... Adhesive tape, 3
7 ... Lead.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/78 A (72)発明者 徳渕 圭介 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝多摩川工場内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01L 21/78 A (72) Inventor Keisuke Tokubuchi 1 Komukai Toshiba-cho, Kawasaki-shi, Kanagawa Prefecture Toshiba Corporation Inside the Tamagawa factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子が形成されたウェーハのダイ
シングラインに沿って上記半導体素子の形成面側から所
定の深さの溝を形成する工程と、上記ウェーハにおける
半導体素子の形成面上に保持用のシートを貼り付ける工
程と、上記ウェーハの裏面を上記溝に達するまで研削及
び研磨し、ウェーハを個々のチップに分離する工程とを
具備することを特徴とするウェーハの分割方法。
1. A step of forming a groove having a predetermined depth from a side of a surface on which the semiconductor element is formed along a dicing line of the wafer on which the semiconductor element is formed, and a step of holding the groove on the surface of the wafer on which the semiconductor element is formed. And a step of grinding the back surface of the wafer until it reaches the groove to separate the wafer into individual chips.
【請求項2】 ウェーハの主表面に半導体素子を形成す
る工程と、ダイシングラインに沿って上記ウェーハの主
表面側から所定の深さの溝を形成する工程と、上記ウェ
ーハの主表面上に粘着性のシートを貼り付ける工程と、
上記ウェーハの裏面を上記溝に達するまで研削及び研磨
し、ウェーハを個々のチップに分離する工程と、分離し
た各チップを上記粘着性のシートから剥離して外囲器に
封止する工程とを具備することを特徴とする半導体装置
の製造方法。
2. A step of forming a semiconductor element on the main surface of a wafer, a step of forming a groove having a predetermined depth from the main surface side of the wafer along a dicing line, and an adhesive on the main surface of the wafer. The process of pasting the sexuality sheet,
Grinding and polishing the back surface of the wafer until reaching the groove, separating the wafer into individual chips, and separating each separated chip from the adhesive sheet and sealing it in an envelope. A method for manufacturing a semiconductor device, comprising:
【請求項3】 前記分離した各チップを前記粘着性のシ
ートから剥離して外囲器に封止する工程は、ピックアッ
プニードルを前記粘着性のシートを介して前記チップの
主表面に当てて押圧することにより前記チップを粘着性
のシートから剥離し、チップ毎に外囲器に封止するもの
であることを特徴とする請求項2に記載の半導体装置の
製造方法。
3. The step of peeling each of the separated chips from the adhesive sheet and sealing the envelope in an envelope is performed by pressing a pickup needle against the main surface of the chip via the adhesive sheet. The method of manufacturing a semiconductor device according to claim 2, wherein the chip is peeled from the adhesive sheet by the above, and each chip is sealed in an envelope.
【請求項4】 前記分離した各チップを前記粘着性のシ
ートから剥離して外囲器に封止する工程は、前記粘着性
のシートから剥離したチップをリードフレームのアイラ
ンドにマウントし、上記リードフレームのインナーリー
ド部と前記チップの各パッドとをワイヤボンディングし
た後、外囲器に封止するものであることを特徴とする請
求項2または3に記載の半導体装置の製造方法。
4. The step of peeling each of the separated chips from the adhesive sheet and sealing in an envelope is performed by mounting the chips separated from the adhesive sheet on an island of a lead frame, 4. The method of manufacturing a semiconductor device according to claim 2, wherein the inner lead portion of the frame and each pad of the chip are wire-bonded and then sealed in an envelope.
【請求項5】 前記分離した各チップを前記粘着性のシ
ートから剥離して外囲器に封止する工程は、前記粘着性
のシートから剥離したチップの主表面上にリードの一端
を接着し、上記リードと前記チップの各パッドとをワイ
ヤボンディングした後、外囲器に封止するものであるこ
とを特徴とする請求項2または3に記載の半導体装置の
製造方法。
5. The step of peeling each of the separated chips from the adhesive sheet and sealing in an envelope is performed by adhering one end of a lead on the main surface of the chip peeled from the adhesive sheet. 4. The method of manufacturing a semiconductor device according to claim 2, wherein the lead and each pad of the chip are wire-bonded and then sealed in an envelope.
【請求項6】 前記チップの主表面とリードとの間に介
在される接着テープを更に備え、前記接着テープの厚さ
は、前記ウェーハの裏面の研削及び研磨工程で発生する
シリコン屑よりも厚いことを特徴とする請求項5に記載
の半導体装置の製造方法。
6. The device further comprises an adhesive tape interposed between the main surface of the chip and the lead, and the thickness of the adhesive tape is thicker than silicon debris generated in the grinding and polishing process of the back surface of the wafer. The method for manufacturing a semiconductor device according to claim 5, wherein
JP8016037A 1996-01-31 1996-01-31 Method of splitting wafer and method of manufacturing semiconductor device Pending JPH09213662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016037A JPH09213662A (en) 1996-01-31 1996-01-31 Method of splitting wafer and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016037A JPH09213662A (en) 1996-01-31 1996-01-31 Method of splitting wafer and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH09213662A true JPH09213662A (en) 1997-08-15

Family

ID=11905392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016037A Pending JPH09213662A (en) 1996-01-31 1996-01-31 Method of splitting wafer and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH09213662A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026735A2 (en) 1999-02-03 2000-08-09 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6159428A (en) * 1996-10-31 2000-12-12 Nkk Corporation Structure of gasified and melting furnace
US6184109B1 (en) 1997-07-23 2001-02-06 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6320269B1 (en) * 1999-05-03 2001-11-20 Taiwan Semiconductor Manufacturing Company Method for preparing a semiconductor wafer to receive a protective tape
JP2001345300A (en) * 2000-05-31 2001-12-14 Disco Abrasive Syst Ltd Semiconductor wafer machining body and machining apparatus comprising chuck table for holding semiconductor wafer machining body
US6337258B1 (en) 1999-07-22 2002-01-08 Kabushiki Kaisha Toshiba Method of dividing a wafer
SG90205A1 (en) * 1999-11-30 2002-07-23 Lintec Corp Process for producing semiconductor device
US6569343B1 (en) 1999-07-02 2003-05-27 Canon Kabushiki Kaisha Method for producing liquid discharge head, liquid discharge head, head cartridge, liquid discharging recording apparatus, method for producing silicon plate and silicon plate
WO2003060974A1 (en) * 2002-01-11 2003-07-24 Disco Corporation Semiconductor wafer protective member and semiconductor wafer grinding method
US6656820B2 (en) 2000-11-08 2003-12-02 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device having a reliable thinning step
JP2005285824A (en) * 2004-03-26 2005-10-13 Sharp Corp Process for manufacturing semiconductor chip, and process for manufacturing semiconductor device
JP2007143192A (en) * 2004-03-15 2007-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing surface acoustic wave device
JP2008120014A (en) * 2006-11-14 2008-05-29 Toshiba Corp Surface protective tape and method of manufacturing semiconductor device using it
JP2010068009A (en) * 2002-03-12 2010-03-25 Hamamatsu Photonics Kk Method for manufacturing semiconductor chip
US8283595B2 (en) 2000-09-13 2012-10-09 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
CN113454758A (en) * 2019-02-25 2021-09-28 三菱电机株式会社 Method for manufacturing semiconductor element

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159428A (en) * 1996-10-31 2000-12-12 Nkk Corporation Structure of gasified and melting furnace
US6184109B1 (en) 1997-07-23 2001-02-06 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
KR100452661B1 (en) * 1999-02-03 2004-10-14 가부시끼가이샤 도시바 Method of dividing wafers and manufacturing semiconductor devices
EP1026735A2 (en) 1999-02-03 2000-08-09 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6320269B1 (en) * 1999-05-03 2001-11-20 Taiwan Semiconductor Manufacturing Company Method for preparing a semiconductor wafer to receive a protective tape
US6569343B1 (en) 1999-07-02 2003-05-27 Canon Kabushiki Kaisha Method for producing liquid discharge head, liquid discharge head, head cartridge, liquid discharging recording apparatus, method for producing silicon plate and silicon plate
US6337258B1 (en) 1999-07-22 2002-01-08 Kabushiki Kaisha Toshiba Method of dividing a wafer
SG90205A1 (en) * 1999-11-30 2002-07-23 Lintec Corp Process for producing semiconductor device
US6656819B1 (en) 1999-11-30 2003-12-02 Lintec Corporation Process for producing semiconductor device
JP2001345300A (en) * 2000-05-31 2001-12-14 Disco Abrasive Syst Ltd Semiconductor wafer machining body and machining apparatus comprising chuck table for holding semiconductor wafer machining body
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8283595B2 (en) 2000-09-13 2012-10-09 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US6656820B2 (en) 2000-11-08 2003-12-02 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device having a reliable thinning step
WO2003060974A1 (en) * 2002-01-11 2003-07-24 Disco Corporation Semiconductor wafer protective member and semiconductor wafer grinding method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
JP2010068009A (en) * 2002-03-12 2010-03-25 Hamamatsu Photonics Kk Method for manufacturing semiconductor chip
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
JP2007143192A (en) * 2004-03-15 2007-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing surface acoustic wave device
JP4492623B2 (en) * 2004-03-15 2010-06-30 パナソニック株式会社 Manufacturing method of surface acoustic wave device
JP4515129B2 (en) * 2004-03-26 2010-07-28 シャープ株式会社 Manufacturing method of semiconductor device
JP2005285824A (en) * 2004-03-26 2005-10-13 Sharp Corp Process for manufacturing semiconductor chip, and process for manufacturing semiconductor device
JP2008120014A (en) * 2006-11-14 2008-05-29 Toshiba Corp Surface protective tape and method of manufacturing semiconductor device using it
CN113454758A (en) * 2019-02-25 2021-09-28 三菱电机株式会社 Method for manufacturing semiconductor element
CN113454758B (en) * 2019-02-25 2024-04-26 三菱电机株式会社 Method for manufacturing semiconductor element

Similar Documents

Publication Publication Date Title
KR100318551B1 (en) Wafer Splitting Method and Semiconductor Device Manufacturing Method
JP2001035817A (en) Method of dividing wafer and manufacture of semiconductor device
JP4040819B2 (en) Wafer dividing method and semiconductor device manufacturing method
US6294439B1 (en) Method of dividing a wafer and method of manufacturing a semiconductor device
US6184109B1 (en) Method of dividing a wafer and method of manufacturing a semiconductor device
JPH09213662A (en) Method of splitting wafer and method of manufacturing semiconductor device
KR100452661B1 (en) Method of dividing wafers and manufacturing semiconductor devices
US6121118A (en) Chip separation device and method
KR100468748B1 (en) Dicing tape mounter applicable a pre-cut dicing tape and general dicing tape and In-line system having the dicing tape mounter
US6949158B2 (en) Using backgrind wafer tape to enable wafer mounting of bumped wafers
JP2001093864A (en) Semiconductor wafer fixing jig and method for manufacturing semiconductor device
EP1022778A1 (en) Method of dividing a wafer and method of manufacturing a semiconductor device
JP2877997B2 (en) Semiconductor wafer processing method
US20100051190A1 (en) Method for applying an adhesive layer on thin cut semiconductor chips of semiconductor wafers
JP2000195826A (en) Method of dividing wafer and manufacture of semiconductor device
US8580070B2 (en) Method of applying an adhesive layer on thincut semiconductor chips of a semiconductor wafer
JP2001060591A (en) Manufacture of semiconductor device
JP4808458B2 (en) Wafer processing method
KR20030047705A (en) Method of processing a semiconductor wafer and substrate for semiconductor wafers used in the same
JP3803214B2 (en) Manufacturing method of semiconductor device
JPH06302572A (en) Manufacture of semiconductor device and tape adhering and peeling apparatus
JP2003179006A (en) Wafer dividing method and method of manufacturing semiconductor device
JPH07302772A (en) Dicing, wafer, wafer fixing use tape and semiconductor device
KR100539271B1 (en) Method for die attaching a chip having a warpage prevention materials
JP2005260154A (en) Method of manufacturing chip