JPH09166571A - Biosensor and manufacture thereof - Google Patents

Biosensor and manufacture thereof

Info

Publication number
JPH09166571A
JPH09166571A JP7346981A JP34698195A JPH09166571A JP H09166571 A JPH09166571 A JP H09166571A JP 7346981 A JP7346981 A JP 7346981A JP 34698195 A JP34698195 A JP 34698195A JP H09166571 A JPH09166571 A JP H09166571A
Authority
JP
Japan
Prior art keywords
electrode
insulating substrate
biosensor
hole
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346981A
Other languages
Japanese (ja)
Inventor
Ryohei Nagata
良平 永田
Hideaki Munakata
秀明 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP7346981A priority Critical patent/JPH09166571A/en
Publication of JPH09166571A publication Critical patent/JPH09166571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a biosensor easily measurable to a small quantity of sample by forming such structure that an electrode formed on one face of an insulating base plate and a connecting terminal formed on the other face are made conductive in the front and rear of the plate through one through hole or more provided in the plate, and separating the electrode and the connecting terminal from each other. SOLUTION: An electrode 22 provided with a reaction layer 3 containing organismic substance such as enzyme becomes a working electrode. The electrode 22 has electrode shape equal to the hole shape of an opening part of a through hole 7, and is made conductive in the front and rear of an insulating base plate 1a through the through hole 7 and conductive to a connecting terminal 231 for the working electrode through a lead 21 on the outer surface side of the plate 1a. A counter electrode provided on the same face side as the reaction layer 3 is composed of two pairs of electrodes 222a, 222b, and formed in such a way as to hold the working electrode 221 from both sides. Two pairs of electrodes 222a, 222b for the counter electrode are respectively formed on one ends of leads 21a, 21b. The other ends of these leads are connected to form a connecting terminal for the counter electrode, and an exposure unnecessary part is covered with an insulating layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば血液中のグ
ルコース等と、液体試料中の特定成分を迅速、容易に、
且つ正確に定量できるバイオセンサに関し、さらに詳し
くは少量の試料で容易に測定できる使い易くて安価なバ
イオセンサの電極構造と、その製造方法に関する。
TECHNICAL FIELD The present invention relates to, for example, glucose in blood and specific components in a liquid sample quickly and easily,
The present invention also relates to a biosensor that can be accurately quantified, and more specifically to an easy-to-use and inexpensive biosensor electrode structure that can be easily measured with a small amount of sample, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、試料液中の特定成分の定量におい
て、酵素など生体関連物質の高い分子識別能力を利用し
て種々の被測定物質の存在量を測定するバイオセンサが
知られている。例えば、その中で生体関連物質として酵
素を利用した酵素センサとして、グルコースを定量する
グルコースセンサが実用化されている。酵素センサは、
被測定物質に対して高い基質特異性を有する酵素を高分
子膜等の基材に固定化し、酵素に試料中の被測定物質を
接触させ、酵素反応によって生じる物質を電気化学的に
検知し、定量することができる。
2. Description of the Related Art Conventionally, there have been known biosensors for measuring the abundance of various substances to be measured by utilizing the high molecular recognition ability of bio-related substances such as enzymes in the quantification of specific components in a sample solution. For example, a glucose sensor for quantifying glucose has been put into practical use as an enzyme sensor using an enzyme as a biologically relevant substance. The enzyme sensor
An enzyme having a high substrate specificity for a substance to be measured is immobilized on a substrate such as a polymer membrane, the substance to be measured in a sample is brought into contact with the enzyme, and a substance produced by an enzymatic reaction is electrochemically detected, It can be quantified.

【0003】バイオセンサの用途は各方面にわたり、例
えば前記のグルコースセンサの場合、糖尿病患者の血糖
値管理や食品加工の工程管理などで商業化されている。
また、微生物を利用したバイオセンサ(微生物センサ)
も各種実用化されており、河川の水質分析や、工場排水
の安全性管理などに利用されている。このようにバイオ
センサは、試料液中の特定成分の定量において、医療、
食品分析、醗酵管理、環境計測などに、幅広く実用化さ
れている。そして、実用化当初の測定は、装置が大型で
時間や費用がかかるという問題もあったが、病院、工場
などの施設で利用されることが多く、その優れた分子識
別能力により許容できない程ではなかった。しかし、特
に個人が健康のチェック、病気の状態、治療の効果を調
べるために血液や尿中の特定成分を測定する場合には、
そのランニングコストや難解な操作方法のため、利用者
には大きな負担となり、より簡易的にその場で測定でき
る安価なセンサが望まれていた。
Biosensors are used in various fields, and, for example, in the case of the above-mentioned glucose sensor, it has been commercialized for controlling the blood glucose level of diabetic patients and process control of food processing.
In addition, a biosensor that uses microorganisms (microorganism sensor)
Has been put to practical use, and is used for river water quality analysis and safety management of factory wastewater. In this way, biosensors can be used for medical treatment in the determination of specific components in sample liquids.
Widely used in food analysis, fermentation control, environmental measurement, etc. The measurement at the beginning of practical use had a problem that the device was large and time-consuming and costly, but it is often used in facilities such as hospitals and factories, and its excellent molecular recognition ability makes it unacceptable. There wasn't. However, especially when an individual measures certain components in blood or urine to check their health, illness, or effectiveness of treatment,
Due to the running cost and the difficult operation method, a heavy burden is placed on the user, and an inexpensive sensor that can perform simple on-site measurement has been desired.

【0004】例えば、特公平6−76984号公報で提
案されたグルコースセンサ等として使えるバイオセンサ
は、微量の試料液を上から滴下するだけで短時間に測定
できるようにしたものである。同号公報では、樹脂製の
円柱基材に埋め込んだ白金電極をその上底面から露出さ
せた電極部に、環状の枠体中にレーヨン紙の保液層、多
孔質膜のろ過層、及び酵素を含ませた不織布の反応層を
挟み込んだ測定チップを設置した構造のバイオセンサが
提案されている。しかし、構造が複雑で、製造工程や構
成部品が多く、如何に工夫してもコストが高くなってし
まうことは避けられない。また、特公平6−58338
号公報はグルコースセンサ等として使えるバイオセンサ
をディスポーザブルタイプとしたものを提案している。
このバイオセンサの構造は、図6〜図8に示す如く、樹
脂製のシート91aに、導電ペーストで印刷形成したリ
ードの一端を利用して接続端子923とし、また、電極
となるリードの他端上に電極物質を印刷形成した上で、
接続端子923と電極922及び922aとを露出させ
る様に絶縁層94を印刷して残りのリードを覆い、さら
に電極922及び922a上に酵素を固定した反応層9
5を形成して下側基板とし、これに反応層95の周囲に
空間部96ができる様なスペーサシート97を介してカ
バーとなるシート91bを積層し、試料液は先端の導入
口98から毛細管現象によって空間部に入り、また空間
部内の気体は試料液の導入によって排出口99から押し
出される様にした構造であり、微量の試料液と空間部内
の気体との交換が円滑に行われるようにしたものであ
る。
For example, a biosensor that can be used as a glucose sensor or the like proposed in Japanese Examined Patent Publication No. 6-76984 is one that enables measurement in a short time by simply dropping a small amount of sample liquid from above. In the same publication, a platinum electrode embedded in a resin-made cylindrical base material is exposed to the electrode portion from the upper and bottom surfaces thereof, a liquid-retaining layer of rayon paper, a filtration layer of a porous membrane, and an enzyme in an annular frame. There has been proposed a biosensor having a structure in which a measuring chip having a reaction layer of a non-woven fabric impregnated with it is installed. However, the structure is complicated, there are many manufacturing processes and components, and it is inevitable that the cost will increase no matter how the device is devised. In addition, Japanese Examined Patent Publication 6-58338
The publication proposes a biosensor that can be used as a glucose sensor or the like, which is of a disposable type.
As shown in FIGS. 6 to 8, this biosensor has a structure in which one end of a lead printed and formed on a resin sheet 91a is used as a connection terminal 923, and the other end of the lead serving as an electrode is used. After printing the electrode material on the top,
An insulating layer 94 is printed so as to expose the connection terminal 923 and the electrodes 922 and 922a to cover the remaining leads, and the reaction layer 9 in which an enzyme is fixed on the electrodes 922 and 922a.
5 is formed as a lower substrate, and a sheet 91b serving as a cover is laminated on the lower substrate through a spacer sheet 97 having a space 96 around the reaction layer 95, and the sample solution is introduced from the inlet port 98 at the tip to a capillary tube. Due to the phenomenon, the space enters the space, and the gas in the space is pushed out from the discharge port 99 by the introduction of the sample solution, so that a small amount of the sample solution can be smoothly exchanged with the gas in the space. It was done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
公平6−58338号公報で提案された様なバイオセン
サは、ディスポーザブル化され個人利用を容易とするも
のとなってはいるが、熟練した専属の分析者が使用する
場合とは異なり、一般の個人が利用の場合、必ずしも使
い易いものではなかった。それは、複数の接続端子が、
基板となるシートの同一面に隣接して設けられており、
操作を誤って測定する試料液等をセンサの別の場所に付
着させてしまい、それが接続端子部分を濡らすと、隣接
した接続端子同士が電気的に導通するおそれがあったか
らである。また、2枚のシートの他に、空間部を形成す
る様な所定形状に切断等したスペーサシートを構成部品
として必要し、構造に改善の余地があり、コストが高く
なってしまうことは避けられなかった。
However, although the biosensor as proposed in Japanese Patent Publication No. 6-58338 is disposable and facilitates individual use, it is a skilled and exclusive subject. Unlike the case where an analyst uses it, when it is used by an ordinary individual, it is not always easy to use. It has multiple connection terminals
It is provided adjacent to the same surface of the substrate sheet,
This is because if the sample liquid or the like to be measured by mistake is adhered to another place of the sensor and it wets the connection terminal portion, the adjacent connection terminals may be electrically connected to each other. Further, in addition to the two sheets, a spacer sheet cut into a predetermined shape to form a space is required as a component, and there is room for improvement in the structure, and it is possible to avoid an increase in cost. There wasn't.

【0006】[0006]

【課題を解決するための手段】そこで本発明のバイオセ
ンサは、少なくとも絶縁性基板と、該基板に設けられた
電極系と、2枚の絶縁性基板間に形成された空間部に面
する反応層とを有するバイオセンサにおいて、絶縁性基
板の一方の面に形成された電極と、他方の面に形成され
たその接続端子とが、該絶縁性基板に設けられていた1
以上の貫通孔を介して表裏で導通している構造として、
電極とその接続端子とを絶縁性基板の表裏両面に分離し
た。また、本発明の第2の形態では上記貫通孔の導通手
段として、貫通孔がその内部に、電極系を形成する電極
形成物質又はリード形成物質の何方か一方又は両方を有
する構造として表裏導通を行った。
Therefore, in the biosensor of the present invention, a reaction facing at least an insulating substrate, an electrode system provided on the substrate, and a space formed between two insulating substrates. In a biosensor having a layer, an electrode formed on one surface of an insulating substrate and its connection terminal formed on the other surface are provided on the insulating substrate. 1
As a structure that conducts on the front and back through the above through holes,
The electrode and its connecting terminal were separated on both sides of the insulating substrate. Further, in the second embodiment of the present invention, as the conduction means of the through hole, the through hole has a structure in which one or both of the electrode forming substance or the lead forming substance forming the electrode system is provided inside the through hole to conduct the front and back. went.

【0007】また、第3の形態では、第2の形態にて、
貫通孔内部に有する電極形成物質が少なくとも電極形成
面側の貫通孔の孔径内側の全領域から露出し、貫通孔を
利用した該開口部形状の電極とし、さらに、第4の形態
は該開口部形状の電極を、その電極上に反応層が形成さ
れた作用極として、作用極とその接続端子とを表裏で接
続した。そして、第5の形態では、第4の形態にて、接
続端子と表裏で接続する作用極とともに、一枚の絶縁性
基板の片面に該作用極及び対極が形成され、対極が、作
用極を両側から挟む様に2対の電極からなり、これら電
極と同一面側に対極用の接続端子が形成され、接続端子
を作用極用と対極用とで一枚の絶縁性基板の表裏に分離
させた。
Further, in the third mode, in the second mode,
The electrode forming substance inside the through hole is exposed from at least the entire area inside the hole diameter of the through hole on the electrode forming surface side, and the electrode having the opening shape is formed by using the through hole. The shaped electrode was used as a working electrode having a reaction layer formed on the electrode, and the working electrode and its connection terminal were connected on the front and back sides. In the fifth mode, in the fourth mode, the working electrode and the counter electrode are connected to the connection terminal on the front and back sides, and the working electrode and the counter electrode are formed on one surface of one insulating substrate, and the counter electrode functions as the working electrode. It consists of two pairs of electrodes sandwiched from both sides, and the connection terminals for the counter electrode are formed on the same surface side as these electrodes, and the connection terminals for the working electrode and the counter electrode are separated on the front and back of one insulating substrate. It was

【0008】また、本発明のバイオセンサの第6の形態
は、貫通孔により接続端子と表裏で接続する電極を、対
極とした構造とし、また、第7の形態は、第6の形態に
て、貫通孔での表裏の導通を、その内部に有するリード
形成物質によって行った。そして、第8の形態では、前
記第4の形態による作用極と、上記第6又は第7の形態
による対極とを有し、この対極が前記作用極を両側から
挟む様に形成した2対の電極からなり、作用極及び対極
の電極と、これら接続端子とを、一枚の絶縁性基板の表
裏に分離した。また、第9の形態では、上記各種形態に
おいて、用いる2枚の絶縁性基板同士を、少なくとも片
方の絶縁性基板に印刷又は塗布により形成されたスペー
サにより接着、積層して反応層が面する空間部を確保し
た。
The sixth embodiment of the biosensor of the present invention has a structure in which the electrodes connected to the connection terminals on the front and back sides through the through holes have a counter electrode structure, and the seventh embodiment is the sixth embodiment. Conduction between the front surface and the back surface of the through hole was performed by the lead forming substance contained therein. In the eighth embodiment, the working electrode according to the fourth embodiment and the counter electrode according to the sixth or seventh embodiment are provided, and two pairs of the counter electrodes are formed so as to sandwich the working electrode from both sides. Electrodes, which are a working electrode and a counter electrode, and these connection terminals are separated on the front and back sides of a single insulating substrate. Further, in the ninth mode, in the above various modes, a space where the two insulating substrates to be used are bonded and laminated by a spacer formed by printing or coating on at least one of the insulating substrates to face the reaction layer. Secured a section.

【0009】また、本発明のバイオセンサの製造方法
は、少なくとも絶縁性基板と、該基板上に設けられた電
極系と、2枚の絶縁性基板間に形成された空間部に面す
る反応層とを有するバイオセンサで、一枚の絶縁性基板
の一方の面に形成された電極と、他方の面に形成された
接続端子とが、該絶縁性基板に設けられていた1以上の
貫通孔を介して表裏で導通しているバイオセンサを製造
するために、1以上の貫通孔を有する絶縁性基板を用意
し、その一方の面に背面フィルムを貼り合わせて前記貫
通孔を覆った後、他方の面から前記貫通孔を充填する様
にして電極形成用の導電性ペーストで所定の導体パター
ンを印刷した後、背面フィルムを剥離して、貫通孔内部
の電極形成物質が少なくとも電極形成面側の貫通孔の孔
径内側の全領域から露出し、該開口部形状をした電極と
するとともに、絶縁性基板の一方の面の電極と他方の面
の接続端子とを、表裏で導通させる製造方法とした。ま
た、前記第1の形態の本製造方法に対して、第2の形態
では、貫通孔の開口部形状をした電極上に反応層を形成
して作用極とし、作用極を、絶縁性基板の他方の面の接
続端子と表裏で導通する電極として形成した。
Further, the method for manufacturing a biosensor according to the present invention includes at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer facing a space formed between two insulating substrates. And a connection terminal formed on the other surface of the insulating substrate, wherein the electrode is formed on one surface of the insulating substrate and at least one through hole is formed on the insulating substrate. In order to manufacture a biosensor that is electrically connected on the front and back sides via, an insulating substrate having one or more through holes is prepared, and a back film is attached to one surface of the insulating substrate to cover the through holes. After printing a predetermined conductor pattern with a conductive paste for electrode formation so as to fill the through hole from the other surface, the back film is peeled off, and the electrode forming substance inside the through hole is at least the electrode forming surface side. From the entire area inside the hole diameter of the through hole of Out, together with an electrode in which the opening shape and a connection terminal electrode and the other surface of the one surface of the insulating substrate, and a manufacturing method for conducting the front and back. In contrast to the first manufacturing method of the first embodiment, in the second embodiment, a reaction layer is formed on an electrode having an opening shape of a through hole to serve as a working electrode, and the working electrode is made of an insulating substrate. It was formed as an electrode that is electrically connected to the connection terminals on the other surface on the front and back sides.

【0010】また、本製造方法の第3の形態は、少なく
とも絶縁性基板と、該基板上に設けられた電極系と、反
応層とを有するバイオセンサで、絶縁性基板の一方の面
に形成された電極と、他方の面に形成された接続端子と
が、該絶縁性基板に設けられていた1以上の貫通孔を介
して表裏で導通しているバイオセンサを製造するため
に、1以上の貫通孔を有する絶縁性基板を用意し、その
一方の面に背面フィルムを貼り合わせて前記貫通孔を覆
った後、他方の面から前記貫通孔の内部に入る様にして
リード形成用の導電性ペーストで所定のリードパターン
を印刷した後、背面フィルムを剥離して、次いで、露出
した絶縁性基板の面側から再度、前記貫通孔の内部に既
に入った導電性ペーストと接続する様にリード形成用の
導電性ペーストで所定のリードパターンを印刷して、貫
通孔をリード形成物質により表裏で導通させて、表裏で
導通するリードを形成する製造方法とした。
A third mode of the present manufacturing method is a biosensor having at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer, which is formed on one surface of the insulating substrate. 1 or more in order to manufacture a biosensor in which the formed electrode and the connection terminal formed on the other surface are electrically connected to each other through one or more through holes provided in the insulating substrate. After preparing an insulating substrate having a through hole, the back film is attached to one surface of the insulating substrate to cover the through hole, and the conductive material for lead formation is formed so as to enter the inside of the through hole from the other surface. After printing a predetermined lead pattern with a conductive paste, peel off the back film and then lead again from the exposed side of the insulating substrate so that it will be connected to the conductive paste already inside the through hole. With conductive paste for formation By printing a lead pattern of the through holes made conductive by the read-forming material on the front and back, and a manufacturing method of forming a lead to conduct at front and back.

【0011】そして、本製造方法の第4の形態は、上記
製造方法の第3の形態にて、対極を、絶縁性基板の他方
の面の接続端子と導通するリードに設けることにした。
また、本製造方法の第5の形態は、一枚の絶縁性基板の
片面に、作用極を前記製造方法の第2の形態により形成
し、2対からなる対極を前記作用極を両側から挟む様に
形成し、且つ該対極用の接続端子は該対極と同一面側に
形成し、接続端子を作用極用と対極用とで一枚の絶縁性
基板の表裏に分離させて形成した。そして、本製造方法
の第6の形態は、一枚の絶縁性基板の片面に、作用極を
前記製造方法の第2の形態により形成し、2対からなる
対極を前記作用極を両側から挟む様に前記製造方法の第
4の形態により形成し、作用極及び対極の電極と、これ
ら接続端子とを、一枚の絶縁性基板の表裏に分離させて
形成した。さらに、本製造方法の第7の形態は、上記製
造方法の各種形態にて、スペーサを、少なくとも片方の
絶縁性基板に印刷又は塗布により形成し、2枚の絶縁性
基板をスペーサにより接着、積層して反応層が面する空
間部を確保した。
The fourth mode of the present manufacturing method is the third mode of the above manufacturing method, in which the counter electrode is provided on the lead which is electrically connected to the connection terminal on the other surface of the insulating substrate.
Further, according to a fifth mode of the present manufacturing method, a working electrode is formed on one surface of one insulating substrate by the second mode of the manufacturing method, and two pairs of counter electrodes sandwich the working electrode from both sides. Similarly, the connection terminal for the counter electrode was formed on the same surface side as the counter electrode, and the connection terminals for the working electrode and the counter electrode were separately formed on the front and back surfaces of one insulating substrate. Then, in the sixth mode of the present manufacturing method, a working electrode is formed on one surface of one insulating substrate by the second mode of the manufacturing method, and two pairs of counter electrodes sandwich the working electrode from both sides. As described above, according to the fourth mode of the manufacturing method, the electrodes of the working electrode and the counter electrode, and the connection terminals thereof are separately formed on the front and back of one insulating substrate. Further, a seventh mode of the present manufacturing method is the various modes of the above manufacturing method, in which a spacer is formed on at least one of the insulating substrates by printing or coating, and two insulating substrates are bonded and laminated by the spacer. Then, the space portion facing the reaction layer was secured.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しながら本発明
のバイオセンサ及びその製造方法について、実施の形態
を説明する。図1及び図2は、本発明のバイオセンサの
一実施例を示す図であり、図1(a)上方から見た平面
図、図1(b)は図1(a)のA−A線での断面図、図
1(c)は図1(a)のB−B線での断面図、図1
(d)は下方から見た平面図、図1(e)は作用極のあ
る下側の基板を上方から見た平面図、図2は、作用極に
貫通孔による導通を利用した下側の基板について、その
導体パターンを立体的に示す斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the biosensor of the present invention and a method for manufacturing the same will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of the biosensor of the present invention. FIG. 1 (a) is a plan view seen from above, and FIG. 1 (b) is a line AA of FIG. 1 (a). 1A is a sectional view taken along line BB in FIG. 1A.
1 (d) is a plan view seen from below, FIG. 1 (e) is a plan view seen from above a lower substrate having a working electrode, and FIG. 2 is a bottom view utilizing conduction through holes in a working electrode. It is a perspective view which shows the conductor pattern about the board in three dimensions.

【0013】図1及び図2に示す、バイオセンサ10
は、2枚の絶縁性基板1a及び1bがスペーサ4を介し
て反応層3が面する空間部6を残す様に接着、積層され
た構造であり、積層前の状態で、下側の絶縁性基板1a
に、全ての電極系と、反応層及びスペーサが印刷又は塗
工により形成されており、これにカバーシートとしての
上側の絶縁性基板1bがスペーサにより接着・積層した
ものである。下側の絶縁性基板1aに形成される電極系
は、リード、電極、接続端子、及び絶縁層から構成され
ている。なお、絶縁層は図面が煩雑となるので説明上図
1(e)においてのみ図示した。酵素等の生体関連物質
を含む反応層3が設けられた電極22は作用極221と
なり、該電極は貫通孔7の開口部の孔形状に等しい電極
形状をしており、貫通孔を介して絶縁性基板の表裏で導
通しており、該基板の外面側のリード21を経て作用極
用の接続端子231に導通している。一方、反応層と同
一面側に設けられた対極は2対の直線状の電極222a
及び222bからなり、前記作用極221を(覆う反応
層3から離れて)両側から挟む様に形成してある。これ
ら2対の対極用電極はそれぞれリード21a及び21b
の一端の上に形成され、これらリードの他端が連結して
対極用の接続端子232を成し(兼用し)、露出不要部
は絶縁層5で覆われている。以上の結果、一枚の絶縁性
基板の内面側に作用極及び対極を、そして作用極の接続
端子のみをその基板の外面側として、作用極と対極の接
続端子を各々一枚の絶縁性基板の両面に設けた構造のバ
イオセンサとしている。
The biosensor 10 shown in FIGS. 1 and 2.
Is a structure in which two insulating substrates 1a and 1b are adhered and laminated so as to leave a space 6 facing the reaction layer 3 via a spacer 4, and the insulating property of the lower side in a state before lamination. Board 1a
In addition, all the electrode systems, the reaction layer and the spacers are formed by printing or coating, and the upper insulating substrate 1b as a cover sheet is adhered and laminated by the spacers. The electrode system formed on the lower insulating substrate 1a is composed of leads, electrodes, connection terminals, and an insulating layer. It should be noted that the insulating layer is shown only in FIG. 1 (e) for the sake of explanation because the drawing becomes complicated. The electrode 22 provided with the reaction layer 3 containing a biological substance such as an enzyme serves as a working electrode 221, and the electrode has an electrode shape equal to the hole shape of the opening of the through hole 7 and is insulated via the through hole. The conductive substrate is electrically connected to the front and back, and is electrically connected to the working electrode connection terminal 231 via the lead 21 on the outer surface side of the substrate. On the other hand, the counter electrode provided on the same side as the reaction layer has two pairs of linear electrodes 222a.
And 222b, and is formed so as to sandwich the working electrode 221 from both sides (away from the covering reaction layer 3). These two pairs of electrodes for the counter electrodes are leads 21a and 21b, respectively.
Is formed on one end of each of the leads and the other ends of these leads are connected to each other to form (also serve as) a connection terminal 232 for the counter electrode, and the unnecessary portion is covered with the insulating layer 5. As a result, the working electrode and the counter electrode are provided on the inner surface side of one insulating substrate, and only the connecting terminals of the working electrode are provided on the outer surface side of the substrate. The biosensor has a structure provided on both sides of.

【0014】また、スペーサ4は反応層を試料液に接触
させるための空間部6、導入口61及び排出口62を残
す様に、両側に直線状のパターンとして下側の絶縁性基
板に形成されたものが使われている。この結果、接続端
子がない側の側端面部分に試料液を導入する導入口61
がスペーサに両サイドを挟まれて開口し、接続端子側の
上側絶縁性基板の側端面部分に空間部の気体を排出する
排出口62が開口した構造となっている。
Further, the spacer 4 is formed on the lower insulating substrate as a linear pattern on both sides so as to leave the space 6, the inlet 61 and the outlet 62 for bringing the reaction layer into contact with the sample solution. It is used. As a result, the introduction port 61 for introducing the sample liquid into the side end surface portion on the side where the connection terminal is not provided.
Has a structure in which both sides are sandwiched between the spacers and opened, and a discharge port 62 for discharging the gas in the space is opened in the side end surface portion of the upper insulating substrate on the connection terminal side.

【0015】以上の結果、排出口まで達した試料液がオ
ーバーフローして、不意に接続端子を濡らしたとして
も、片側の接続端子のみであり、両接続端子は基板の両
面に分離形成されているので、両接続端子間で導通して
しまうことを回避できる。
As a result of the above, even if the sample solution that has reached the discharge port overflows and the connection terminals are inadvertently wetted, there is only one connection terminal and both connection terminals are formed separately on both sides of the substrate. Therefore, it is possible to avoid electrical continuity between both connection terminals.

【0016】本発明のバイオセンサは、上述の如く、通
常は2枚の絶縁性基板から構成され、少なくとも一つの
電極について、貫通孔により、その電極形成面と接続端
子形成面とを基板の両面に分離して設けた構造に基本的
な特徴がある。そして、この基本的構造によって、試料
液が接する側の電極形成面側と、測定装置との導通の為
の接続端子側とが、一枚の基板の表裏に分離形成され、
接続端子が不意に試料液等によって濡れても、接続端子
間で導通するのを防止できる様にするものである。従来
のバイオセンサは、2枚構成の絶縁性基板で片方の基板
の内面側に作用極及び対極と、その作用極用及び対極用
の両方の接続端子の全ての電極系を形成するので、接続
端子部分が濡れると、接続端子同士で導通してしまい易
い。しかし、本発明の如く、少なくとも片方の電極の接
続端子を他方の面に形成すれば、両接続端子は両面に分
離し、たとえ濡れたとしても、両接続端子間での導通は
防止できる。その結果、不本意な部分が液濡れしても接
続端子部での導通が防げ、不慣れな個人でも使い易いと
いう利点が得られることとなる。また、一枚の絶縁性基
板に形成される全ての電極と全ての接続端子とを、両面
に分離形成すれば、やはり試料液に接する電極側面と、
接続端子側面とが異なるので、液濡れを防止できる。さ
らに、以上のことは、全ての電極系を一枚の絶縁性基板
に形成する場合に限定されるものではない。対向する2
枚の絶縁性基板の両方に電極系を分けて設ける場合で
も、各々の基板について、接続端子は試料液が接する電
極側に対して裏面側となり、電極と接続端子との関係に
おいて同様のことがいえる。
As described above, the biosensor of the present invention is usually composed of two insulating substrates, and at least one electrode has its electrode forming surface and connection terminal forming surface formed on both sides of the substrate by a through hole. There is a basic feature in the structure provided separately. Then, by this basic structure, the electrode forming surface side on the side where the sample liquid contacts, and the connection terminal side for conduction with the measuring device are separately formed on the front and back of one substrate,
Even if the connection terminals are inadvertently wetted by the sample liquid or the like, the connection terminals can be prevented from conducting. In the conventional biosensor, two insulating substrates are used to form a working electrode and a counter electrode on the inner surface side of one substrate, and all electrode systems for both working electrode and counter electrode connection terminals. When the terminal portion gets wet, the connecting terminals are likely to be electrically connected to each other. However, if the connection terminals of at least one of the electrodes are formed on the other surface as in the present invention, both connection terminals are separated on both surfaces, and even if they get wet, conduction between both connection terminals can be prevented. As a result, even if the undesired portion gets wet with liquid, the conduction at the connection terminal portion can be prevented, and the advantage that it is easy to use even for an unfamiliar person can be obtained. Further, if all electrodes and all connection terminals formed on one insulating substrate are separately formed on both sides, the electrode side surface that is also in contact with the sample solution,
Since the side surface of the connection terminal is different, liquid wetting can be prevented. Furthermore, the above is not limited to the case where all the electrode systems are formed on one insulating substrate. Opposite 2
Even when the electrode system is separately provided on both of the insulating substrates, the connection terminal on each substrate is on the back surface side with respect to the electrode side in contact with the sample solution, and the same thing can be said about the relationship between the electrode and the connection terminal. I can say.

【0017】本発明のバイオセンサでは、さらに上記貫
通孔を巧みに利用して、貫通孔の孔形状を電極形状とす
るものでもある。従来、電極は例えばカーボンペースト
等で形成しても、その面積を一定とする為にその不要部
を絶縁層で覆い、絶縁層の形成によって電極形状を制御
するという手法が採用されることがある。しかし、貫通
孔を利用すれば、貫通孔を穿設するサイズで電極形状を
制御でき、絶縁層はリード部の絶縁等を目的とすれ良い
ことになる。したがって、反応層で覆われ面積精度が要
求される電極には本構造は適している。
In the biosensor of the present invention, the through-holes described above may be skillfully utilized to form the through-holes into electrode shapes. Conventionally, even if an electrode is formed of, for example, carbon paste or the like, a method of covering an unnecessary portion of the electrode with an insulating layer and controlling the electrode shape by forming the insulating layer may be adopted in order to keep the area constant. . However, if the through hole is used, the shape of the electrode can be controlled by the size of the through hole, and the insulating layer can serve the purpose of insulating the lead portion. Therefore, this structure is suitable for an electrode that is covered with a reaction layer and requires area accuracy.

【0018】なお、絶縁性基板、電極系、反応層、スペ
ーサ等の材料及びそれらの形成は、従来公知の材料、方
法より用途に合ったものを適宜選択すれば良い。例え
ば、絶縁性基板には、ポリエチレンテレフタレート(以
下、PET)等からなる樹脂シート等を用いる。電極系
には、リード及び接続端子は銀や金等の金属含有の導電
性ペーストで、電極はカーボンペーストで、絶縁層は絶
縁性ペーストで、各々スクリーン印刷により形成すれば
良い。反応層は酵素センサでグルコースセンサとするな
らば、グルコースオキシダーゼを固定した層とすれば良
く、酵素含有インキのスクリーン印刷で、或いは塗液の
ディスペンサによる塗布で形成する。また、この他、例
えば検体試料液の滲み込みを制御する等の層があっても
良い。
Materials such as the insulating substrate, the electrode system, the reaction layer, and the spacers and their formation may be appropriately selected from materials and methods known in the art according to their applications. For example, a resin sheet made of polyethylene terephthalate (hereinafter PET) or the like is used for the insulating substrate. In the electrode system, the leads and the connection terminals may be conductive paste containing a metal such as silver or gold, the electrodes may be carbon paste, and the insulating layer may be an insulating paste, which may be formed by screen printing. If the enzyme sensor is used as a glucose sensor, the reaction layer may be a layer on which glucose oxidase is immobilized, and the reaction layer is formed by screen-printing an enzyme-containing ink or applying a coating liquid with a dispenser. In addition to this, there may be a layer for controlling the permeation of the sample liquid sample, for example.

【0019】次に、貫通孔による表裏の導通手段である
が、電気的接続が得られれば、その手段は特に限定され
ないが、上記構成材料で、カーボンペーストを利用した
電極形成物質、或いは銀ペーストや金ペースト等のリー
ド形成物質を利用して、それが内部に存在し、表裏で導
通する様にすれば、電極やリードの形成と同時に貫通孔
での導通を達成でき都合がよい。特に、電極形成物質を
内部に充填させて、電極面側から貫通孔を見てその孔径
の内側の全領域で露出させれば、それを貫通孔の孔径に
応じた面積を持つ電極とすることができる。この最も単
純な場合は、貫通孔内部の電極形成物質が、少なくとも
電極形成面側の貫通孔の開口部にて、基板表面に連続し
た平面で孔径内側の全領域から露出している場合であ
る。従って、電極形成物質は貫通孔の内部を完全に充填
していることは必ずしも必要ではない。また、リードを
貫通孔により表裏で導通させても良く、この場合はリー
ド形成物質を貫通手段として使えば、リード形成と同時
に表裏導通が行え都合が良い。また、貫通孔の導通手段
たる導電物質は貫通孔内部を完全に充填していることは
リード部の導通でも必ずしも必要ではない。また、一つ
の表裏導通路を、或いは電極を形成する貫通孔は、一つ
に限定されずに複数でも良く、例えば或る部分にまとま
って形成された一群の貫通孔である。
Next, regarding the front and back conduction means by the through holes, the means is not particularly limited as long as electrical connection can be obtained, but the above-mentioned constituent materials are used as an electrode forming substance using a carbon paste or a silver paste. It is convenient to use a lead forming material such as gold or gold paste so that it exists inside and conducts electricity on the front and back sides, and at the same time conduction on the through hole can be achieved at the same time when the electrodes and leads are formed. In particular, if the electrode forming material is filled inside and the through hole is seen from the electrode surface side and exposed in the entire area inside the hole diameter, it will be an electrode having an area corresponding to the hole diameter of the through hole. You can This simplest case is a case where the electrode forming substance inside the through hole is exposed from at least the opening of the through hole on the electrode forming surface side from the entire area inside the hole diameter in a plane continuous to the substrate surface. . Therefore, it is not always necessary that the electrode forming substance completely fills the inside of the through hole. Further, the leads may be electrically connected to the front and back sides through the through holes. In this case, if the lead forming material is used as the penetrating means, it is convenient to conduct the leads to the front and back sides at the same time. Further, it is not always necessary to completely fill the inside of the through hole with the conductive material as the conducting means of the through hole even for the conduction of the lead portion. Further, the number of through holes forming one front and back conduction path or the electrode is not limited to one, and may be a plurality of through holes, for example, a group of through holes formed in a certain portion.

【0020】なお、基板表面に連続した平面の電極露出
部とするには、背面フィルムを一時的に貼着した上で裏
面側から電極形成物質を埋め込んだ後、背面フィルムを
剥離すれば良い。背面フィルムとしては、電極やリード
をスクリーン印刷して乾燥、焼成(熱硬化等)する際の
耐熱性を考慮して、用いる絶縁性基板と同質の、例えば
PETフィルムに耐熱性のアクリル系粘着剤(例えば紫
外線硬化タイプ)を塗布したものが使用できる。背面フ
ィルムの剥離は、焼成に耐え得れば焼成後でも良いが、
印刷したものが崩れなければ乾燥後の剥離でも良い。ま
た、特にリード部で表裏から印刷して表裏接続する場合
等、貫通孔孔径とペースト粘度との関係で、印刷後の未
乾燥ペーストが貫通孔から流れ出し裏面を濡らしてしま
わなければ、背面フィルムは省略することもできる。
To form a continuous electrode exposed portion on the substrate surface, a back film may be temporarily attached, an electrode forming substance may be embedded from the back surface side, and then the back film may be peeled off. As the back film, considering the heat resistance when the electrodes and leads are screen-printed and dried and baked (thermosetting, etc.), the same quality as the insulating substrate used, for example, a PET film heat-resistant acrylic adhesive Those coated with (for example, ultraviolet curing type) can be used. The back film can be peeled off after firing if it can withstand firing,
If the printed matter does not collapse, peeling after drying may be used. In addition, especially when printing from the front and back sides at the lead part to connect the front and back sides, in the relationship between the through hole pore diameter and the paste viscosity, the undried paste after printing does not flow out from the through holes and wet the back surface, the back film is It can be omitted.

【0021】次に、本発明ではスペーサとして、PET
シート等を用い、該シートを介して接着剤で絶縁性基板
同士を接着固定しても良いが、空間部を形成すべく予め
所定形状にしたシートを要する点で、少なくとも一方の
絶縁性基板に(空間部を形成する様なパターンに)印刷
又は塗布により形成したものを用いるのが、部品点数削
減、低コスト化の点で利点がある。塗布は望ましくは部
分的塗布である。但し、全面塗布でも、印刷又は部分的
塗布との組み合わせで利用可能である。すなわち、2枚
構成の絶縁性基板として片方は電極系等設けずに単なる
カバーシートとして、該カバーシート側に感熱接着剤等
を全面塗布して、他方基板には空間部の間隙形成に足り
うる凸部を印刷形成して、これらを凸部で接着、積層す
る形態では利用可能となる。
Next, in the present invention, PET is used as a spacer.
A sheet or the like may be used, and the insulating substrates may be bonded and fixed to each other with an adhesive through the sheet, but at least one of the insulating substrates is required in that a sheet having a predetermined shape is required to form a space. It is advantageous to use the one formed by printing or coating (in a pattern that forms a space portion) in terms of reducing the number of parts and cost. The application is preferably a partial application. However, even the entire surface coating can be used in combination with printing or partial coating. That is, one of the two insulating substrates may be a cover sheet without providing an electrode system or the like, and a heat-sensitive adhesive or the like may be applied to the entire surface of the cover sheet, while the other substrate may be sufficient to form a space. It can be used in a form in which the convex portions are formed by printing, and these convex portions are adhered and laminated.

【0022】印刷又は部分的塗布なるスペーサ形成手段
は、用いる材料によって適宜選択すれば良い。印刷は厚
く形成できる点でスクリーン印刷が好適だが、該印刷が
不向きな材料は、例えば、ホットメルト等のアプリケー
タや、塗布用の版形状によって、部分的に塗布する。製
造は通常、多面付けで行うが、隣接するセンサに連なる
連続ストライプ状、或いは隣接するセンサ間で不連続な
間欠的ストライプ状等すれば、印刷が不向きな材料の塗
布形成も比較的容易にできる。印刷又は部分的塗布によ
るスペーサ材料としては、例えば、熱活性熱硬化型粘着
剤等のホットメルト型粘着剤、或いは熱活性熱硬化型接
着剤等のホットメルト型接着剤等のホットメルト接着剤
等が使用でき、これら樹脂成分としては例えばアクリル
系樹脂、シリコーンエラストマー等が用いられる。な
お、これらは前記全面塗布にも適用できる。また、印刷
適性、塗工適性等の向上に適宜、充填剤等の添加剤を加
える。そして、2枚の絶縁性基板を積層して、熱、及び
必要に応じて適度な圧力を加えれば、形成されたスペー
サが熱で活性化して、両絶縁性基板を接着、固定する。
また、粘着剤、或いは接着剤の一回の印刷又は部分的塗
布で、絶縁性基板間を所望の間隔(電極系の厚み分を空
間部で収容でき反応層まで試料液を導き接触させ得る間
隔であれば良く、通常は50〜300μm程度)にでき
る程の厚みに形成できないときは、複数回の印刷又は部
分的塗布を重ねて行っても良い。この場合、同一材料と
せず、厚み機能を受け持つ層を、接着機能を受け持つ層
が挟む様に形成しても良い。厚み機能を受け持つ層に
は、熱で接着力が発現する機能は不要であり、厚盛りが
できるスクリーン印刷インキ等であれば良く、例えば、
厚盛り可能な絶縁性ペースト等でも良い。なお、反応層
形成後に、スペーサを形成する場合、スペーサから測定
妨害物質が仮に出たとしても反応層を保護できる様に保
護層で覆っておいても良い。例えば、グルコースオキシ
ダーゼを含有する反応層の場合、リン脂質を含有するイ
ンキ又は塗液を印刷又は塗布しておく。
The spacer forming means for printing or partial application may be appropriately selected depending on the material used. Screen printing is preferable because it can be formed thick, but a material that is not suitable for printing is partially applied by an applicator such as hot melt or a plate shape for application. Manufacturing is usually carried out in multiple faces, but if continuous stripes that are connected to adjacent sensors or intermittent stripes that are discontinuous between adjacent sensors are used, it is relatively easy to apply and form materials that are not suitable for printing. . As the spacer material by printing or partial application, for example, a hot-melt adhesive such as a heat-activatable thermosetting adhesive, or a hot-melt adhesive such as a hot-melt adhesive such as a thermoactive thermosetting adhesive. Can be used, and as these resin components, for example, acrylic resins, silicone elastomers, etc. are used. These can also be applied to the above-mentioned entire surface coating. In addition, additives such as fillers are added as appropriate to improve printability and coating suitability. Then, two insulating substrates are laminated and heat and, if necessary, an appropriate pressure are applied, the formed spacers are activated by heat, and both insulating substrates are bonded and fixed.
In addition, with a single printing or partial application of the adhesive or the adhesive, a desired space can be provided between the insulating substrates (a space capable of accommodating the thickness of the electrode system in the space and allowing the sample solution to reach and contact the reaction layer). If it is not possible to form a film having a thickness of about 50 to 300 μm), printing or partial application may be repeated a plurality of times. In this case, the layers having the thickness function may be sandwiched between the layers having the thickness function, instead of the same material. The layer that is responsible for the thickness function does not need the function of developing an adhesive force by heat, and may be a screen printing ink or the like capable of forming a thick layer.
An insulating paste or the like that can be thickly applied may be used. When the spacer is formed after the reaction layer is formed, it may be covered with a protective layer so that the reaction layer can be protected even if a measurement-interfering substance comes out of the spacer. For example, in the case of a reaction layer containing glucose oxidase, an ink or coating liquid containing phospholipid is printed or applied.

【0023】次に、本発明のバイオセンサの製造方法の
一形態を図3により説明する。同図は、図1及び図2に
示した作用極とその接続端子とを表裏に分離形成したセ
ンサを製造する一例である。先ず、図3(a)〔以下、
「図3」は省略〕の如く、一枚の絶縁性基板に貫通孔7
を穿設する。次いで、センサ組立時に内面側となる面に
背面フィルム8を貼着し(図面では紙面向こう側)
(b)、次いで貫通孔7を充填する様に電極形成材料を
外側面から(紙面手前側)印刷して作用極用の電極22
を形成し、背面フィルムは印刷後、剥離する(c)。さ
らに作用極用の接続端子231も兼用するリード21を
形成する(d)。次いで、絶縁性基板を裏返しにして内
側面に、対極用の接続端子232も兼用するリード21
a及び21bを形成する(e)。なお、(e)では作用
極用の電極22が貫通孔7の形状になって貫通孔があっ
た部分から露出していることが分かる。次いで、対極用
の電極222a及び222bを形成し(f)、次に絶縁
層5を形成して、最終的な対極(露出)形状として電極
系を形成する(g)。次に、貫通孔部分に形成され作用
極用の電極22上に反応層3を形成し(h)、スペーサ
4を形成する(i)。そして、カバーシートとして切欠
き部11を有する絶縁性基板1cを用意し(j)、これ
を重ね合わせて熱圧を加えスペーサにて両基板を接着・
固定し、バイオセンサを得る(k)。なお、切欠き部1
1の形状は意識的に非対称として、センサを測定装置に
セットする際の誤接続(作用極と対極)防止対策の一つ
としても良く。目視判断で、或いは測定装置側で構造的
に異形状を認識することも可能である。
Next, one embodiment of the biosensor manufacturing method of the present invention will be described with reference to FIG. This figure is an example of manufacturing a sensor in which the working electrode and the connection terminal thereof shown in FIGS. 1 and 2 are separately formed on the front and back sides. First, FIG. 3 (a) [hereinafter,
[FIG. 3 is omitted], as shown in FIG.
Drilling. Next, the back film 8 is attached to the inner surface when the sensor is assembled (the other side in the drawing).
(B) Next, an electrode forming material is printed from the outer side (front side of the drawing) so as to fill the through holes 7, and the electrode 22 for the working electrode is then printed.
And the back film is peeled off after printing (c). Further, the lead 21 which also serves as the connection terminal 231 for the working electrode is formed (d). Then, the insulating substrate is turned upside down and the lead 21 which also serves as the connection terminal 232 for the counter electrode is provided on the inner surface.
Form a and 21b (e). In addition, in (e), it can be seen that the electrode 22 for the working electrode has the shape of the through hole 7 and is exposed from the portion where the through hole was formed. Next, electrodes 222a and 222b for counter electrodes are formed (f), and then the insulating layer 5 is formed to form an electrode system as a final counter electrode (exposed) shape (g). Next, the reaction layer 3 is formed on the electrode 22 for the working electrode formed in the through hole portion (h), and the spacer 4 is formed (i). Then, an insulating substrate 1c having a cutout portion 11 is prepared as a cover sheet (j), which are superposed on each other and heat pressure is applied to the both substrates by a spacer.
Fix and obtain biosensor (k). Notch 1
The shape of 1 may be intentionally made asymmetric, and it may be used as one of measures for preventing erroneous connection (working electrode and counter electrode) when the sensor is set in the measuring device. It is also possible to visually recognize the structurally different shape on the measuring device side.

【0024】次に、本発明のバイオセンサの他の形態と
して、対極もその接続端子と表裏で分離形成した構造の
センサを図4に示す。図4(a)は絶縁性基板の内側面
を、同図(b)は外側面を、同図(c)は同図(a)で
のA−A線及びB−B線での断面図を示す。対極は、そ
のリードの中間で貫通孔により表裏で導通し、リードは
両面に設けられている。対極222aはリード21e、
貫通孔7b、リード21cを通じて接続端子232aに
導通する。対極222bはリード21f、貫通孔7c、
リード21dを通じて接続端子232bに導通する。こ
の様にすると、作用極及び対極は絶縁性基板の内面側
に、それらの接続端子は全て外面側に設けることができ
る。そして、排出口から試料液がオーバーフローして
も、接続端子は逆の裏面側であるために、接続端子同士
による導通は効果的に防げる。また、図4では、貫通孔
による表裏導通をリード部で行ったものである。なお、
絶縁層は図面が煩雑となるため説明上同図(c)のB−
B線断面図でのみ図示した。
Next, as another embodiment of the biosensor of the present invention, FIG. 4 shows a sensor having a structure in which the counter electrode and the connection terminal are separately formed on the front and back sides. 4A is an inner side surface of the insulating substrate, FIG. 4B is an outer side surface thereof, and FIG. 4C is a cross-sectional view taken along line AA and line BB in FIG. 4A. Indicates. The counter electrode is electrically connected on the front and back sides by a through hole in the middle of the lead, and the lead is provided on both sides. The counter electrode 222a is the lead 21e,
It conducts to the connection terminal 232a through the through hole 7b and the lead 21c. The counter electrode 222b includes the lead 21f, the through hole 7c,
It conducts to the connection terminal 232b through the lead 21d. In this way, the working electrode and the counter electrode can be provided on the inner surface side of the insulating substrate, and their connecting terminals can all be provided on the outer surface side. Even if the sample liquid overflows from the outlet, the connection terminals are on the opposite back surface side, so that the conduction between the connection terminals can be effectively prevented. Further, in FIG. 4, front and back conduction by the through hole is performed in the lead portion. In addition,
Since the drawing of the insulating layer is complicated, B- in FIG.
It is shown only in the sectional view taken along line B.

【0025】図5は、図4の様に、対極もその接続端子
と表裏分離形成し、それをリード部で導通させる構造の
センサの製造方法の一形態を示す製造工程の説明図であ
る。但し図5では、対極形状について、円形の作用極及
び反応層の周囲を一部が欠損した環状に一定の距離を隔
てて囲う様な形状としてある。図5の工程説明図では、
先ず、図5(a)〔以下、「図5」は省略〕の如く、一
枚の絶縁性基板に貫通孔7a、7b及び7cを穿設後、
内側面に背面フィルム8を貼着し(図面では紙面向こう
側)(b)、貫通孔7aを充填する様に作用極用の電極
22を形成し(c)、さらに作用極用の接続端子231
を兼用するリード21、対極用の接続端子232aを兼
用するリード21c、同じく対極用の接続端子232b
を兼用するリード21dを形成し、背面フィルムは剥離
する(d)。次いで、絶縁性基板を裏返しにして内側面
に、さらに作用極まで延びるリード21e及び21fを
各々貫通孔7b及び7cに接続して形成する(e)。次
いで、対極用の電極222c及び222dを形成後
(f)、絶縁層5を形成して電極系を形成する(g)。
次に、作用極用の電極22上に反応層3を形成後
(h)、スペーサ4を形成する(i)。そして、カバー
シートとなる絶縁性基板1dを用意し(j)、これを重
ね合わせて熱圧を加えスペーサにて両基板を接着・固定
し、バイオセンサを得る(k)。
FIG. 5 is an explanatory view of a manufacturing process showing one embodiment of a method of manufacturing a sensor having a structure in which the counter electrode is also formed so as to be separated from the front and back sides of the connection terminal as in FIG. However, in FIG. 5, the counter electrode shape is such that the circumference of the circular working electrode and the reaction layer are surrounded by a certain distance in a ring shape with a certain distance. In the process explanatory view of FIG.
First, as shown in FIG. 5A (hereinafter, “FIG. 5” is omitted), after the through holes 7a, 7b and 7c are formed in one insulating substrate,
The back film 8 is attached to the inner surface (the other side in the drawing on the drawing) (b), the electrode 22 for the working electrode is formed so as to fill the through hole 7a (c), and the connection terminal 231 for the working electrode is further formed.
Lead 21c that also serves as the counter terminal 232a and lead 21c that also serves as the counter terminal 232a, and counter terminal 232b that also serves as the counter electrode
The lead 21d which also serves as the lead is formed, and the back film is peeled off (d). Next, the insulating substrate is turned upside down, and leads 21e and 21f extending to the working electrode are formed on the inner surface by connecting to the through holes 7b and 7c, respectively (e). Next, after the electrodes 222c and 222d for the counter electrode are formed (f), the insulating layer 5 is formed to form an electrode system (g).
Next, after forming the reaction layer 3 on the electrode 22 for the working electrode (h), the spacer 4 is formed (i). Then, an insulating substrate 1d to be a cover sheet is prepared (j), and the substrates are stacked and heat pressure is applied to bond and fix both substrates with a spacer to obtain a biosensor (k).

【0026】[0026]

【実施例】次に、一実施例により本発明を説明する。本
実施例は、図1及び図2に示す構造のバイオセンサを製
造するものであり、作用極とその接続端子とが絶縁基板
の両面に分離して設けた構造が得られる。先ず、絶縁性
基板として、作用極とする為の直径1mmの貫通孔を一
つ穿設した250μm厚のPETシートを用意する。次
いで、電極を内側にしてバイオセンサを組立時の内面側
に、紫外線硬化型アクリル系粘着剤を片面に施した25
0μm厚のPETシートを背面フィルムとして貼り付け
る。そして、組立時の外面側から貫通孔より少し大きめ
にしてその内部を完全に充填する様に、カーボンペース
トをスクリーン印刷後、乾燥して背面フィルムを剥離し
た後(粘着剤は背面フィルムに付いて剥離する)、焼成
して作用極を形成する。次に、(外面側に)銀ペースト
をスクリーン印刷後、焼成して、作用極用のリード及び
接続端子を形成する。同様にして内面側にも銀ペースト
をスクリーン印刷後、焼成して、対極用のリード及び接
続端子を形成後、カーボンペーストをスクリーン印刷
後、焼成して対極用の電極を形成する。さらに、内面側
に絶縁性ペーストをスクリーン印刷後、焼成して絶縁層
を形成して、一枚の絶縁性基板に作用極及び対極となる
電極系を形成する。そして、貫通孔から露出した電極部
分に、グルコースオキシダーゼとフェロセンカルボン酸
の混合インキをスクリーン印刷後、乾燥し反応層を形成
する。さらに、熱活性熱硬化型粘着剤からなるインキを
スクリーン印刷、乾燥してスペーサを形成する。次い
で、接続端子部に切欠き部を有するカバーシートとなる
他の絶縁性基板を重ね合わせて、熱圧によりスペーサで
接着、積層して固定してバイオセンサとする。
EXAMPLES Next, the present invention will be explained with reference to examples. This example is for manufacturing a biosensor having the structure shown in FIGS. 1 and 2, and a structure in which a working electrode and its connecting terminals are separately provided on both sides of an insulating substrate can be obtained. First, as an insulating substrate, a 250 μm-thick PET sheet having one through hole with a diameter of 1 mm for use as a working electrode is prepared. Next, an ultraviolet-curing acrylic adhesive was applied to one side of the inner surface of the biosensor during assembly with the electrodes inside 25
A 0 μm thick PET sheet is attached as a back film. Then, after printing the carbon paste by screen printing so that the inside of the through hole is made slightly larger than the through hole at the time of assembly to completely fill the inside, after drying and peeling the back film (the adhesive is attached to the back film Peeling) and firing to form a working electrode. Next, a silver paste (on the outer surface side) is screen-printed and then fired to form leads and connection terminals for the working electrode. Similarly, silver paste is also screen-printed on the inner surface side and then fired to form a counter electrode lead and connection terminal, and then carbon paste is screen-printed and fired to form a counter electrode. Further, an insulating paste is screen-printed on the inner surface side and then baked to form an insulating layer, and an electrode system serving as a working electrode and a counter electrode is formed on one insulating substrate. Then, a mixed ink of glucose oxidase and ferrocenecarboxylic acid is screen-printed on the electrode portion exposed from the through hole and then dried to form a reaction layer. Further, an ink composed of a heat-activatable thermosetting adhesive is screen-printed and dried to form spacers. Next, another insulating substrate that serves as a cover sheet having a cutout portion in the connection terminal portion is overlaid, and a biosensor is obtained by bonding and stacking and fixing with a spacer by heat and pressure.

【0027】[0027]

【発明の効果】本発明によれば、バイオセンサを少量の
試料で容易に測定でき、且つ使い易くて安価なディスポ
ーザブルタイプのものとできる。貫通孔による表裏導通
で電極とその接続端子とを基板の表裏に分離形成でき、
接続端子が不意に濡れるのを防げ、使い易いセンサとな
る。貫通孔での導通は電極やリードの形成物質とすれ
ば、特別な材料は不要である。また、貫通孔に電極形成
物質を詰めて開口部から露出させれば、貫通孔形状で面
積精度を出した電極となり、絶縁層による面積制御が不
要の作用極に適用できる。そして、一枚の絶縁性基板に
作用極の接続端子はその裏面側に、対極及びその接続端
子は作用極側に形成すれば、両極の接続端子を両面に分
離形成でき、たとえ電極面側の接続端子が排出口からオ
ーバーフローした試料液で濡れたとしても、両接続端子
間で導通することを防げる。また、対極についても、リ
ード部で貫通孔を介して表裏導通させ、対極の接続端子
も裏面側に形成すれば、対極の接続端子も濡れることを
防げる。さらに、スペーサを印刷又は部分的塗布のスペ
ーサとすれば、スペーサシートが不要で構成部品数を減
らせ、安価なセンサにできる。また、本発明の製造方法
によれば、上記バイオセンサを効率的に製造できる上、
特に、貫通孔内部に入れた電極形成物質により、絶縁性
基板の表面に連続した平滑面を持つ電極が形成でき、電
極面積精度が要求される作用極用に適した電極が得られ
る。
Industrial Applicability According to the present invention, a disposable type biosensor can be easily measured with a small amount of sample, easy to use and inexpensive. Electrodes and their connecting terminals can be separately formed on the front and back of the board by front and back conduction with through holes,
This prevents the connection terminal from getting wet accidentally, and makes it a sensor that is easy to use. No special material is required for the conduction in the through hole as long as it is used as a material for forming electrodes and leads. Further, if the through-hole is filled with an electrode forming substance and exposed from the opening, the through-hole shape provides an electrode having a high area accuracy, which can be applied to a working electrode that does not require area control by an insulating layer. If the connecting terminal of the working electrode is formed on the back surface side of the insulating substrate and the counter electrode and the connecting terminal thereof are formed on the working electrode side, the connecting terminals of both electrodes can be formed separately on both surfaces, even if the electrode surface side Even if the connection terminal gets wet with the sample liquid overflowing from the discharge port, it is possible to prevent conduction between both connection terminals. Also, with respect to the counter electrode, it is possible to prevent the connection terminal of the counter electrode from getting wet by conducting the front and back sides of the lead portion through the through holes and forming the connection terminal of the counter electrode on the back surface side. Furthermore, if the spacers are printed or partially applied spacers, a spacer sheet is not required and the number of constituent parts can be reduced, so that an inexpensive sensor can be obtained. Further, according to the manufacturing method of the present invention, the biosensor can be efficiently manufactured,
In particular, an electrode having a continuous smooth surface can be formed on the surface of the insulating substrate by the electrode-forming substance placed inside the through hole, and an electrode suitable for a working electrode that requires electrode area accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のバイオセンサの一実施例の構造を示す
説明図(作用極のその接続端子とが貫通孔で表裏接
続)。(a)は上方から見た平面図、(b)は(a)の
A−A線での断面図、(c)は(a)のB−B線での断
面図、(d)は下方から見た平面図、(e)は作用極の
ある下側の基板を上方から見た平面図。
FIG. 1 is an explanatory view showing a structure of an embodiment of a biosensor of the present invention (front and back connection of a working electrode with its connection terminal through a through hole). (A) is a plan view seen from above, (b) is a cross-sectional view taken along line AA of (a), (c) is a cross-sectional view taken along line BB of (a), and (d) is downward. And (e) is a plan view of the lower substrate having a working electrode as viewed from above.

【図2】作用極に貫通孔による導通を利用した下側の基
板について、その導体パターンを立体的に示す斜視図で
ある。
FIG. 2 is a perspective view three-dimensionally showing a conductor pattern of a lower substrate using conduction through holes for working electrodes.

【図3】本発明のバイオセンサの製造方法の一実施例に
よる工程説明図。(a)貫通孔の穿設、(b)背面フィ
ルム貼着、(c)貫通孔を電極物質で穴埋めと背面フィ
ルム剥離、(d)作用極のリード形成、(e)対極のリ
ード形成、(f)対極の電極形成、(g)絶縁層形成、
(h)反応層形成、(i)スペーサ形成、(j)上側の
絶縁性基板を用意、(k)上下基板の積層・接着。
FIG. 3 is a process explanatory view according to an embodiment of a biosensor manufacturing method of the present invention. (A) Perforation of through-holes, (b) Adhesion of back film, (c) Filling of through-holes with electrode material and peeling of back film, (d) Lead formation of working electrode, (e) Lead formation of counter electrode, ( f) counter electrode formation, (g) insulating layer formation,
(H) Reaction layer formation, (i) Spacer formation, (j) Upper insulating substrate prepared, (k) Stacking and bonding of upper and lower substrates.

【図4】本発明のバイオセンサの他の実施例の構造を示
す説明図(作用極及び対極と、それらの接続端子とが全
て貫通孔で表裏接続)。
FIG. 4 is an explanatory view showing the structure of another embodiment of the biosensor of the present invention (the working electrode and the counter electrode and their connecting terminals are all connected to each other by through holes on the front and back sides).

【図5】本発明の製造方法の他の実施例として、図4と
同様な表裏接続のバイオセンサを製造する工程説明図。
(a)貫通孔の穿設、(b)背面フィルム貼着、(c)
作用極用貫通孔の電極物質での穴埋め、(d)対極用貫
通孔のリード物質での穴埋めと対極用外面側リードと作
用極用リード形成と背面フィルム剥離、(e)対極の内
面側リード形成、(f)対極の電極形成、(g)絶縁層
形成、(h)反応層形成、(i)スペーサ形成、(j)
上側の絶縁性基板を用意、(k)上下基板の積層・接
着。
FIG. 5 is a process explanatory diagram for manufacturing a front-back connected biosensor similar to FIG. 4 as another embodiment of the manufacturing method of the present invention.
(A) Perforation of through-holes, (b) Adhesion of back film, (c)
(D) Filling the through hole for the working electrode with the electrode material, (d) filling the through hole for the counter electrode with the lead material, forming the outer surface side lead for the counter electrode, forming the working electrode lead and peeling the back film, (e) the inner surface side lead of the counter electrode Formation, (f) counter electrode formation, (g) insulation layer formation, (h) reaction layer formation, (i) spacer formation, (j)
Prepare the upper insulating substrate, (k) stack and bond the upper and lower substrates.

【図6】従来のバイオセンサの構造の一例を示す分解斜
視図。
FIG. 6 is an exploded perspective view showing an example of the structure of a conventional biosensor.

【図7】図6の従来のバイオセンサの外観図。FIG. 7 is an external view of the conventional biosensor of FIG.

【図8】図6の従来のバイオセンサのA−A線(図7)
での断面図。
8 is a line AA of the conventional biosensor of FIG. 6 (FIG. 7).
Sectional view at.

【符号の説明】[Explanation of symbols]

1,1a〜1d 絶縁性基板 11 切欠き部 21 リード 21a〜21f 対極用のリード 22 電極 221 作用極 222a〜222d 対極 23 接続端子 231 作用極の接続端子 232,232a,232b 対極の接続端子 3 反応層 4 スペーサ 5 絶縁層 6 空間部 61 導入口 62 排出口 7 貫通孔 7a 電極形成物質内在による電極兼用の貫通孔(作用
極用) 7b,7c リード形成物質内在によるリード兼用の貫
通孔(対極用) 8 背面フィルム 10 バイオセンサ 91a シート(基板) 91b シート(カバーシート) 921 リード 922,922a 電極 923 接続端子 94 絶縁層 95 反応層 96 空間部 97 スペーサシート 98 導入口 99 排出口
1, 1a to 1d Insulating substrate 11 Notch portion 21 Lead 21a to 21f Counter electrode lead 22 Electrode 221 Working electrode 222a to 222d Counter electrode 23 Connection terminal 231 Working electrode connection terminal 232, 232a, 232b Counter electrode connection terminal 3 Reaction Layer 4 Spacer 5 Insulating layer 6 Space 61 Inlet 62 Outlet 7 Through hole 7a Through hole that also serves as an electrode (for working electrode) 7b, 7c Through hole that serves as a lead (for counter electrode) ) 8 back film 10 biosensor 91a sheet (substrate) 91b sheet (cover sheet) 921 lead 922, 922a electrode 923 connection terminal 94 insulating layer 95 reaction layer 96 space 97 spacer sheet 98 inlet 99 outlet

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも絶縁性基板と、該基板に設け
られた電極系と、2枚の絶縁性基板間に形成された空間
部に面する反応層とを有するバイオセンサにおいて、 絶縁性基板の一方の面に形成された電極と、他方の面に
形成された接続端子とが、該絶縁性基板に設けられてい
た1以上の貫通孔を介して表裏で導通していることを特
徴とするバイオセンサ。
1. A biosensor having at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer facing a space formed between the two insulating substrates. An electrode formed on one surface and a connection terminal formed on the other surface are electrically connected on the front and back sides through one or more through holes provided on the insulating substrate. Biosensor.
【請求項2】 貫通孔がその内部に、電極系を形成す
る、電極形成物質又は/及びリード形成物質を有するこ
とで表裏で導通していることを特徴とする請求項1記載
のバイオセンサ。
2. The biosensor according to claim 1, wherein the through-hole has an electrode forming substance and / or a lead forming substance forming an electrode system therein, so that the through hole is electrically connected to the front and back sides.
【請求項3】 貫通孔内部に有する電極形成物質が少な
くとも電極形成面側の貫通孔の孔径内側の全領域から露
出し、該開口部形状をした電極を成すことを特徴とする
請求項2記載のバイオセンサ。
3. The electrode forming substance inside the through hole is exposed from at least the entire area inside the hole diameter of the through hole on the electrode forming surface side to form an electrode having the opening shape. Biosensor.
【請求項4】 接続端子と表裏で接続する電極が、該電
極上に反応層が形成された作用極であることを特徴とす
る請求項3記載のバイオセンサ。
4. The biosensor according to claim 3, wherein the electrode connected to the connection terminal on the front and back sides is a working electrode having a reaction layer formed on the electrode.
【請求項5】 一枚の絶縁性基板の片面に作用極及び対
極が形成され、対極が、作用極を両側から挟む様に2対
の電極からなり、これら電極と同一面側に対極用の接続
端子が形成され、接続端子が作用極用と対極用とで一枚
の絶縁性基板の表裏に分離されていることを特徴とする
請求項4記載のバイオセンサ。
5. A working electrode and a counter electrode are formed on one surface of a single insulating substrate, and the counter electrode is composed of two pairs of electrodes so that the working electrode is sandwiched from both sides. The biosensor according to claim 4, wherein a connection terminal is formed, and the connection terminal is divided into front and back surfaces of one insulating substrate for the working electrode and the counter electrode.
【請求項6】 接続端子と表裏で接続する電極が、対極
であることを特徴とする請求項1,2又は3記載のバイ
オセンサ。
6. The biosensor according to claim 1, wherein the electrodes connected to the connection terminal on the front and back sides are counter electrodes.
【請求項7】 貫通孔の表裏の導通が、その内部に有す
るリード形成物質によって成されていることを特徴とす
る請求項6記載のバイオセンサ。
7. The biosensor according to claim 6, wherein conduction between the front surface and the back surface of the through hole is formed by a lead forming substance contained therein.
【請求項8】 一枚の絶縁性基板の片面に作用極及び対
極が形成され、請求項4による作用極に対して、請求項
6又は7による対極が、前記作用極を両側から挟む様に
形成された2対の電極からなり、作用極及び対極の電極
と、これら接続端子とが、一枚の絶縁性基板の表裏に分
離されていることを特徴とするバイオセンサ。
8. A working electrode and a counter electrode are formed on one surface of one insulating substrate, and the counter electrode according to claim 6 or 7 sandwiches the working electrode from both sides with respect to the working electrode according to claim 4. A biosensor comprising two pairs of electrodes formed, wherein a working electrode and a counter electrode, and these connection terminals are separated on the front and back sides of a single insulating substrate.
【請求項9】 請求項1〜8のいずれか1項に記載の絶
縁性基板と他の絶縁性基板とが、電極形成面を内側にし
て、少なくとも片方の絶縁性基板に印刷又は塗布により
形成されたスペーサにより、反応層が面する空間部を残
す様に接着、積層されていることを特徴とするバイオセ
ンサ。
9. The insulating substrate according to any one of claims 1 to 8 and another insulating substrate are formed by printing or coating on at least one of the insulating substrates with the electrode formation surface inside. A biosensor characterized in that the spacers are adhered and laminated so that a space facing the reaction layer is left.
【請求項10】 少なくとも絶縁性基板と、該基板上に
設けられた電極系と、2枚の絶縁性基板間に形成された
空間部に面する反応層とを有するバイオセンサで、一枚
の絶縁性基板の一方の面に形成された電極と、他方の面
に形成された接続端子とが、該絶縁性基板に設けられて
いた1以上の貫通孔を介して表裏で導通しているバイオ
センサの製造方法であって、 1以上の貫通孔を有する絶縁性基板を用意し、その一方
の面に背面フィルムを貼り合わせて前記貫通孔を覆った
後、他方の面から前記貫通孔を充填する様にして電極形
成用の導電性ペーストで所定の導体パターンを印刷した
後、背面フィルムを剥離して、貫通孔内部の電極形成物
質が少なくとも電極形成面側の貫通孔の孔径内側の全領
域から露出し、該開口部形状をした電極とするととも
に、絶縁性基板の一方の面の電極と他方の面の接続端子
とを、表裏で導通させることを特徴とするバイオセンサ
の製造方法。
10. A biosensor having at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer facing a space formed between the two insulating substrates. A biotechnology in which an electrode formed on one surface of an insulating substrate and a connection terminal formed on the other surface are electrically connected on the front and back sides through one or more through holes provided in the insulating substrate. A method of manufacturing a sensor, comprising preparing an insulating substrate having one or more through holes, bonding a back film to one surface of the insulating substrate to cover the through holes, and then filling the through holes from the other surface. After printing a predetermined conductor pattern with a conductive paste for electrode formation as described above, the back film is peeled off, and the electrode forming substance inside the through hole is at least the entire area inside the hole diameter of the through hole on the electrode forming surface side. Exposed from above and used as the electrode having the opening shape. With method of the biosensor, characterized in that the connection terminal electrode and the other surface of the one surface of the insulating substrate, thereby turning on the front and back.
【請求項11】 貫通孔の開口部形状をした電極上に反
応層を形成して作用極とし、作用極を、絶縁性基板の他
方の面の接続端子と表裏で導通する電極として形成する
ことを特徴とする請求項10記載のバイオセンサの製造
方法。
11. A working electrode is formed by forming a reaction layer on an electrode having an opening shape of a through hole, and the working electrode is formed as an electrode electrically connected to a connection terminal on the other surface of the insulating substrate on the front and back sides. The method for manufacturing a biosensor according to claim 10, wherein:
【請求項12】 少なくとも絶縁性基板と、該基板上に
設けられた電極系と、反応層とを有するバイオセンサ
で、絶縁性基板の一方の面に形成された電極と、他方の
面に形成された接続端子とが、該絶縁性基板に設けられ
ていた1以上の貫通孔を介して表裏で導通しているバイ
オセンサの製造方法であって、 1以上の貫通孔を有する絶縁性基板を用意し、その一方
の面に背面フィルムを貼り合わせて前記貫通孔を覆った
後、他方の面から前記貫通孔の内部に入る様にしてリー
ド形成用の導電性ペーストで所定のリードパターンを印
刷した後、背面フィルムを剥離して、次いで、露出した
絶縁性基板の面側から再度、前記貫通孔の内部に既に入
った導電性ペーストと接続する様にリード形成用の導電
性ペーストで所定のリードパターンを印刷して、貫通孔
をリード形成物質により表裏で導通させて、表裏で導通
するリードを形成することを特徴とするバイオセンサの
製造方法。
12. A biosensor having at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer. An electrode formed on one surface of the insulating substrate and a biosensor formed on the other surface. A method for manufacturing a biosensor in which the connected connection terminal is electrically connected to the front and back sides through one or more through holes provided in the insulating substrate, the insulating substrate having one or more through holes is provided. Prepare a back film on one surface to cover the through hole, and then print a predetermined lead pattern with a conductive paste for lead formation so that it will enter the inside of the through hole from the other surface. After that, the back film is peeled off, and then a predetermined amount of conductive paste for lead formation is used to connect again from the exposed side of the insulating substrate with the conductive paste already inside the through hole. Print the lead pattern , Through holes made conductive by the read-forming material on the front and back, a manufacturing method of a biosensor and forming a lead to conduct at front and back.
【請求項13】 対極を、絶縁性基板の他方の面の接続
端子と導通するリードに設けたことを特徴とする請求項
12記載のバイオセンサの製造方法。
13. The method for manufacturing a biosensor according to claim 12, wherein the counter electrode is provided on a lead which is electrically connected to the connection terminal on the other surface of the insulating substrate.
【請求項14】 一枚の絶縁性基板の片面に、作用極を
請求項11の製造方法により形成し、2対からなる対極
を前記作用極を両側から挟む様に形成し、且つ該対極用
の接続端子は該対極と同一面側に形成し、接続端子を作
用極用と対極用とで一枚の絶縁性基板の表裏に分離して
形成することを特徴とするバイオセンサの製造方法。
14. A working electrode is formed on one surface of one insulating substrate by the manufacturing method according to claim 11, and two pairs of counter electrodes are formed so as to sandwich the working electrode from both sides. The method of manufacturing a biosensor, wherein the connection terminal is formed on the same surface side as the counter electrode, and the connection terminal is separately formed for the working electrode and the counter electrode on the front and back sides of one insulating substrate.
【請求項15】 一枚の絶縁性基板の片面に、作用極を
請求項11の製造方法により形成し、2対からなる対極
を前記作用極を両側から挟む様に請求項13の製造方法
により形成し、作用極及び対極の電極と、これら接続端
子とを、一枚の絶縁性基板の表裏に分離して形成するこ
とを特徴とするバイオセンサの製造方法。
15. The manufacturing method according to claim 13, wherein a working electrode is formed on one surface of one insulating substrate by the manufacturing method according to claim 11, and two pairs of counter electrodes are sandwiched between the working electrodes from both sides. A method for manufacturing a biosensor, which comprises forming electrodes for a working electrode and a counter electrode, and these connecting terminals separately on the front and back of a single insulating substrate.
【請求項16】 スペーサを、少なくとも片方の絶縁性
基板に印刷又は塗布により形成し、2枚の絶縁性基板を
反応層が面する空間部を残す様に、スペーサにより接
着、積層することを特徴とする請求項10〜15のいず
れか1項に記載のバイオセンサの製造方法。
16. A spacer is formed on at least one of the insulative substrates by printing or coating, and the two insulative substrates are bonded and laminated by the spacer so as to leave a space facing the reaction layer. The method for manufacturing the biosensor according to claim 10, wherein
JP7346981A 1995-12-14 1995-12-14 Biosensor and manufacture thereof Pending JPH09166571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346981A JPH09166571A (en) 1995-12-14 1995-12-14 Biosensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346981A JPH09166571A (en) 1995-12-14 1995-12-14 Biosensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09166571A true JPH09166571A (en) 1997-06-24

Family

ID=18387123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346981A Pending JPH09166571A (en) 1995-12-14 1995-12-14 Biosensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09166571A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044048A1 (en) * 1998-02-26 1999-09-02 Kyoto Daiichi Kagaku Co., Ltd. Blood measuring instrument
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
KR100340174B1 (en) * 1999-04-06 2002-06-12 이동준 Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
JP2002214187A (en) * 2001-01-17 2002-07-31 Toray Ind Inc Biosensor
EP1634066A1 (en) * 2003-06-17 2006-03-15 Chun-Mu Huang Structure and manufacturing method of disposable electrochemical sensor strip
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
US7563350B2 (en) * 1998-10-08 2009-07-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
JP2010256368A (en) * 2003-12-11 2010-11-11 Ceragem Medisys Inc Biomaterial measuring device and method of manufacturing the same
US7838912B2 (en) 2004-09-30 2010-11-23 Waseda University Semiconductor sensing field effect transistor, semiconductor sensing device, semiconductor sensor chip and semiconductor sensing device
JP2012122744A (en) * 2010-12-06 2012-06-28 Murata Mfg Co Ltd Production method of biosensor and biosensor produced by the method
CN103842807A (en) * 2011-08-04 2014-06-04 简易生命科学公司 Working electrode printed on a substrate
US20150185178A1 (en) * 2013-12-26 2015-07-02 Taiwan Green Point Enterprises Co., Ltd. Electrochemical biosensor and method for producing the same
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
WO2021221395A1 (en) * 2020-04-28 2021-11-04 동우 화인켐 주식회사 Biosensor and method for manufacturing same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US6156173A (en) * 1997-09-12 2000-12-05 Nok Corporation Enzyme electrode structure
US6893545B2 (en) 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
US8557103B2 (en) 1997-09-12 2013-10-15 Abbott Diabetes Care Inc. Biosensor
US7713406B2 (en) 1997-09-12 2010-05-11 Abbott Diabetes Care Inc. Biosensor
US8414761B2 (en) 1997-09-12 2013-04-09 Abbott Diabetes Care Inc. Biosensor
US7901554B2 (en) 1997-09-12 2011-03-08 Abbott Diabetes Care Inc. Biosensor
US6503381B1 (en) * 1997-09-12 2003-01-07 Therasense, Inc. Biosensor
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US7905998B2 (en) 1997-09-12 2011-03-15 Abbott Diabetes Care Inc. Biosensor
US7998336B2 (en) 1997-09-12 2011-08-16 Abbott Diabetes Care Inc. Biosensor
US7918988B2 (en) 1997-09-12 2011-04-05 Abbott Diabetes Care Inc. Biosensor
WO1999044048A1 (en) * 1998-02-26 1999-09-02 Kyoto Daiichi Kagaku Co., Ltd. Blood measuring instrument
US6349230B1 (en) 1998-02-26 2002-02-19 Kyoto Daiichi Kagaku Co., Ltd. Blood measuring instrument
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US7563350B2 (en) * 1998-10-08 2009-07-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
KR100340174B1 (en) * 1999-04-06 2002-06-12 이동준 Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
JP2002214187A (en) * 2001-01-17 2002-07-31 Toray Ind Inc Biosensor
EP1634066A1 (en) * 2003-06-17 2006-03-15 Chun-Mu Huang Structure and manufacturing method of disposable electrochemical sensor strip
EP1634066A4 (en) * 2003-06-17 2009-04-22 Chun-Mu Huang Structure and manufacturing method of disposable electrochemical sensor strip
JP2006514300A (en) * 2003-06-17 2006-04-27 フアン、アリス・ワイ. Disposable electrochemical sensor strip structure and manufacturing method thereof
JP2010256368A (en) * 2003-12-11 2010-11-11 Ceragem Medisys Inc Biomaterial measuring device and method of manufacturing the same
US7838912B2 (en) 2004-09-30 2010-11-23 Waseda University Semiconductor sensing field effect transistor, semiconductor sensing device, semiconductor sensor chip and semiconductor sensing device
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2012122744A (en) * 2010-12-06 2012-06-28 Murata Mfg Co Ltd Production method of biosensor and biosensor produced by the method
US9733204B2 (en) 2011-08-04 2017-08-15 Easy Life Science Working electrode printed on a substrate
KR20140068901A (en) * 2011-08-04 2014-06-09 이지 라이프 사이언스 Working electrode printed on a substrate
JP2014521963A (en) * 2011-08-04 2014-08-28 イージー ライフ サイエンス Working electrode printed on substrate
CN103842807A (en) * 2011-08-04 2014-06-04 简易生命科学公司 Working electrode printed on a substrate
US20150185178A1 (en) * 2013-12-26 2015-07-02 Taiwan Green Point Enterprises Co., Ltd. Electrochemical biosensor and method for producing the same
US9678033B2 (en) * 2013-12-26 2017-06-13 Taiwan Green Point Enterprises Co., Ltd. Electrochemical biosensor and method for producing the same
US10648940B2 (en) 2013-12-26 2020-05-12 Taiwan Green Point Enterprises Co., Ltd. Electrochemical biosensor and method for producing the same
WO2021221395A1 (en) * 2020-04-28 2021-11-04 동우 화인켐 주식회사 Biosensor and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6787013B2 (en) Biosensor
JPH09166571A (en) Biosensor and manufacture thereof
AU705313B2 (en) Electrochemical cell
US6863801B2 (en) Electrochemical cell
US5798031A (en) Electrochemical biosensor
US6174420B1 (en) Electrochemical cell
US6521110B1 (en) Electrochemical cell
AU2002367214B9 (en) Micro-band electrode
JPH09159642A (en) Bio sensor and its manufacturing method
KR100340174B1 (en) Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
JPH09159644A (en) Biosensor and manufacture thereof
KR20030038665A (en) Antioxidant sensor
WO2001088526A1 (en) Biosensor and method for manufacturing the same
JP2002340840A (en) Biosensor
WO2005033688A1 (en) Electrochemical cell
WO2006000828A2 (en) Electrode for electrochemical sensor
JP2000258382A (en) Specimen small-quantity-type bio sensor
JP2007121060A (en) Sensor chip and sensor system
JP2007108104A (en) Sensor chip and manufacturing method therefor
JPH11125618A (en) Biosensor
JP4807493B2 (en) Sensor chip and manufacturing method thereof
AU738128B2 (en) Electrochemical cell
Chang et al. Biosensor
JPH10246718A (en) Small oxygen electrode and its production
JP2000221156A (en) Biosensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040913

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041105