JPH09159642A - Bio sensor and its manufacturing method - Google Patents

Bio sensor and its manufacturing method

Info

Publication number
JPH09159642A
JPH09159642A JP7337703A JP33770395A JPH09159642A JP H09159642 A JPH09159642 A JP H09159642A JP 7337703 A JP7337703 A JP 7337703A JP 33770395 A JP33770395 A JP 33770395A JP H09159642 A JPH09159642 A JP H09159642A
Authority
JP
Japan
Prior art keywords
insulating
electrode
substrates
biosensor
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337703A
Other languages
Japanese (ja)
Inventor
Ryohei Nagata
良平 永田
Hideaki Munakata
秀明 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP7337703A priority Critical patent/JPH09159642A/en
Publication of JPH09159642A publication Critical patent/JPH09159642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily perform direct determination and quantification with a small amount of sample liquid, achieve improved liquid leakage resistance, improve ease of use, and reduce cost. SOLUTION: An electrode system is provided at two insulation substrates 1a and 1b which are laminated by providing a space part with a spacer 4 and two connection terminals 23 are separately exposed in opposite directions on both substrates 1a and 1b with both insulation substrates 1a and 1b in outer shape having cut-outs 11a and 11b as a bio sensor. The pattern shape of such electrode system as the outer shape of the substrates 1a and 1b, a lead, electrodes 22 (221) and 22 (222), a connection terminal 23, and an insulation layer is made similar when viewed from an electrode formation surface side to share the substrate when manufacturing both substrates, and a spacer 4 is formed by printing or partially applying to the insulation substrates 1a and 1b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば血液中のグ
ルコース等と、液体試料中の特定成分を迅速、容易に、
且つ正確に定量できるバイオセンサに関し、さらに詳し
くは少量の試料で容易に測定できる使い易くて安価なバ
イオセンサの電極構造と、その製造方法に関する。
TECHNICAL FIELD The present invention relates to, for example, glucose in blood and specific components in a liquid sample quickly and easily,
The present invention also relates to a biosensor that can be accurately quantified, and more specifically to an easy-to-use and inexpensive biosensor electrode structure that can be easily measured with a small amount of sample, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、試料液中の特定成分の定量におい
て、酵素など生体関連物質の高い分子識別能力を利用し
て種々の被測定物質の存在量を測定するバイオセンサが
知られている。例えば、その中で生体関連物質として酵
素を利用した酵素センサとして、グルコースを定量する
グルコースセンサが実用化されている。酵素センサは、
被測定物質に対して高い基質特異性を有する酵素を高分
子膜等の基材に固定化し、酵素に試料中の被測定物質を
接触させ、酵素反応によって生じる物質を電気化学的に
検知し、定量することができる。
2. Description of the Related Art Conventionally, there have been known biosensors for measuring the abundance of various substances to be measured by utilizing the high molecular recognition ability of bio-related substances such as enzymes in the quantification of specific components in a sample solution. For example, a glucose sensor for quantifying glucose has been put into practical use as an enzyme sensor using an enzyme as a biologically relevant substance. The enzyme sensor
An enzyme having a high substrate specificity for a substance to be measured is immobilized on a substrate such as a polymer membrane, the substance to be measured in a sample is brought into contact with the enzyme, and a substance produced by an enzymatic reaction is electrochemically detected, It can be quantified.

【0003】バイオセンサの用途は各方面にわたり、例
えば前記のグルコースセンサの場合、糖尿病患者の血糖
値管理や食品加工の工程管理などで商業化されている。
また、微生物を利用したバイオセンサ(微生物センサ)
も各種実用化されており、河川の水質分析や、工場排水
の安全性管理などに利用されている。このようにバイオ
センサは、試料液中の特定成分の定量において、医療、
食品分析、醗酵管理、環境計測などに、幅広く実用化さ
れている。そして、実用化当初の測定は、装置が大型で
時間や費用がかかるという問題もあったが、病院、工場
などの施設で利用されることが多く、その優れた分子識
別能力により許容できない程ではなかった。しかし、特
に個人が健康のチェック、病気の状態、治療の効果を調
べるために血液や尿中の特定成分を測定する場合には、
そのランニングコストや難解な操作方法のため、利用者
には大きな負担となり、より簡易的にその場で測定でき
る安価なセンサが望まれていた。
Biosensors are used in various fields, and, for example, in the case of the above-mentioned glucose sensor, it has been commercialized for controlling the blood glucose level of diabetic patients and process control of food processing.
In addition, a biosensor that uses microorganisms (microorganism sensor)
Has been put to practical use, and is used for river water quality analysis and safety management of factory wastewater. In this way, biosensors can be used for medical treatment in the determination of specific components in sample liquids.
Widely used in food analysis, fermentation control, environmental measurement, etc. The measurement at the beginning of practical use had a problem that the device was large and time-consuming and costly, but it is often used in facilities such as hospitals and factories, and its excellent molecular recognition ability makes it unacceptable. There wasn't. However, especially when an individual measures certain components in blood or urine to check their health, illness, or effectiveness of treatment,
Due to the running cost and the difficult operation method, a heavy burden is placed on the user, and an inexpensive sensor that can perform simple on-site measurement has been desired.

【0004】例えば、特公平6−76984号公報で提
案されたグルコースセンサ等として使えるバイオセンサ
は、微量の試料液を上から滴下するだけで短時間に測定
できるようにしたものである。同号公報では、樹脂製の
円柱基材に埋め込んだ白金電極をその上底面から露出さ
せた電極部に、環状の枠体中にレーヨン紙の保液層、多
孔質膜のろ過層、及び酵素を含ませた不織布の反応層を
挟み込んだ測定チップを設置した構造のバイオセンサが
提案されている。しかし、構造が複雑で、製造工程や構
成部品が多く、如何に工夫してもコストが高くなってし
まうことは避けられない。また、特公平6−58338
号公報はグルコースセンサ等として使えるバイオセンサ
をディスポーザブルタイプとしたものを提案している。
このバイオセンサの構造は、図6〜図8に示す如く、樹
脂製のシート91aに、導電ペーストで印刷形成したリ
ードの一端を利用して接続端子923とし、また、電極
となるリードの他端上に電極物質を印刷形成した上で、
接続端子923と電極922及び922aとを露出させ
る様に絶縁層94を印刷して残りのリードを覆い、さら
に電極922及び922a上に酵素を固定した反応層9
5を形成して下側基板とし、これに反応層95の周囲に
空間部96ができる様なスペーサシート97を介してカ
バーとなるシート91bを積層し、試料液は先端の導入
口98から毛細管現象によって空間部に入り、また空間
部内の気体は試料液の導入によって排出口99から押し
出される様にした構造であり、微量の試料液と空間部内
の気体との交換が円滑に行われるようにしたものであ
る。
For example, a biosensor that can be used as a glucose sensor or the like proposed in Japanese Examined Patent Publication No. 6-76984 is one that enables measurement in a short time by simply dropping a small amount of sample liquid from above. In the same publication, a platinum electrode embedded in a resin-made cylindrical base material is exposed to the electrode portion from the upper and bottom surfaces thereof, a liquid-retaining layer of rayon paper, a filtration layer of a porous membrane, and an enzyme in an annular frame. There has been proposed a biosensor having a structure in which a measuring chip having a reaction layer of a non-woven fabric impregnated with it is installed. However, the structure is complicated, there are many manufacturing processes and components, and it is inevitable that the cost will increase no matter how the device is devised. In addition, Japanese Examined Patent Publication 6-58338
The publication proposes a biosensor that can be used as a glucose sensor or the like, which is of a disposable type.
As shown in FIGS. 6 to 8, this biosensor has a structure in which one end of a lead printed and formed on a resin sheet 91a is used as a connection terminal 923, and the other end of the lead serving as an electrode is used. After printing the electrode material on the top,
An insulating layer 94 is printed so as to expose the connection terminal 923 and the electrodes 922 and 922a to cover the remaining leads, and the reaction layer 9 in which an enzyme is fixed on the electrodes 922 and 922a.
5 is formed as a lower substrate, and a sheet 91b serving as a cover is laminated on the lower substrate through a spacer sheet 97 having a space 96 around the reaction layer 95, and the sample solution is introduced from the inlet port 98 at the tip to a capillary tube. Due to the phenomenon, the space enters the space, and the gas in the space is pushed out from the discharge port 99 by the introduction of the sample solution, so that a small amount of the sample solution can be smoothly exchanged with the gas in the space. It was done.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
公平6−58338号公報で提案された様なバイオセン
サは、ディスポーザブル化され個人利用を容易とするも
のとなってはいるが、熟練した専属の分析者が使用する
場合とは異なり、一般の個人が利用の場合、必ずしも使
い易いものではなかった。それは、電極の表裏を確認し
て測定装置本体に挿入しなければ正しく測定できず、さ
らに、複数の接続端子が基板となるシートの同一面に隣
接して設けられており、操作を誤って測定する試料液等
をセンサの別の場所に付着させてしまい、それが接続端
子部分を濡らすと、隣接した接続端子同士が電気的に導
通するおそれがあったからである。また、2枚のシート
の他に、空間部を形成する様な所定形状に切断等したス
ペーサシートを構成部品として必要とし、構造に改善の
余地があり、コストが高くなってしまうことは避けられ
なかった。
However, although the biosensor as proposed in Japanese Patent Publication No. 6-58338 is disposable and facilitates individual use, it is a skilled and exclusive subject. Unlike the case where an analyst uses it, when it is used by an ordinary individual, it is not always easy to use. It cannot be correctly measured by checking the front and back of the electrode and inserting it into the main body of the measuring device.Moreover, multiple connection terminals are provided adjacent to the same surface of the sheet that serves as the substrate, and the operation is mistakenly measured. This is because if the sample liquid or the like is adhered to another place of the sensor and wets the connection terminal portion, the connection terminals adjacent to each other may be electrically connected to each other. Further, in addition to the two sheets, a spacer sheet cut into a predetermined shape to form a space is required as a component, and there is room for improvement in the structure, which avoids an increase in cost. There wasn't.

【0006】[0006]

【課題を解決するための手段】そこで本発明のバイオセ
ンサは、少なくとも絶縁性基板と、該基板上に設けられ
た電極系と、2枚の絶縁性基板間に設けられた空間部に
面する反応層とを有するバイオセンサにおいて、2枚の
絶縁性基板の外形形状を、対向する絶縁性基板が有する
接続端子を露出させる為の切欠き部を有する形状とし
て、両絶縁性基板の接続端子をそれぞれ表裏逆向きに露
出させた構造として、電極及びその接続端子とを2枚の
絶縁性基板に分離させた。また、2枚の絶縁性基板同士
をスペーサを介して接着、積層することで反応層が面す
る空間部を確保した。さらに、このスペーサに、少なく
とも片方の絶縁性基板に印刷又は部分的塗布により形成
されたものを用い、シート状のスペーサを不要とした。
Therefore, the biosensor of the present invention faces at least the insulating substrate, the electrode system provided on the substrate, and the space provided between the two insulating substrates. In a biosensor having a reaction layer, the outer shape of two insulating substrates is changed to a shape having a cutout for exposing the connecting terminals of the opposing insulating substrates, and the connecting terminals of both insulating substrates are connected to each other. The electrodes and their connecting terminals were separated into two insulating substrates, each having a structure in which the electrodes were exposed in opposite directions. In addition, the two insulating substrates were adhered and laminated via a spacer to secure a space portion facing the reaction layer. Further, as this spacer, one formed by printing or partial application on at least one insulating substrate is used, and a sheet-shaped spacer is not necessary.

【0007】そして、2枚の絶縁性基板の外形形状を、
電極形成面側から見て同一形状として、構造的に簡略な
ものとした。また、2枚の絶縁性基板のそれぞれの電極
系の形状についても、該電極系を構成する、電極、接続
端子、リード及び絶縁層等の中の1以上を、絶縁性基板
の電極形成面側から見て、さらに同一パターン形状とす
ることでも、構造的に簡略なものとした。その同一パタ
ーン形状とするものは、電極及び接続端子に接続される
リードとし、さらに電極、接続端子及び絶縁層も同一パ
ターン形状とすることで、構造的簡略化を図った。
The outer shape of the two insulating substrates is
The shape was the same when viewed from the electrode formation surface side, and structurally simple. Further, regarding the shape of each electrode system of the two insulating substrates, one or more of the electrodes, the connection terminals, the leads, the insulating layer, and the like, which form the electrode system, may be formed on the electrode forming surface side of the insulating substrate. From the viewpoint, the structure is also simplified by making the same pattern shape. The same pattern shape was used as the lead connected to the electrode and the connection terminal, and the electrode, the connection terminal and the insulating layer were also formed in the same pattern shape to achieve structural simplification.

【0008】次に、本発明のバイオセンサの製造方法
は、少なくとも絶縁性基板と、該基板上に設けられた電
極系と、2枚の絶縁性基板間に設けられた空間部に面す
る反応層とを有するバイオセンサの製造方法において、
該バイオセンサは、片面に電極及び接続端子を有する2
枚の絶縁性基板同士が、空間部を残す様にスペーサを介
して接着、積層され、これら2枚の絶縁性基板の外形形
状が、対向する絶縁性基板が有する接続端子を露出させ
る為の切欠き部を有する形状を成すものであり、絶縁性
基板に、電極系及び反応層を形成する工程前、工程中又
は工程後に、絶縁性基板同士を対向させて積層した時
に、対向する絶縁性基板の接続端子を露出させる為の切
欠き部と、該切欠き部を残した絶縁性基板の本体部分と
の少なくとも境界に切り込みを入れ、次いで、2枚の絶
縁性基板同士を重ね合わせてスペーサにより接着、積層
した後、両絶縁性基板を所定のセンサ形状に切断するこ
とで、両絶縁性基板の接続端子をそれぞれ上記切欠き部
で表裏逆向きに露出させて電極及びその接続端子とを2
枚の絶縁性基板に分離させた構造のバイオセンサを容易
に製造できる方法とした。
Next, the method for manufacturing a biosensor of the present invention comprises a reaction facing at least an insulating substrate, an electrode system provided on the substrate, and a space provided between two insulating substrates. In the method for manufacturing a biosensor having a layer,
The biosensor has an electrode and a connection terminal on one side.
The two insulating substrates are bonded and laminated via a spacer so as to leave a space, and the outer shapes of these two insulating substrates are cut to expose the connection terminals of the opposing insulating substrates. An insulating substrate that has a notched portion and that faces the insulating substrate when the insulating substrates are laminated facing each other before, during, or after the step of forming the electrode system and the reaction layer on the insulating substrate. A notch is formed at least at the boundary between the notch for exposing the connection terminal and the main body of the insulative substrate where the notch is left, and then two insulative substrates are overlapped with each other by a spacer. After bonding and laminating, both insulating substrates are cut into a predetermined sensor shape, so that the connection terminals of both insulating substrates are exposed to the opposite sides by the notches so that the electrodes and the connection terminals are separated from each other.
A biosensor having a structure in which it is separated into one insulating substrate is easily manufactured.

【0009】また、上記切欠き部の形状は、センサ形状
に切断後の両方の絶縁性基板が電極形成面側から見て同
一形状となる様な形状にして製造する。
Further, the shape of the cutout portion is manufactured so that both insulating substrates after cutting into the sensor shape have the same shape when viewed from the electrode forming surface side.

【0010】また、2枚の絶縁性基板のそれぞれの電極
系について、該電極系を構成する電極及び接続端子に接
続されるリード、電極、接続端子、及び絶縁層の中の1
以上について、絶縁性基板の電極形成面側から見て同一
パターン形状に形成する。それは少なくともリードであ
り、更にリード、電極、接続端子、及び絶縁層も同一パ
ターン形状に形成する製造方法とした。
For each of the electrode systems of the two insulating substrates, one of lead, electrode, connection terminal and insulating layer connected to the electrode and the connection terminal constituting the electrode system.
Regarding the above, they are formed in the same pattern shape as viewed from the electrode formation surface side of the insulating substrate. At least the lead is used, and the lead, the electrode, the connection terminal, and the insulating layer are also formed in the same pattern shape.

【0011】また、切欠き部の境界に入れる切り込み
を、絶縁性基板の厚み方向の一部を残すハーフカットで
行い、2枚の絶縁性基板同士を重ね合わせて接着、積層
した後に、該ハーフカットによる切り込みを完全分離し
て、切欠き部を切り離し、センサ形状に切断する前、又
は後に、不要な切欠き部を切り離す方法とすることで、
多面付けによる製造を容易にした。また、スペーサを、
少なくとも片方の絶縁性基板に印刷又は部分的塗布によ
り形成し、切欠き部と絶縁性基板の本体部分との少なく
とも境界に入れる切り込みは、スペーサの形成工程の前
又は後に行い、シート状のスペーサを用いずに製造でき
る方法とした。
Further, the notch is formed in the boundary of the notch by half-cutting leaving a part of the insulating substrate in the thickness direction, and the two insulating substrates are superposed and adhered to each other. By completely separating the incision by cutting, separating the notch, and before or after cutting into the sensor shape, by a method of separating unnecessary notches,
Facilitated manufacturing by multiple imposition. In addition, the spacer
A notch formed on at least one of the insulating substrates by printing or partial application, and a notch formed at least at the boundary between the notch and the main body of the insulating substrate is performed before or after the spacer forming step, and a sheet-like spacer is formed. It was a method that can be manufactured without using.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しながら本発明
のバイオセンサ及びその製造方法について、実施の形態
を説明する。図1、図2及び図3は、本発明のバイオセ
ンサの一実施例を示す図であり、図1はその分解斜視
図、図2は外観図、図3は断面図である。これら図面に
示す本発明のバイオセンサ10は、2枚の絶縁性基板1
a及び1bがスペーサ4を介して反応層3が面する空間
部6を残す様に接着、積層された構造であり、積層前の
両絶縁性基板は各々その内面側に電極系と、接着・積層
する為のスペーサ4とを有している。両基板の電極系
は、リード21、電極22、接続端子23、及び絶縁層
5から構成されている。リード21はその一端が接続端
子23を成し(兼用し)、他端は電極22がリード21
上に形成され、露出不要部は絶縁層5で覆われている。
また下側の絶縁性基板1aの電極22上には、酵素等の
生体関連物質を含む反応層3が形成され作用極221と
なり、他方の基板の電極は対極222となっている。ス
ペーサ4は反応層を試料液に接触させるための空間部
6、導入口61及び排出口62を残す様に、両側に直線
状のパターンとして絶縁性基板に形成されたものが使わ
れている。この結果、接続端子がない側の側端面部分に
試料液を導入する導入口61がスペーサに両サイドを挟
まれて開口し、接続端子側の側端面部分に空間部の気体
を排出する排出口62が開口した構造となっている。な
お、排出口は絶縁性基板の内部に設けることも好ましい
態様の一つであり、この場合は例えば、図2の点線で示
す排出口62aの様にして設ければ良い。この場合、導
入口61より遠方側となる排出口62aから接続端子側
の空間部はスペーサで埋めてもよい。排出口62aを設
けることで、たとえ空間部が接続端子側の側端面まで連
続し、そこで開口していても、接続端子側の開口部まで
達した試料液がオーバーフローして、不意に接続端子を
濡らすことを回避する効果もある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the biosensor of the present invention and a method for manufacturing the same will be described below with reference to the drawings. 1, 2 and 3 are views showing an embodiment of the biosensor of the present invention, FIG. 1 is an exploded perspective view thereof, FIG. 2 is an external view, and FIG. 3 is a sectional view. The biosensor 10 of the present invention shown in these drawings has two insulating substrates 1.
a and 1b have a structure in which they are adhered and laminated via the spacer 4 so as to leave a space 6 facing the reaction layer 3, and both insulating substrates before lamination are bonded to the electrode system on the inner surface side thereof respectively. It has a spacer 4 for stacking. The electrode system of both substrates is composed of a lead 21, an electrode 22, a connection terminal 23, and an insulating layer 5. One end of the lead 21 forms the connection terminal 23 (also serves as a connection terminal), and the other end thereof has the electrode 22 as the lead 21.
The unneeded portion formed above is covered with the insulating layer 5.
A reaction layer 3 containing a biological substance such as an enzyme is formed on the electrode 22 of the lower insulating substrate 1a to serve as a working electrode 221, and the electrode of the other substrate serves as a counter electrode 222. The spacer 4 is formed on the insulating substrate as a linear pattern on both sides so that the space 6, the inlet 61 and the outlet 62 for contacting the reaction layer with the sample solution are left. As a result, the inlet 61 for introducing the sample liquid to the side end surface portion on the side without the connection terminal is opened by sandwiching both sides by the spacer, and the outlet for discharging the gas in the space portion to the side end surface portion on the connection terminal side. It has a structure in which 62 is opened. Note that it is also one of the preferable modes to provide the discharge port inside the insulating substrate, and in this case, for example, the discharge port may be provided as the discharge port 62a shown by the dotted line in FIG. In this case, the space portion on the connection terminal side from the discharge port 62a on the far side of the introduction port 61 may be filled with a spacer. By providing the discharge port 62a, even if the space portion is continuous to the side end surface on the connection terminal side and opens there, the sample liquid reaching the opening portion on the connection terminal side overflows and the connection terminal is abruptly opened. It also has the effect of avoiding getting wet.

【0013】そして、2枚の絶縁性基板1a及び1bの
外形形状は、同図の如く切欠き部11a及び11bを有
することで、両方の絶縁性基板の接続端子を外部に露出
させることを可能にしている。また、各々切欠き部を有
する両絶縁性基板の外形形状は、電極系を有する内面側
から見て同一形状とすることで、製造時に抜き型を両基
板で共通使用することを可能にしている。
The outer shapes of the two insulating substrates 1a and 1b have cutouts 11a and 11b as shown in the figure, so that the connecting terminals of both insulating substrates can be exposed to the outside. I have to. Further, by making the outer shapes of both insulating substrates each having a notch part the same as seen from the inner surface side having the electrode system, it is possible to commonly use a punching die for both substrates at the time of manufacturing. .

【0014】本発明のバイオセンサは、上述の如く、2
枚の絶縁性基板から構成され、これら2枚の絶縁性基板
の両方に電極系を(例えば作用極と対極とが)、その電
極形成面が内側(反応室側)を向き対向する様に分離し
て設けたものであり、しかも両絶縁性基板の測定端子を
露出させて外部との接続を可能とすべく、両絶縁性基板
に切欠き部を設けた形状的な構造に基本的な特徴があ
る。その結果、2枚構成の絶縁性基板で片方に電極系を
設けた従来のバイオセンサに対して、不本意な部分が液
濡れしても接続端子部で導通せず、不慣れな個人でも使
い易いという利点が得られることとなる。また、片方の
絶縁性基板の電極に反応層が他方の絶縁性基板の電極に
は反応層を設けない構成において、測定装置本体側でバ
イオセンサの電極系に電位を印加する測定アルゴリズム
中に反応層を設けた電極がどちら側か判断する処理を組
み込んでおき(例えば、本測定用の電位を印加する前
に、反応層に用いられている電気化学的に活性を有する
物質、望ましくはメディエータに対して、それが持つ固
有の酸化還元電位の直前から酸化電位にかけて電位をど
ちらか一方の電極に迅速に印加・掃引し、その応答電流
の増分を計測する。顕著な増分が得られれば正しい電位
が正しい電極側に印加されたものと判断される。)、判
断後の正規の電位を正しい電極に直ちに印加する様にし
ておけば、測定のつど接続端子のある側を確認してから
測定装置に挿入する必要がなくなり、非常に使い易くな
る。なお、切欠き部形状を両絶縁性基板で意識的に異形
状として、センサを測定装置にセットする際の誤接続
(作用極と対極)防止対策の一つとしても良く。目視判
断で、或いは測定装置側で構造的に異形状を認識するこ
とも可能となる。また、切欠き部形状を両絶縁性基板
で、電極形成面側から見て同一形状とすると、製造方法
において絶縁性基板を所定形状に打ち抜く為の抜き型を
上下両基板で共通使用でき、低コスト化が図れる。
As described above, the biosensor of the present invention has two features.
It is composed of two insulating substrates, and an electrode system (for example, a working electrode and a counter electrode) is formed on both of these two insulating substrates, and the electrode forming surfaces are separated so as to face the inside (reaction chamber side) and face each other. The basic features of the geometrical structure in which the cutouts are provided in both insulating boards to expose the measurement terminals of both insulating boards and enable external connection. There is. As a result, compared with the conventional biosensor in which the electrode system is provided on one side of the two-layered insulating substrate, even if the undesired portion gets wet, the connection terminal portion does not conduct, and it is easy for an unfamiliar individual to use. Will be obtained. In addition, in the configuration where the reaction layer is not provided on the electrode of one insulating substrate and the reaction layer is provided on the electrode of the other insulating substrate, the reaction occurs during the measurement algorithm that applies the potential to the electrode system of the biosensor on the measuring device main body side. Incorporate a process for determining which side the electrode provided with the layer is (for example, before applying the potential for this measurement, to the electrochemically active substance used in the reaction layer, preferably the mediator). On the other hand, the potential is rapidly applied and swept to either one of the electrodes from immediately before its own redox potential to the oxidation potential, and the increment of the response current is measured. Is determined to have been applied to the correct electrode side.), And if the normal potential after the determination is applied to the correct electrode immediately, the side with the connection terminal should be checked after each measurement. There is no need to be inserted into, and very easy to use. It should be noted that the shape of the notch may be intentionally made different between the two insulating substrates to prevent erroneous connection (working electrode and counter electrode) when setting the sensor in the measurement device. It is also possible to visually recognize a structurally different shape on the measuring device side. Also, if the notch shape is the same shape when viewed from the electrode formation surface side on both insulating substrates, a punching die for punching the insulating substrate into a predetermined shape in the manufacturing method can be commonly used for both upper and lower substrates, Cost can be reduced.

【0015】電極系のパターン形状も、図1及び図2に
示す如く、両絶縁性基板で同一パターン形状とすること
で、通常、スクリーン印刷で行う電極系形成にて、印刷
版を共用できる。また、このことは製造過程で、上下両
方の絶縁性基板を区別せずに製造できるメリットが生
じ、低コスト化につながる。電極系は、通常、リード、
電極及び接続端子等の導体部分と、絶縁層等を構成要素
とするが、これらの内の一つでも同一パターン化すれば
その分のコストメリットが得られるし、全てを同一パタ
ーンとすれば(図1及び図2の例)、その効果はより大
きくなる。なかでもリードはその目的から同一パターン
化し易く、また、接続端子もリードと同一材料で同時形
成されることが多く、この場合、リードの一部と見なす
ことができる。なお、電極系のパターン形状が同一パタ
ーン形状とは、絶縁性基板上で同じ位置に同じ形状のも
のが有ることだが、同じ形状のものが基板上のずれた位
置にあるものでも、印刷版は共通化できる利点があり、
この意味も含む。
As shown in FIGS. 1 and 2, the pattern shape of the electrode system is the same for both insulating substrates, so that the printing plate can be commonly used in the electrode system formation usually performed by screen printing. Further, this brings about an advantage that the upper and lower insulating substrates can be manufactured without distinction in the manufacturing process, leading to cost reduction. The electrode system is usually a lead,
Conductive parts such as electrodes and connection terminals and insulating layers are components, but if one of these has the same pattern, the cost merit can be obtained, and if all of them have the same pattern ( 1 and 2), the effect becomes larger. Among them, the leads are easily formed into the same pattern for that purpose, and the connection terminals are often formed at the same time with the same material as the leads, and in this case, they can be regarded as a part of the leads. It should be noted that when the pattern shape of the electrode system is the same shape, it means that the same shape exists at the same position on the insulating substrate, but even if the same shape is at a shifted position on the substrate, the printing plate Has the advantage of being common,
This meaning is also included.

【0016】なお、絶縁性基板、電極系、反応層、スペ
ーサ等の材料及びそれらの形成は、従来公知の材料、方
法より用途に合ったものを適宜選択すれば良い。例え
ば、絶縁性基板には、ポリエチレンテレフタレート(以
下、PET)等からなる樹脂シート等を用いる。電極系
には、リード及び接続端子は銀や金等の金属含有の導電
性ペーストで、電極はカーボンペーストで、絶縁層は絶
縁性ペーストで、各々スクリーン印刷により形成すれば
良い。反応層は酵素センサでグルコースセンサとするな
らば、グルコースオキシダーゼを固定した層とすれば良
く、酵素含有インキのスクリーン印刷で、或いは塗液の
ディスペンサによる塗布で形成する。また、この他、例
えば検体試料液の滲み込みを制御する等の層があっても
良い。
Materials such as the insulating substrate, the electrode system, the reaction layer, and the spacers and their formation may be appropriately selected from materials and methods known in the art, which are suitable for the intended use. For example, a resin sheet made of polyethylene terephthalate (hereinafter PET) or the like is used for the insulating substrate. In the electrode system, the leads and the connection terminals may be conductive paste containing a metal such as silver or gold, the electrodes may be carbon paste, and the insulating layer may be an insulating paste, which may be formed by screen printing. If the enzyme sensor is used as a glucose sensor, the reaction layer may be a layer on which glucose oxidase is immobilized, and the reaction layer is formed by screen-printing an enzyme-containing ink or applying a coating liquid with a dispenser. In addition to this, there may be a layer for controlling the permeation of the sample liquid sample, for example.

【0017】スペーサは、PETシートを用い、PET
シートを介して接着剤で絶縁性基板同士を接着固定して
も良いが、空間部を形成すべく予め所定形状にしたシー
トを要する点で、少なくとも一方の絶縁性基板に(空間
部を形成する様なパターンに)印刷又は部分塗布により
形成したものを用いるのが、部品点数削減、低コスト化
の点で利点がある。印刷又は部分塗布なるスペーサの形
成手段は、用いる材料によって適宜選択すれば良い。印
刷は厚く形成できる点でスクリーン印刷が好適だが、該
印刷が不向きな材料は、例えば、ホットメルト等のアプ
リケータや、塗布用の版形状によって、部分的に塗布す
る。製造は通常、多面付けで行うが、隣接するセンサに
連なる連続ストライプ状、或いは隣接するセンサ間で不
連続な間欠的ストライプ状等とすれば、印刷が不向きな
材料の塗布形成も比較的容易にできる。印刷又は部分塗
布によるスペーサ材料としては、例えば、熱活性熱硬化
型粘着剤等のホットメルト型粘着剤、或いは熱活性熱硬
化型接着剤等のホットメルト型接着剤等のホットメルト
接着剤等が使用でき、これら樹脂成分としては例えばア
クリル系樹脂、シリコーンエラストマー等が用いられ
る。また、印刷適性、塗工適性等の向上に適宜、充填剤
等の添加剤を加える。そして、2枚の絶縁性基板を積層
して、熱、及び必要に応じて適度な圧力を加えれば、形
成されたスペーサが熱で活性化して、両絶縁性基板を接
着、固定する。また、粘着剤、或いは接着剤の一回の印
刷又は塗布で、絶縁性基板間を所望の間隔(電極系の厚
み分を空間部で収容でき反応層まで試料液を導き接触さ
せ得る間隔であれば良く、通常は50〜300μm程
度)にできる程度の厚みに形成できないときは、複数回
の印刷又は塗布を重ねて行っても良い。この場合、同一
材料とせず、厚み機能を受け持つ層を、接着機能を受け
持つ層が挟む様に形成しても良い。厚み機能を受け持つ
層には、熱で接着力が発現する機能は不要であり、厚盛
りができるスクリーン印刷インキ等であれば良く、例え
ば、厚盛り可能な絶縁性ペースト等でも良い。なお、反
応層形成後に、スペーサを形成する場合、スペーサから
測定妨害物質が仮に出たとしても反応層を保護できる様
に保護層で覆っておいても良い。例えば、グルコースオ
キシダーゼを含有する反応層の場合、リン脂質を含有す
るインキ又は塗液を印刷又は塗布しておく。
A PET sheet is used for the spacer, and PET is used.
The insulating substrates may be bonded and fixed to each other with an adhesive via a sheet, but since a sheet having a predetermined shape is required to form the space portion, at least one of the insulating substrates (the space portion is formed). It is advantageous to use a pattern formed by printing or partial coating (in such a pattern) in terms of reduction of the number of parts and cost reduction. The spacer forming means for printing or partial application may be appropriately selected depending on the material used. Screen printing is preferable because it can be formed thick, but a material that is not suitable for printing is partially applied by an applicator such as hot melt or a plate shape for application. Manufacturing is usually done by multiple faces, but if it is a continuous stripe shape that is continuous with adjacent sensors or an intermittent stripe shape that is discontinuous between adjacent sensors, it is relatively easy to apply and form materials that are not suitable for printing. it can. As the spacer material by printing or partial application, for example, a hot-melt adhesive such as a heat-activatable thermosetting adhesive or a hot-melt adhesive such as a hot-melt adhesive such as a thermoactive thermosetting adhesive is used. Acrylic resins and silicone elastomers can be used as these resin components. In addition, additives such as fillers are added as appropriate to improve printability and coating suitability. Then, two insulating substrates are laminated and heat and, if necessary, an appropriate pressure are applied, the formed spacers are activated by heat, and both insulating substrates are bonded and fixed. In addition, the adhesive or adhesive may be printed or applied once to provide a desired space between the insulating substrates (a space for accommodating the thickness of the electrode system in the space to allow the sample liquid to reach and contact the reaction layer). If it is not possible to form a film having a thickness of about 50 to 300 μm), printing or coating may be repeated a plurality of times. In this case, the layers having the thickness function may be sandwiched between the layers having the thickness function, instead of the same material. The layer having the thickness function does not need to have a function of exhibiting adhesive force by heat, and may be a screen printing ink or the like that can be thickly formed, for example, an insulating paste or the like that can be thickly formed. When the spacer is formed after the reaction layer is formed, it may be covered with a protective layer so that the reaction layer can be protected even if a measurement-interfering substance comes out of the spacer. For example, in the case of a reaction layer containing glucose oxidase, an ink or coating liquid containing phospholipid is printed or applied.

【0018】切欠き部を設けるには、両絶縁性基板積層
後では、対向する電極系を傷め易いので、積層前の状態
で打ち抜いて切り取るか、或いはハーフカットしてお
き、積層後に切り取る。切欠き部と絶縁性基板本体との
境界線に切り込みを入れて、完全に切欠き部を切り離し
ても良いが、ハーフカットとしておき、両絶縁性基板を
積層後に、切り離してもよい。なお、ハーフカットは、
片方の絶縁性基板としても良い。ハーフカットでは、切
欠き部のゴミが製造中に散らばるのを防げる利点があ
る。切り込みを入れる工程上でのタイミングは、電極
系、反応層、それに印刷又は部分塗布でスペーサを形成
する場合はスペーサも含めて、これら一連の形成工程の
前、途中、後のいずれでも良く、切り込みがこれら形成
に支障を来さなければ良い。例えば、その一つの形態は
全ての形成後である。多面付けの製造にて、スペーサを
隣接するセンサに連なる連続ストライプ状とし、それが
切欠き部を通過する場合は(後述図4)、切り込みをス
ペーサ形成後とすると、切欠き部に形成される不要なス
ペーサを削除することもできる。この際、対向する側の
絶縁性基板の方にスペーサを形成すると、接続端子の近
傍にスペーサが露出したままとなる。但し、この様なこ
とは、スペーサ形成を同じストライプ状でも(切欠き部
は形成しない)不連続化すれば起きない。なお、両絶縁
性基板にスペーサを形成する場合、ここでも同一形状と
すれば、印刷版等、両基板で共通化の利点が得られる。
In order to provide the cutout portion, the electrode systems facing each other are likely to be damaged after the both insulating substrates are laminated. Therefore, the notched portion is punched out or cut in a state before lamination, or half-cut and cut after lamination. Although the notch may be cut completely at the boundary between the notch and the insulating substrate body, the notch may be cut completely, or may be cut halfway and the two insulating substrates may be separated after being laminated. In addition, half cut is
One of the insulating substrates may be used. Half-cutting has the advantage of preventing dust in the cutouts from being scattered during manufacturing. The timing of the step of making a notch may be before, during, or after the series of forming steps, including the electrode system, the reaction layer, and the spacer when the spacer is formed by printing or partial coating. However, it does not hinder the formation of these. For example, one form is after all formations. In the multi-sided manufacturing, when the spacer is formed into a continuous stripe shape continuous with the adjacent sensor and passes through the cutout portion (FIG. 4 described later), if the cutout is formed after forming the spacer, it is formed in the cutout portion. It is also possible to remove unnecessary spacers. At this time, if a spacer is formed on the opposite insulating substrate, the spacer remains exposed in the vicinity of the connection terminal. However, such a phenomenon does not occur if the spacer formation is discontinuous even if the spacers are formed in the same stripe shape (no notch is formed). In the case of forming spacers on both insulating substrates, if the spacers are formed in the same shape, the advantage of being common to both substrates such as printing plates can be obtained.

【0019】次に、上述したバイオセンサを製造する、
本発明の製造方法は、一つには接続端子露出用の切欠き
部を設ける方法であり、これを実際的な多面付けによる
製造にて実用することにある。また、2枚の絶縁性基板
で切欠き部形状、電極系のパターン形状等を同一形状に
形成し、スペーサも印刷又は部分的塗布で形成し、ま
た、切欠き部の形成にハーフカットを利用する製造方法
でもある。その製造方法の一つの形態が図4に示す製造
工程であり、同図は、多面付けの製造を想定し、図4
(a)〔以下、「図4」は省略〕などで破線にて示す長
方形(切欠き部分は無視して)は、一つのセンサとなる
部分の絶縁性基板の外形形状を意味する。図4に示す製
造工程では、同一形状の切欠き部、同一形状の(最終的
な)絶縁性基板、同一形状の電極系(リード、電極、接
続端子及び絶縁層)、印刷又は部分形成によるスペーサ
形成を行う場合である。また、スペーサは両基板に同一
形状で形成する場合である。
Next, the above-mentioned biosensor is manufactured.
One of the manufacturing methods of the present invention is a method of providing a notch for exposing a connection terminal, which is to be put to practical use in manufacturing by practical multi-sided attachment. In addition, the shape of the notch and the pattern of the electrode system are formed in the same shape on two insulating substrates, the spacer is also formed by printing or partial coating, and half cut is used to form the notch. It is also a manufacturing method. One form of the manufacturing method is the manufacturing process shown in FIG. 4, which is based on the assumption of multi-sided manufacturing.
(A) [Hereinafter, "FIG. 4" is omitted] and the like shown by a broken line in a rectangle (ignoring the cutout portion) means the outer shape of the insulating substrate of a portion which becomes one sensor. In the manufacturing process shown in FIG. 4, a cutout portion having the same shape, a (final) insulating substrate having the same shape, an electrode system (leads, electrodes, connection terminals and insulating layers) having the same shape, a spacer formed by printing or partial formation. This is the case of forming. In addition, the spacers are formed on both substrates in the same shape.

【0020】先ず、絶縁性基板1を用意し(a)、接続
端子23も兼用するリード21を形成し(b)、次いで
電極22を形成し(c)、次に絶縁層5を形成して、最
終的な電極(露出)形状として電極系を形成する
(d)。ここまでは、上下2枚の絶縁性基板は共通に扱
われる。次に、一方の基板には電極上に反応層3を形成
する(e)。そして、反応層を形成した基板にスペーサ
4を形成し(f−1)、また他方の基板にも同一形状で
スペーサ4を形成する(f−2)。これらの基板に切欠
き部11を打ち抜いて切り離す(g−1)及び(g−
2)。なお、排出口を設ける場合は、この工程で同時に
片方の基板に穿設しても良い。そして、上下2枚の絶縁
性基板を積層して熱圧を加え、スペーサにて接着・固定
後、周囲を打ち抜いて最終的なセンサの外形形状にし、
一つのバイオセンサとする(h)。
First, the insulating substrate 1 is prepared (a), the leads 21 which also serve as the connection terminals 23 are formed (b), the electrodes 22 are formed (c), and then the insulating layer 5 is formed. An electrode system is formed as a final electrode (exposed) shape (d). Up to this point, the upper and lower insulating substrates are commonly handled. Next, the reaction layer 3 is formed on the electrodes on one of the substrates (e). Then, the spacer 4 is formed on the substrate on which the reaction layer is formed (f-1), and the spacer 4 having the same shape is formed on the other substrate (f-2). The notch 11 is punched out and separated from these substrates (g-1) and (g-
2). When the discharge port is provided, one substrate may be formed at the same time in this step. Then, two upper and lower insulating substrates are laminated, heat and pressure are applied, and after bonding and fixing with spacers, the periphery is punched out to form the final sensor outer shape,
One biosensor (h).

【0021】なお、図5は、多面付けで切欠き部11a
及び11bを設けて製造する場合に、切欠き部と絶縁性
基板本体との境界線12a及び12bに入れる切り込み
の形状の一形態を示すと共に、最終的にセンサの外形形
状とする際の抜き形状13を示す説明図である。なお、
同図は説明上、縦横4面部分を抜き出したものであり、
実際にはどの切欠き部も四方が囲まれた四辺形形状であ
る。なお、多面付けの場合、通常は各センサ形状の周囲
に余白を設けて隣接配置する。したがって、製造方法に
おいて、切欠き部の形状、切欠き部と絶縁性基板本体部
分との少なくとも境界に入れる切り込み、の意味を余白
との関係でも明確にしておく。切り込みはこの余白部分
まで延長して入れることで、最終的にセンサ形状に打ち
抜く時に多少ずれても、綺麗に外形がつながって切断で
きる。同様に、切欠き部を予め切断して削除する場合
も、余白まで多少含めた形とする。したがって、切欠き
部を削除した後の形状は、余白も多少含めた形状とな
る。製造方法で切欠き部の形状が両基板で同一形状との
意味は、基本的にはこの余白は除いた部分の仮想的な形
状を少なくとも意味する。もちろん、余白内の切り込み
形状が同一であれば、余白も含めた形状でも良い。
In FIG. 5, the cutout portion 11a is provided in a multifaceted manner.
And 11b are provided, a form of a notch formed in the boundary lines 12a and 12b between the notch and the insulating substrate main body is shown, and a final shape for forming the outer shape of the sensor is shown. It is explanatory drawing which shows 13. In addition,
For the sake of explanation, this figure shows four vertical and horizontal sides extracted,
In reality, each notch has a quadrilateral shape with four sides enclosed. In the case of multi-sided mounting, usually, a space is provided around each sensor shape and the sensor shapes are arranged adjacent to each other. Therefore, in the manufacturing method, the shape of the cutout portion and the meaning of the cutout formed at least at the boundary between the cutout portion and the insulating substrate body portion are clarified in relation to the blank space. By extending the cut to this margin, even if it is slightly misaligned when finally punching into the sensor shape, the external shape can be connected and cut cleanly. Similarly, when the cutout portion is cut and deleted in advance, the margin is slightly included. Therefore, the shape after the notch is removed is a shape that includes some margins. In the manufacturing method, the meaning that the shape of the cutout portion is the same on both substrates basically means at least a virtual shape of the portion excluding this margin. Of course, if the cut shape in the margin is the same, the shape including the margin may be used.

【0022】[0022]

【実施例】次に、一実施例により本発明を説明する。本
実施例は、図4に示す形状及び構造のバイオセンサを多
面付けで製造するものであり、切欠き部の有る上下の絶
縁性基板の外形形状、電極系、及び該基板に形成するス
ペーサ形状は同一形状である。先ず、絶縁性基板として
250μm厚のPETシートに、銀ペーストをスクリー
ン印刷後、焼成して、リード及び接続端子を形成し、次
にカーボンペーストをスクリーン印刷後、焼成して電極
を形成し、さらに、絶縁性ペーストをスクリーン印刷
後、焼成して絶縁層を形成して、電極系を形成する。次
いで、切欠き部を打ち抜いて分離する。得られたシート
は切欠き部を開口し上下両方の絶縁性基板に共用とな
る。そして、片側の基板となるシートにはその電極部分
に、グルコースオキシダーゼとフェロセンカルボン酸の
混合インキをスクリーン印刷後、乾燥し反応層を形成す
る。次いで対極となる他方のシート及び反応層にて作用
極となるシートの各々に図4に示す様に、熱活性熱硬化
型粘着剤からなるインクをスクリーン印刷、乾燥してス
ペーサを形成する(なお、どちらか一方にまとめてスペ
ーサを形成して製造することもできる)。次いで、両方
のシートを重ね合わせて、熱圧によりスペーサで接着、
積層して固定後、打ち抜いて最終的なセンサ形状とす
る。
EXAMPLES Next, the present invention will be explained with reference to examples. In this example, the biosensor having the shape and structure shown in FIG. 4 is manufactured by multi-sided attachment, and the outer shapes of the upper and lower insulating substrates having the notches, the electrode system, and the spacer shape formed on the substrate are formed. Have the same shape. First, a silver paste is screen-printed on a 250 μm-thick PET sheet as an insulating substrate and then fired to form leads and connection terminals, and then a carbon paste is screen-printed and fired to form electrodes. After the insulating paste is screen-printed, it is baked to form an insulating layer, thereby forming an electrode system. Then, the notch is punched out and separated. The obtained sheet has a notch portion opened and is used as both upper and lower insulating substrates. Then, a mixed ink of glucose oxidase and ferrocenecarboxylic acid is screen-printed on the electrode portion of the sheet serving as the substrate on one side and then dried to form a reaction layer. Then, as shown in FIG. 4, the other sheet serving as the counter electrode and the sheet serving as the working electrode in the reaction layer are screen-printed with ink containing a heat-activatable thermosetting adhesive and dried to form spacers (note that , Can also be manufactured by forming a spacer on either one of them). Then, stack both sheets and bond them with a spacer by heat and pressure.
After stacking and fixing, punching is performed to obtain the final sensor shape.

【0023】[0023]

【発明の効果】本発明によれば、バイオセンサを少量の
試料で容易に測定でき、且つ使い易くて安価なディスポ
ーザプルタイプのものとできる。2枚の絶縁性基板の外
形形状、リード等の電極系のパターンを同一形状すれ
ば、製造工程を両基板で共通化でき、両基板のそれぞれ
に電極系を設けても安価なセンサとできる。また、スペ
ーサを印刷又は部分的塗布のスペーサとすれば、スペー
サシートが不要で構成部品数を減らせ、安価なセンサに
できる。また、本発明の製造方法によれば、上記バイオ
センサを効率的に製造できる。外形形状、電極系パター
ンの同一形状化で上下両方の絶縁性基板の製造を途中ま
で共通化でき、共通の印刷版、共通の抜き型が使用で
き、コスト低減効果が得られる。さらに、接続端子露出
用の切欠き部の切断をハーフカットで行えば、切欠き部
のゴミが製造中に散らばるを防げ製造が容易となる。
Industrial Applicability According to the present invention, the biosensor can be easily measured with a small amount of sample, and it can be used easily and inexpensively. If the outer shape of the two insulating substrates and the pattern of the electrode system such as leads are the same, the manufacturing process can be shared by both substrates, and even if the electrode systems are provided on both substrates, an inexpensive sensor can be obtained. Further, if the spacers are printed or partially applied spacers, a spacer sheet is not required, so that the number of constituent parts can be reduced and an inexpensive sensor can be obtained. Further, according to the manufacturing method of the present invention, the biosensor can be efficiently manufactured. By making the outer shape and the electrode system pattern the same shape, manufacturing of both upper and lower insulating substrates can be made common, a common printing plate and a common cutting die can be used, and a cost reduction effect can be obtained. Further, if the notch for exposing the connection terminal is cut by a half cut, dust in the notch can be prevented from being scattered during manufacturing, and the manufacturing can be facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のバイオセンサの一実施例の構造を示す
分解斜視図。
FIG. 1 is an exploded perspective view showing a structure of an embodiment of a biosensor of the present invention.

【図2】図1の本発明のバイオセンサの外観図。FIG. 2 is an external view of the biosensor of the present invention in FIG.

【図3】図1の本発明のバイオセンサのA−A線(図
2)での断面図。
3 is a cross-sectional view taken along line AA (FIG. 2) of the biosensor of the present invention in FIG.

【図4】本発明のバイオセンサの製造方法の一形態とし
て多面付けを想定した工程説明図。(a)センサ形状に
周囲を未カットの絶縁性基板、(b)リード形成、
(c)電極形成、(d)絶縁層形成、(e)反応層形
成、(f−1,2)スペーサ形成、(g−1,2)切欠
き部の境界に切り込み形成、(h)上下基板を積層、接
着した後、周囲をセンサ形状に打ち抜き。
FIG. 4 is a process explanatory view assuming multi-faced attachment as one form of the biosensor manufacturing method of the present invention. (A) Insulating substrate whose periphery is not cut in the shape of the sensor, (b) Lead formation,
(C) Electrode formation, (d) Insulation layer formation, (e) Reaction layer formation, (f-1, 2) Spacer formation, (g-1, 2,) Notch formation at boundary of notch, (h) Top and bottom After stacking and adhering the substrates, the surrounding area is punched out into a sensor shape.

【図5】本発明のバイオセンサの製造方法を多面付けで
行う際の切欠き部の説明図。
FIG. 5 is an explanatory view of a cutout portion when the method for manufacturing a biosensor of the present invention is performed in multiple faces.

【図6】従来のバイオセンサの構造の一例を示す分解斜
視図。
FIG. 6 is an exploded perspective view showing an example of the structure of a conventional biosensor.

【図7】図6の従来のバイオセンサの外観図。FIG. 7 is an external view of the conventional biosensor of FIG.

【図8】図6の従来のバイオセンサのA−A線(図7)
での断面図。
8 is a line AA of the conventional biosensor of FIG. 6 (FIG. 7).
Sectional view at.

【符号の説明】[Explanation of symbols]

1,1a,1b 絶縁性基板 11a,11b 切欠き部 12 切欠き部と絶縁性基板本体との境界線 13 センサの外形形状とする際の打ち抜き形状 21 リード 22 電極 221 作用極 222 対極 23 接続端子 3 反応層 4 スペーサ 5 絶縁層 6 空間部 61 導入口 62 排出口 10 バイオセンサ 91a シート(基板) 91b シート(カバーシート) 921 リード 922,922a 電極 923 接続端子 94 絶縁層 95 反応層 96 空間部 97 スペーサシート 98 導入口 99 排出口 1, 1a, 1b Insulating substrate 11a, 11b Notch 12 Boundary between notch and insulating substrate body 13 Punching shape when forming the outer shape of sensor 21 Lead 22 Electrode 221 Working electrode 222 Counter electrode 23 Connection terminal 3 Reaction Layer 4 Spacer 5 Insulating Layer 6 Space 61 Inlet 62 Outlet 10 Biosensor 91a Sheet (Substrate) 91b Sheet (Cover Sheet) 921 Lead 922, 922a Electrode 923 Connection Terminal 94 Insulating Layer 95 Reaction Layer 96 Space 97 Spacer sheet 98 Inlet port 99 Outlet port

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも絶縁性基板と、該基板上に設
けられた電極系と、2枚の絶縁性基板間に設けられた空
間部に面する反応層とを有するバイオセンサにおいて、 2枚の絶縁性基板の形状が、対向する絶縁性基板が有す
る接続端子を露出させる為の切欠き部を有する外形形状
を成し、両絶縁性基板の接続端子がそれぞれ表裏逆向き
に露出していることを特徴とするバイオセンサ。
1. A biosensor having at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer facing a space provided between the two insulating substrates. The shape of the insulating board has an outer shape with a cutout for exposing the connecting terminals of the opposing insulating board, and the connecting terminals of both insulating boards are exposed in opposite directions. A biosensor characterized by.
【請求項2】 片面に電極及び接続端子を有する2枚の
絶縁性基板同士が、空間部を残す様にスペーサを介して
接着、積層されていることを特徴とする請求項1記載の
バイオセンサ。
2. The biosensor according to claim 1, wherein two insulating substrates each having an electrode and a connection terminal on one surface are bonded and laminated via a spacer so as to leave a space. .
【請求項3】 2枚の絶縁性基板の外形形状が、その電
極形成面側から見て同一形状であることを特徴とする請
求項1又は2記載のバイオセンサ。
3. The biosensor according to claim 1, wherein the two insulating substrates have the same outer shape when viewed from the electrode forming surface side.
【請求項4】 2枚の絶縁性基板のそれぞれの電極系に
ついて、該電極系を構成する、電極及び接続端子に接続
されるリード、電極、接続端子、及び絶縁層の中の1以
上が、絶縁性基板の電極形成面側から見て、同一パター
ン形状であることを特徴とする請求項1〜3のいずれか
1項に記載のバイオセンサ。
4. For each electrode system of the two insulating substrates, one or more of leads, electrodes, connection terminals, and insulating layers, which constitute the electrode system, are connected to electrodes and connection terminals, The biosensor according to any one of claims 1 to 3, wherein the biosensor has the same pattern shape when viewed from the electrode formation surface side of the insulating substrate.
【請求項5】 上記同一パターン形状の構成要素が、少
なくともリードであることを特徴とする請求項4記載の
バイオセンサ。
5. The biosensor according to claim 4, wherein the components having the same pattern shape are at least leads.
【請求項6】 上記同一パターン形状の構成要素が、リ
ード、電極、接続端子、及び絶縁層であることを特徴と
する請求項4記載のバイオセンサ。
6. The biosensor according to claim 4, wherein the constituent elements having the same pattern shape are a lead, an electrode, a connection terminal, and an insulating layer.
【請求項7】 スペーサが、少なくとも片方の絶縁性基
板に印刷又は部分的塗布により形成されたものによるこ
とを特徴とする請求項1〜6のいずれか1項に記載のバ
イオセンサ。
7. The biosensor according to claim 1, wherein the spacer is formed by printing or partial application on at least one insulating substrate.
【請求項8】 少なくとも絶縁性基板と、該基板上に設
けられた電極系と、2枚の絶縁性基板間に設けられた空
間部に面する反応層とを有するバイオセンサの製造方法
において、 該バイオセンサは、片面に電極及び接続端子を有する2
枚の絶縁性基板同士が、空間部を残す様にスペーサを介
して接着、積層され、これら2枚の絶縁性基板の外形形
状が、対向する絶縁性基板が有する接続端子を露出させ
る為の切欠き部を有する形状を成すものであり、 絶縁性基板に、電極系及び反応層を形成する工程前、工
程中又は工程後に、絶縁性基板同士を対向させて積層し
た時に対向する絶縁性基板の接続端子を露出させる為の
切欠き部と、該切欠き部を残した絶縁性基板の本体部分
との少なくとも境界に切り込みを入れ、 次いで、2枚の絶縁性基板同士を重ね合わせてスペーサ
にて接着、積層した後、両絶縁性基板を所定のセンサ形
状に切断し、両絶縁性基板の接続端子をそれぞれ上記切
欠き部で表裏逆向きに露出させることを特徴とするバイ
オセンサの製造方法。
8. A method for manufacturing a biosensor comprising at least an insulating substrate, an electrode system provided on the substrate, and a reaction layer facing a space provided between the two insulating substrates, The biosensor has an electrode and a connection terminal on one side.
The two insulating substrates are bonded and laminated via a spacer so as to leave a space, and the outer shapes of these two insulating substrates are cut to expose the connection terminals of the opposing insulating substrates. The shape of the insulating substrate is such that it has a notched portion, and when the insulating substrates are laminated facing each other before, during, or after the step of forming the electrode system and the reaction layer on the insulating substrate, A cut is made at least at the boundary between the notch for exposing the connection terminal and the main body of the insulating substrate where the notch is left, and then two insulating substrates are overlapped with each other with a spacer. After adhering and laminating, both insulating substrates are cut into a predetermined sensor shape, and the connection terminals of both insulating substrates are exposed in the cutout portions in opposite directions.
【請求項9】 切欠き部の形状を、センサ形状に切断後
の両絶縁性基板が電極形成面側から見て同一形状となる
様な形状にして製造することを特徴とする請求項8記載
のバイオセンサの製造方法。
9. The manufacturing method according to claim 8, wherein the notch is formed so that both insulating substrates after being cut into a sensor shape have the same shape when viewed from the electrode formation surface side. Biosensor manufacturing method.
【請求項10】 2枚の絶縁性基板のそれぞれの電極系
について、該電極系を構成する、電極及び接続端子に接
続されるリード、電極、接続端子、及び絶縁層の中の1
以上について、絶縁性基板の電極形成面側から見て、同
一パターン形状に形成することを特徴とする請求項8又
は9記載のバイオセンサの製造方法。
10. For each of the electrode systems of the two insulating substrates, one of the lead, the electrode, the connection terminal, and the insulating layer, which constitutes the electrode system, is connected to the electrode and the connection terminal.
10. The method for manufacturing a biosensor according to claim 8 or 9, wherein the same pattern shape is formed as seen from the electrode formation surface side of the insulating substrate.
【請求項11】 少なくともリードを、同一パターン形
状に形成することを特徴とする請求項10記載のバイオ
センサの製造方法。
11. The method for manufacturing a biosensor according to claim 10, wherein at least the leads are formed in the same pattern shape.
【請求項12】 リード、電極、接続端子、及び絶縁層
を、同一パターン形状に形成することを特徴とする請求
項10記載のバイオセンサの製造方法。
12. The method for manufacturing a biosensor according to claim 10, wherein the lead, the electrode, the connection terminal, and the insulating layer are formed in the same pattern shape.
【請求項13】 切欠き部の境界に入れる切り込みを、
絶縁性基板の厚み方向の一部を残すハーフカットで行
い、2枚の絶縁性基板同士を重ね合わせて接着、積層し
た後に、該ハーフカットによる切り込みを完全分離し
て、切欠き部を切り離すことを特徴とする請求項8〜1
2のいずれか1項に記載のバイオセンサの製造方法。
13. A notch formed at the boundary of the notch,
Performing a half-cut that leaves a part of the insulating substrate in the thickness direction, and after overlapping and adhering and stacking two insulating substrates, completely cut the cut by the half-cut and cut off the notch. 8. The method according to claim 8, wherein
2. The method for manufacturing the biosensor according to any one of 2 above.
【請求項14】 スペーサを、少なくとも片方の絶縁性
基板に印刷又は部分的塗布により形成し、切欠き部と絶
縁性基板の本体部分との少なくとも境界に入れる切り込
みは、スペーサの形成工程の前又は後に行うことを特徴
とする請求項8〜13のいずれか1項に記載のバイオセ
ンサの製造方法。
14. A spacer is formed on at least one of the insulating substrates by printing or partial coating, and a notch formed at least at the boundary between the notch and the main body of the insulating substrate is formed before or after the spacer forming step. The method for manufacturing a biosensor according to any one of claims 8 to 13, which is performed later.
JP7337703A 1995-12-04 1995-12-04 Bio sensor and its manufacturing method Pending JPH09159642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337703A JPH09159642A (en) 1995-12-04 1995-12-04 Bio sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337703A JPH09159642A (en) 1995-12-04 1995-12-04 Bio sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH09159642A true JPH09159642A (en) 1997-06-20

Family

ID=18311174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337703A Pending JPH09159642A (en) 1995-12-04 1995-12-04 Bio sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH09159642A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
WO2002008743A1 (en) * 2000-07-24 2002-01-31 Matsushita Electric Industrial Co., Ltd. Biosensor
WO2003076919A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Substrate determining method
EP1357194A3 (en) * 2002-04-26 2004-01-02 Matsushita Electric Industrial Co., Ltd. Adapter for the connection of a biosensor to a measuring device
JP2005003679A (en) * 2003-06-09 2005-01-06 I-Sens Inc Electrochemical biosensor
JP2005043345A (en) * 2003-06-12 2005-02-17 Bayer Healthcare Llc Sensor format and constituting method of capillary filling diagnosing sensor
US6893545B2 (en) 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
US6969450B2 (en) 2002-07-18 2005-11-29 Matsushita Electric Industrial Co., Ltd. Biosensor and measuring apparatus for biosensor
WO2005124329A1 (en) * 2004-06-22 2005-12-29 Sumitomo Electric Industries, Ltd. Sensor chip and manufacturing method thereof
US7041210B2 (en) 1997-03-25 2006-05-09 Lifescan, Inc. Method of filling an amperometric cell
US7045046B2 (en) 1997-03-21 2006-05-16 Lifescan, Inc. Sensor connection means
JP2006184270A (en) * 2004-12-03 2006-07-13 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2007178446A (en) * 2007-03-05 2007-07-12 Therasense Inc Biosensor
JP2007232628A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Biosensor
JP2008509406A (en) * 2004-08-13 2008-03-27 エゴメディカル テクノロジーズ アクチエンゲゼルシャフト Analyte testing system for quantifying analyte concentration in physiological or aqueous liquids
US7563350B2 (en) * 1998-10-08 2009-07-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
JP2010243515A (en) * 2010-08-06 2010-10-28 Abbott Diabetes Care Inc Biosensor
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US7045046B2 (en) 1997-03-21 2006-05-16 Lifescan, Inc. Sensor connection means
US7041210B2 (en) 1997-03-25 2006-05-09 Lifescan, Inc. Method of filling an amperometric cell
US7998336B2 (en) 1997-09-12 2011-08-16 Abbott Diabetes Care Inc. Biosensor
US7918988B2 (en) 1997-09-12 2011-04-05 Abbott Diabetes Care Inc. Biosensor
US7713406B2 (en) 1997-09-12 2010-05-11 Abbott Diabetes Care Inc. Biosensor
US7901554B2 (en) 1997-09-12 2011-03-08 Abbott Diabetes Care Inc. Biosensor
US6893545B2 (en) 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
US8557103B2 (en) 1997-09-12 2013-10-15 Abbott Diabetes Care Inc. Biosensor
US8414761B2 (en) 1997-09-12 2013-04-09 Abbott Diabetes Care Inc. Biosensor
US7905998B2 (en) 1997-09-12 2011-03-15 Abbott Diabetes Care Inc. Biosensor
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US7563350B2 (en) * 1998-10-08 2009-07-21 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
CN100339701C (en) * 2000-07-24 2007-09-26 松下电器产业株式会社 Biosensor
WO2002008743A1 (en) * 2000-07-24 2002-01-31 Matsushita Electric Industrial Co., Ltd. Biosensor
US6885196B2 (en) 2000-07-24 2005-04-26 Matsushita Electric Industrial Co., Ltd. Biosensor
WO2003076919A1 (en) * 2002-03-08 2003-09-18 Matsushita Electric Industrial Co., Ltd. Substrate determining method
EP1357194A3 (en) * 2002-04-26 2004-01-02 Matsushita Electric Industrial Co., Ltd. Adapter for the connection of a biosensor to a measuring device
US6969450B2 (en) 2002-07-18 2005-11-29 Matsushita Electric Industrial Co., Ltd. Biosensor and measuring apparatus for biosensor
JP2005003679A (en) * 2003-06-09 2005-01-06 I-Sens Inc Electrochemical biosensor
JP2005043345A (en) * 2003-06-12 2005-02-17 Bayer Healthcare Llc Sensor format and constituting method of capillary filling diagnosing sensor
WO2005124329A1 (en) * 2004-06-22 2005-12-29 Sumitomo Electric Industries, Ltd. Sensor chip and manufacturing method thereof
JP2008509406A (en) * 2004-08-13 2008-03-27 エゴメディカル テクノロジーズ アクチエンゲゼルシャフト Analyte testing system for quantifying analyte concentration in physiological or aqueous liquids
JP2006184270A (en) * 2004-12-03 2006-07-13 Sumitomo Electric Ind Ltd Sensor chip and manufacturing method therefor
JP2007232628A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Biosensor
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2007178446A (en) * 2007-03-05 2007-07-12 Therasense Inc Biosensor
JP2010243515A (en) * 2010-08-06 2010-10-28 Abbott Diabetes Care Inc Biosensor

Similar Documents

Publication Publication Date Title
JPH09159642A (en) Bio sensor and its manufacturing method
US6863801B2 (en) Electrochemical cell
KR100628860B1 (en) Electrochemical Sensor
EP0878708B1 (en) Electrochemical Biosensor having a lid
US6521110B1 (en) Electrochemical cell
KR100955587B1 (en) Electrochemical cell
AU2001276888B2 (en) Antioxidant sensor
KR100340174B1 (en) Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
EP1145000B1 (en) Small volume in vitro analyte sensor
US6174420B1 (en) Electrochemical cell
AU2002367214B9 (en) Micro-band electrode
JP4501793B2 (en) Biosensor
MXPA02008087A (en) Electrochemical test strip cards that include an integral dessicant.
JPH09159644A (en) Biosensor and manufacture thereof
KR20070027607A (en) Electrochemical cell and method of making an electrochemical cell
JP2002340840A (en) Biosensor
AU2001276888A1 (en) Antioxidant sensor
WO2007133457A2 (en) Electrochemical test sensor with reduced sample volume
JPH09166571A (en) Biosensor and manufacture thereof
US20060008581A1 (en) Method of manufacturing an electrochemical sensor
JP2000258382A (en) Specimen small-quantity-type bio sensor
JPH11125618A (en) Biosensor
JP2001208715A (en) Biosensor and method and apparatus for quantitative determination using the same
AU738128B2 (en) Electrochemical cell
IL153584A (en) Antioxidant sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030826