JPH09145638A - Method and device for detecting surface defect - Google Patents

Method and device for detecting surface defect

Info

Publication number
JPH09145638A
JPH09145638A JP7305941A JP30594195A JPH09145638A JP H09145638 A JPH09145638 A JP H09145638A JP 7305941 A JP7305941 A JP 7305941A JP 30594195 A JP30594195 A JP 30594195A JP H09145638 A JPH09145638 A JP H09145638A
Authority
JP
Japan
Prior art keywords
data
traveling direction
inspected
dimensional image
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7305941A
Other languages
Japanese (ja)
Inventor
Koji Kondo
孝司 近藤
Susumu Moriya
進 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7305941A priority Critical patent/JPH09145638A/en
Publication of JPH09145638A publication Critical patent/JPH09145638A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect streak like surface defects by accumulating 2-D picture data obtained by, whole irradiating in the travel direction, photodetecting the reflected light from a to-be-examined area and correcting distorting in data caused by irregularity in illumination in the width direction contained in the obtained travel direction accumulation data. SOLUTION: A lighting device 2 illuminates a molten galvanized steel plate which is a to-be-examined material 1 traveling in the longitudinal direction and the inside of a to-be-examined area 13 of the material 1, in the constant illumination in the longitudinal direction compared to the width direction orthogonal to the former. A 2-D CCD camera 3 photodetects a reflection light 13a from the area 13, to generate 2-D picture data representing each pixel of the 2-D picture in the area 13. A data accumulation means 4 accumulates the 2-D picture data obtained from the camera 3 in the longitudinal direction of the material 1, to generate travel direction accumulation data. A data distortion correcting means 5 corrects the data distortion caused by irregular illumination in the width direction of the area 13 contained in the travel direction accumulation data. A surface defect detecting means 6 detects streak like surface defects based on the corrected data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、走行中の被検査材
の、走行方向に沿って筋状に延びた表面欠陥を検出する
表面欠陥検査方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection method and apparatus for detecting surface defects of a material to be inspected that is running and extends linearly in the running direction.

【0002】[0002]

【従来の技術】自動車、家電などの分野に用いられる表
面処理鋼板を製造するための溶融亜鉛めっき工程及びそ
の前工程において、鋼板の走行方向に沿って筋状に延び
た表面欠陥が発生することがある。これは製品品質にと
って致命的な欠陥となるので、オンライン工程における
走行中の鋼板の欠陥をいち早く検出し、欠陥が検出され
次第、操業条件を変更するなど必要な処置を施してそれ
以上の欠陥の発生を防止することが重要な課題となる。
その際、適切な処置を施こすためには、欠陥の発生の有
無を検出するだけではなく、その欠陥の程度(以下、欠
陥レベルと呼ぶ)を的確に判定する必要がある。
2. Description of the Related Art In the hot dip galvanizing process for producing surface-treated steel sheets used in the fields of automobiles, home appliances, and the pre-process thereof, surface defects extending linearly along the running direction of the steel sheet occur. There is. Since this is a fatal defect for product quality, defects in the running steel sheet in the online process can be detected promptly, and as soon as a defect is detected, necessary measures such as changing the operating conditions can be taken to detect further defects. Preventing the occurrence is an important issue.
At that time, in order to take appropriate measures, it is necessary not only to detect the occurrence of a defect but also to accurately determine the degree of the defect (hereinafter, referred to as a defect level).

【0003】このような走行方向に沿って筋状に延びた
表面欠陥が発生するのは表面処理鋼板だけではなく、他
の鋼板、アルミニウム板、紙などにおいても見られる
が、自動車に用いられる溶融亜鉛鍍金鋼板の色調欠陥の
場合は、欠陥部と健全部との色調の差が極めて小さいた
め、欠陥の有無の検出及び欠陥レベルの判定が特に難し
い。
It is not only the surface-treated steel sheet that the surface defects extending in a streak pattern along the running direction occur, but also other steel sheets, aluminum sheets, papers, etc. In the case of a color tone defect of a zinc-plated steel sheet, it is particularly difficult to detect the presence / absence of a defect and determine the defect level because the difference in color tone between the defect portion and the sound portion is extremely small.

【0004】このような僅かな色調の差に基づいて欠陥
を検出する場合、被検査材表面の被検査領域に照度むら
があると、欠陥レベルの判定はさらに難しくなる。被検
査領域の照度むらをなくすには、被検査領域を照らす光
源の照明むらをなくせばよいが、そのためには、多点照
明方式の照明設備あるいは二次元的な照度むらを減らす
複雑なレンズ系を用いた照明設備を建設するなどの大規
模な設備投資が避けられず、いずれも大幅なコストアッ
プを招く恐れがある。
In the case of detecting a defect based on such a slight difference in color tone, if there is uneven illuminance in the inspection area on the surface of the inspection material, it becomes more difficult to determine the defect level. In order to eliminate the uneven illuminance of the area to be inspected, it is sufficient to eliminate the uneven illumination of the light source that illuminates the area to be inspected.To do so, a multi-point lighting system or a complex lens system that reduces uneven illumination in two dimensions Large-scale capital investment, such as construction of lighting equipment using, is unavoidable, and there is a risk of significant cost increases.

【0005】そこで、従来、上記のような走行方向に沿
って筋状に延びた表面欠陥を検出するに当たり、被検査
材表面の走行方向及びこれに交わる幅方向いずれの方向
にも照度むらが存在する場合は、被検査材表面を二次元
撮像器で撮像して得た二次元画像中に含まれる被検査材
の走行方向及び幅方向の照度むらを画像処理によって同
時に補正した後、欠陥の延びる走行方向に二次元画像信
号を積算処理して欠陥部と健全部の濃度差を強調し欠陥
を検出するのが普通である。
Therefore, conventionally, in detecting a surface defect extending linearly along the traveling direction as described above, there is uneven illuminance in both the traveling direction of the surface of the material to be inspected and the width direction intersecting with the traveling direction. In this case, the unevenness of the illuminance in the running direction and the width direction of the material to be inspected included in the two-dimensional image obtained by imaging the surface of the material to be inspected with the two-dimensional imager is simultaneously corrected by the image processing, and then the defect is extended. It is common to detect a defect by integrating the two-dimensional image signal in the traveling direction and emphasizing the density difference between the defective part and the sound part.

【0006】この場合、照度むらの補正は、全画像デー
タに二次元の平滑化処理を施し、平滑化処理後の画像と
原画像との差分をとることにより、照明むらの主成分で
ある低周波の濃度変化を除去することにより行われる。
通常、この平滑化処理の演算方法としては移動平均法が
用いられる。即ち、二次元の画像データを、先ず、縦横
いずれか一方の方向の各データ列の個々のデータについ
て、そのデータに隣接する複数個のデータの平均値を求
める演算を、そのデータ列上でデータ一つ分ずつ一方の
方向に移動させながら実行し、その一方の方向のデータ
列の演算が終了した後、他方の方向各データ列の個々の
データについて同様の演算を実行することにより、縦横
二次元の平滑化が行われる。
In this case, the illuminance unevenness is corrected by subjecting all image data to a two-dimensional smoothing process and taking the difference between the smoothed image and the original image to obtain a low illumination unevenness which is a main component. This is done by removing the density change of the frequency.
Usually, a moving average method is used as a calculation method for this smoothing process. That is, for two-dimensional image data, first, for each data in each data row in either the vertical or horizontal direction, an operation of obtaining an average value of a plurality of data adjacent to the data is performed. It is executed while moving one direction at a time in one direction, and after the calculation of the data string in that one direction is completed, the same calculation is executed for each data in each data string in the other direction. Dimension smoothing is performed.

【0007】従って、この移動平均法の演算は被検査領
域の画素数と同じ回数だけ実行されるので、例えば、縦
400×横500画素の場合、200,000回に及ぶ
移動平均演算が実行されることとなる。
Therefore, since the calculation of the moving average method is executed the same number of times as the number of pixels of the area to be inspected, for example, in the case of vertical 400 × horizontal 500 pixels, the moving average calculation is executed 200,000 times. The Rukoto.

【0008】[0008]

【発明が解決しようとする課題】ところで、このような
欠陥検出方法をオンライン工程に適用するには、走行す
る被検査材に対する画像処理を高速で繰り返し実行する
必要があるが、二次元照度むらを二次元の平滑化処理に
より補正する欠陥検出方法では、平滑化処理において上
記のような多数回の移動平均演算が必要であり、処理時
間の制約から被検査材の走行を低速度に抑えざるを得な
いなど、オンラインの欠陥検査装置としての実用性は極
めて低い。
By the way, in order to apply such a defect detection method to an online process, it is necessary to repeatedly perform image processing on a running inspection material at high speed. In the defect detection method in which the correction is performed by the two-dimensional smoothing process, the moving average calculation as described above is necessary in the smoothing process, and the traveling of the inspected material must be suppressed to a low speed due to the restriction of the processing time. For example, it is not practical as an online defect inspection device.

【0009】その解決策として、例えば、平滑化処理だ
けを高速で実行する専用のLSIチップを用いて演算時
間を短縮することも考えられるが、コストアップを招く
ことや、専用化に伴い欠陥検査装置としての汎用性が失
われるなどの問題がある。なお、被検査領域内に走行方
向の照度むらがあっても、幅方向の照度むらがない場合
は、走行方向に画像信号を積算処理して欠陥の有無を検
出するという方法がある。この場合は、照度むらを補正
処理する必要がない点では前述の場合より有利である
が、この方法にも次のような問題がある。
As a solution to this problem, for example, it is conceivable to shorten the operation time by using a dedicated LSI chip that executes only smoothing processing at high speed, but this leads to an increase in cost and defect inspection accompanying the specialization. There is a problem that the versatility of the device is lost. If there is illuminance unevenness in the running direction within the inspection area but no illuminance unevenness in the width direction, there is a method of integrating the image signals in the running direction to detect the presence or absence of defects. This case is more advantageous than the above-mentioned case in that it is not necessary to correct the uneven illuminance, but this method also has the following problems.

【0010】図8は、被検査領域の幅方向には照度むら
がなく、走行方向に照度むらがある場合の二次元画像を
示す図と、走行方向Aの照度むらLAを表す図、及び二
次元画像の各画素を表す画像データを走行方向に積算し
た走行方向積算データのプロフィールである。図8
(a)には、被検査領域の走行方向Aに沿って延びた筋
状の二つの同一の欠陥レベルの欠陥30a,30bが二
次元画像上のそれぞれ走行方向Aに互いに異なる位置に
現れている様子が示されている。
FIG. 8 is a diagram showing a two-dimensional image in the case where there is no illuminance unevenness in the width direction of the region to be inspected and there is illuminance unevenness in the running direction, a diagram showing illuminance unevenness LA in the running direction A, and two. 3 is a profile of running direction integrated data obtained by integrating image data representing each pixel of a three-dimensional image in the running direction. FIG.
In (a), two stripe-shaped defects 30a and 30b having the same defect level extending along the traveling direction A of the inspection area appear at different positions in the traveling direction A on the two-dimensional image. The situation is shown.

【0011】被検査領域の走行方向Aの照度むらLAの
ため、図8(a)に示す二次元画像の色調は、走行方向
Aの中央付近の領域が走行方向Aの前方及び後方の領域
より明るくみえる。従って、この二次元画像の各画素を
表す二次元画像データを被検査領域の走行方向Aに積算
して得られた走行方向積算データのプロフィール15を
見ると、図8(b)に示すように、色調の明るい中央付
近の領域に位置する欠陥30aに相当するピーク値31
aは、色調の暗い前方の領域に位置する欠陥30bに相
当するピーク値31bより高い値を示す。このように、
同一の欠陥レベルの表面欠陥でもその被検査領域内の走
行方向Aのどの領域に位置しているかによって走行方向
積算データのプロフィール15に現れるピーク値が異な
ってくるので、このようなピーク値31a,31bから
2つの欠陥30a,30bそれぞれの欠陥レベルを的確
に評価することはできない。
Due to the illuminance unevenness LA in the traveling direction A of the region to be inspected, the color tone of the two-dimensional image shown in FIG. 8A is such that the region near the center of the traveling direction A is closer to the front and rear regions of the traveling direction A. It looks bright. Therefore, looking at the profile 15 of the traveling direction integrated data obtained by integrating the two-dimensional image data representing each pixel of this two-dimensional image in the traveling direction A of the inspection area, as shown in FIG. , The peak value 31 corresponding to the defect 30a located in the region near the center of the bright tone
“A” indicates a value higher than the peak value 31b corresponding to the defect 30b located in the front area where the color tone is dark. in this way,
Even if the surface defect has the same defect level, the peak value appearing in the profile 15 of the traveling direction integrated data varies depending on which region of the traveling direction A in the inspected region is located. It is not possible to accurately evaluate the defect level of each of the two defects 30a and 30b from 31b.

【0012】本発明は、上記の事情に鑑み、被検査材の
走行方向に沿って筋状に延びた欠陥の有無を迅速に検出
し、かつ、その欠陥レベルを的確に判定することのでき
る表面欠陥検査方法及び装置を提供することを目的とす
る。
In view of the above circumstances, the present invention is capable of promptly detecting the presence or absence of defects extending linearly along the running direction of the material to be inspected, and accurately determining the defect level. An object of the present invention is to provide a defect inspection method and apparatus.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成する本
発明の表面欠陥検査方法は、所定の走行方向に走行する
被検査材表面の所定の被検査領域を、その被検査領域内
の照度が走行方向に交わる幅方向と比べ走行方向に均一
な照度で照明し、被検査領域からの反射光を二次元撮像
器により受光し被検査領域の二次元画像の各画素を表す
二次元画像データを生成し、二次元撮像器により得られ
た二次元画像データを被検査材の走行方向に積算して走
行方向積算データを生成し、生成された走行方向積算デ
ータに含まれる、被検査領域の幅方向の照度むらによっ
て生じたデータの歪みを補正し、歪みが補正されたデー
タから被検査材の走行方向に沿って筋状に延びた表面欠
陥を検出することを特徴とする。
According to the surface defect inspection method of the present invention for achieving the above object, a predetermined inspected region on a surface of an inspected material which travels in a predetermined traveling direction is provided with an illuminance within the inspected region. 2D image data that represents each pixel of the 2D image of the inspection area by illuminating with a uniform illuminance in the traveling direction compared to the width direction intersecting with the traveling direction and receiving reflected light from the inspection area with a 2D imager To generate the running direction integrated data by integrating the two-dimensional image data obtained by the two-dimensional imager in the running direction of the material to be inspected, and included in the generated running direction integrated data. It is characterized in that the distortion of the data caused by the uneven illuminance in the width direction is corrected, and the surface defects extending in a streak shape along the running direction of the inspection material are detected from the data in which the distortion is corrected.

【0014】また、上記の目的を達成する本発明の表面
欠陥検査装置は、所定の走行方向に走行する被検査材表
面の所定の被検査領域を、その被検査領域内の照度が走
行方向に交わる幅方向と比べ走行方向に均一な照度で照
明する照明器と、被検査領域からの反射光を受光し被検
査領域の二次元画像の各画素を表す二次元画像データを
生成する二次元撮像器と、二次元撮像器により得られた
二次元画像データを被検査材の走行方向に積算して走行
方向積算データを生成するデータ積算手段と、データ積
算手段により得られた走行方向積算データに含まれる、
被検査領域の幅方向の照度むらによって生じたデータの
歪みを補正するデータ歪み補正手段と、データ歪み補正
手段により歪みが補正されたデータから被検査材の走行
方向に沿って筋状に延びた表面欠陥を検出する表面欠陥
検出手段とを備えたことを特徴とする。
Further, according to the surface defect inspection apparatus of the present invention which achieves the above-mentioned object, a predetermined inspection area on the surface of the inspection object traveling in a predetermined traveling direction is set so that the illuminance in the inspection area is in the traveling direction. An illuminator that illuminates the traveling direction with a uniform illuminance compared to the intersecting width direction, and two-dimensional imaging that receives reflected light from the inspection area and generates two-dimensional image data that represents each pixel of the two-dimensional image of the inspection area. Device, data accumulating means for accumulating the two-dimensional image data obtained by the two-dimensional imaging device in the traveling direction of the material to be inspected to generate traveling direction accumulating data, and the traveling direction accumulating data obtained by the data accumulating means. included,
Data distortion correction means for correcting data distortion caused by unevenness of illuminance in the width direction of the inspection area, and stripe data extending from the data whose distortion has been corrected by the data distortion correction means along the running direction of the inspection material. And a surface defect detecting means for detecting a surface defect.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の表面欠陥検査装置の一実施
形態を示す概要図である。図1に示すように、この表面
欠陥検査装置10には、矢印方向Aに走行する被検査材
1である溶融亜鉛めっき鋼板と、被検査材1の被検査領
域13内を、矢印A方向に交わる幅方向Bと比べ走行方
向Aに均一な照度で照明する照明装置2と、被検査領域
13からの反射光13aを受光して被検査領域13の二
次元画像の各画素を表す二次元画像データを生成する二
次元CCDカメラ3と、二次元CCDカメラ3により得
られた二次元画像データを被検査材1の走行方向Aに積
算して走行方向積算データを生成するデータ積算手段4
と、その走行方向積算データに含まれる、被検査領域1
3の幅方向Bの照度むらによって生じたデータの歪みを
補正するデータ歪み補正手段5と、データ歪み補正手段
5で歪みが補正されたデータから被検査材1の走行方向
Aに沿って筋状に延びた表面欠陥を検出する表面欠陥検
出手段6とが備えられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a schematic diagram showing an embodiment of the surface defect inspection apparatus of the present invention. As shown in FIG. 1, in this surface defect inspection apparatus 10, a hot-dip galvanized steel sheet which is an inspected material 1 traveling in an arrow direction A and an inspected region 13 of the inspected material 1 in an arrow A direction. A lighting device 2 that illuminates the traveling direction A with a uniform illuminance as compared with the intersecting width direction B, and a two-dimensional image representing each pixel of the two-dimensional image of the inspection region 13 by receiving the reflected light 13a from the inspection region 13. A two-dimensional CCD camera 3 for generating data, and a data accumulating means 4 for accumulating two-dimensional image data obtained by the two-dimensional CCD camera 3 in the traveling direction A of the inspected material 1 to generate traveling direction integrated data.
And the inspection area 1 included in the traveling direction integrated data
Data distortion correction unit 5 that corrects data distortion caused by unevenness of illuminance in the width direction B of No. 3, and data whose distortion has been corrected by the data distortion correction unit 5 along the traveling direction A of the inspected material 1 Surface defect detecting means 6 for detecting the surface defect extending to the.

【0016】照明装置2は、長さ760mm、容量16
0W、周波数20kHzの蛍光灯を被検査材1の幅方向
に平行に、かつ間隔300mmをおいて2本並べたもの
を被検査材1の表面から上方に距離300mmだけ離し
て設置したものである。この照明装置2により、被検査
材1表面に定められた走行方向Aに200mm、幅方向
Bに横250mmの被検査領域13が、被検査領域13
内の照度が走行方向Aに交わる幅方向Bと比べ走行方向
Aに均一な照度で照明され、被検査領域13内の走行方
向Aの照度むらは実用上十分に抑制されている。
The lighting device 2 has a length of 760 mm and a capacity of 16 mm.
Two fluorescent lamps having a frequency of 20 W and a frequency of 20 kHz are arranged in parallel with the width direction of the material to be inspected 1 and are arranged at an interval of 300 mm, and are installed above the surface of the material to be inspected 1 by a distance of 300 mm. . With this illuminating device 2, the inspection area 13 of 200 mm in the traveling direction A and 250 mm in the width direction B, which is defined on the surface of the inspection material 1, is inspected.
The illuminance inside is illuminated with more uniform illuminance in the traveling direction A than in the width direction B intersecting the traveling direction A, and the illuminance unevenness in the traveling direction A in the inspection region 13 is practically sufficiently suppressed.

【0017】二次元CCDカメラ3の画素数は縦432
画素、横512画素であり、縦方向を被検査材1の走行
方向Aに一致させて設置される。なお、本実施形態で
は、二次元画像データを生成するために二次元CCDカ
メラ3が用いられているが、二次元画像データを生成す
る装置は、二次元CCDカメラにのみ限定されるもので
はなく、一般に用いられているいずれかの二次元撮像器
であればよい。
The number of pixels of the two-dimensional CCD camera 3 is 432 in the vertical direction.
The number of pixels is 512 pixels, and the vertical direction is aligned with the running direction A of the inspection object 1 and is installed. Although the two-dimensional CCD camera 3 is used to generate the two-dimensional image data in the present embodiment, the device for generating the two-dimensional image data is not limited to the two-dimensional CCD camera. Any two-dimensional image pickup device generally used may be used.

【0018】次に、上記の表面欠陥検査装置(図1参
照)を用いて行われる本発明の表面欠陥検査方法の一実
施形態について説明する。図2は、上記のように照明さ
れた走行する被検査材表面の被検査領域を二次元CCD
カメラにより撮像して得られた二次元画像を示す図及び
幅方向Bの照度むらLBを表す図である。
Next, one embodiment of the surface defect inspection method of the present invention, which is performed by using the above-described surface defect inspection apparatus (see FIG. 1), will be described. FIG. 2 shows a two-dimensional CCD for the inspected area on the surface of the traveling inspected material illuminated as described above.
It is a figure which shows the two-dimensional image obtained by imaging with a camera, and a figure showing the illuminance unevenness LB of the width direction B.

【0019】この二次元画像には走行方向Aの照度むら
は前述のように極めて小さいが、それに比べて、図2に
示すように、幅方向Bの照度むらLBは大きく、走行方
向Aの1列の画素データ上の最大画像濃度と最小画像濃
度との比は5/256程度しかないのに対し、幅方向B
の1列の画素データ上の最大画像濃度と最小画像濃度と
の比は20/256程度に達する。
In this two-dimensional image, the illuminance unevenness in the traveling direction A is extremely small as described above. However, as shown in FIG. 2, the illuminance unevenness LB in the width direction B is large, which is 1 in the traveling direction A. The ratio of the maximum image density to the minimum image density on the pixel data of the column is only about 5/256, while the width direction B
The ratio of the maximum image density to the minimum image density on the pixel data of one column reaches about 20/256.

【0020】このような二次元画像中に、被検査材1の
走行方向Aに沿って筋状に延びた、黒筋と呼ばれる筋状
の欠陥30が現れている。図3は、図2に示した二次元
画像の各画素を表す二次元画像データのうち、幅方向1
列分の画素データのプロフィールである。次に、二次元
画像の各画素を表す二次元画像データはデータ積算手段
4に送られ、被検査材1の走行方向Aに積算して走行方
向積算データが生成される。
In such a two-dimensional image, a streak-like defect 30 called a black streak, which extends in a streak direction along the running direction A of the inspection object 1, appears. FIG. 3 shows one of the two-dimensional image data representing each pixel of the two-dimensional image shown in FIG.
It is a profile of pixel data for columns. Next, the two-dimensional image data representing each pixel of the two-dimensional image is sent to the data integrating means 4 and integrated in the running direction A of the inspection object 1 to generate running direction integrated data.

【0021】図4は、図2に示した二次元画像の各画素
を表す二次元画像データを走行方向Aに積算した走行方
向積算データのプロフィールである。図3に示した幅方
向1列分の画素データのプロフィール14においては、
欠陥30に相当するピーク値31cがノイズ成分に比べ
て小さく、ノイズ成分に対するピーク値31cのS/N
比が1.3程度であるが、図4に示した走行方向積算デ
ータのプロフィール15においては、積算処理によりノ
イズ成分が抑制され、ノイズ成分に対するピーク値31
dのS/N比は6.5程度まで向上する。
FIG. 4 is a profile of traveling direction integrated data obtained by integrating the two-dimensional image data representing each pixel of the two-dimensional image shown in FIG. 2 in the traveling direction A. In the profile 14 of pixel data for one column in the width direction shown in FIG.
The peak value 31c corresponding to the defect 30 is smaller than the noise component, and the S / N of the peak value 31c for the noise component
Although the ratio is about 1.3, in the profile 15 of the traveling direction integrated data shown in FIG. 4, the noise component is suppressed by the integration process, and the peak value 31 for the noise component is reduced.
The S / N ratio of d is improved to about 6.5.

【0022】このように、一方向に延びる筋状の欠陥を
検出しようとするに当たり、その欠陥の延びる方向に画
像データを積算することにより、欠陥を検出し易くする
ことができる。次に、走行方向積算データはデータ歪み
補正手段5に送られて、走行方向積算データに含まれ
る、被検査領域13の幅方向Bの照度むらによって生じ
たデータの歪みが補正される。
As described above, when trying to detect a line-shaped defect extending in one direction, the defect can be easily detected by integrating the image data in the extending direction of the defect. Next, the traveling direction integrated data is sent to the data distortion correction means 5, and the distortion of the data included in the traveling direction integrated data, which is caused by the illuminance unevenness in the width direction B of the inspection region 13, is corrected.

【0023】本実施形態におけるデータ歪み補正は次の
ようにして行われる。先ず、走行方向積算データの平滑
化処理が行われる。図5は、図4に示した走行方向積算
データを構成する個々のデータについて、前後16デー
タでの移動平均法により平滑化処理した平滑化データの
プロフィールである。
The data distortion correction in this embodiment is performed as follows. First, the smoothing process of the traveling direction integrated data is performed. FIG. 5 is a profile of smoothed data obtained by smoothing the individual data constituting the traveling direction integrated data shown in FIG. 4 by the moving average method with 16 data before and after.

【0024】図5に示すように、平滑化データのプロフ
ィール16は、細かい凹凸が平滑化されてなだらかな形
状となっている。なお、本実施形態では、移動平均法に
おける個々の平均値演算の処理データ数を16個として
いるが、この処理データ数の選択は平滑化処理にとって
重要であり、この処理データ数に相当する画像上の幅方
向のサイズが、検出すべき筋状欠陥の幅方向のサイズよ
り十分に大きく、かつ、画像の背景の変化よりも十分小
さいサイズとする必要がある。このようにすることによ
り、欠陥部付近のプロフィールをほとんど変化させず、
処理データ数に相当する画像上の幅方向のサイズよりも
長い周期を持つ照度むらの主成分(上方に凸状にうねっ
た成分)を抽出することができる。
As shown in FIG. 5, the smoothed data profile 16 has a smooth shape in which fine irregularities are smoothed. In this embodiment, the number of pieces of processing data for each average value calculation in the moving average method is 16, but selection of the number of pieces of processing data is important for smoothing processing, and an image corresponding to this number of pieces of processing data is selected. The size in the upper width direction needs to be sufficiently larger than the size in the width direction of the streak defect to be detected and smaller than the change in the background of the image. By doing this, the profile near the defect is hardly changed,
It is possible to extract a main component of illuminance unevenness (a component wavily convex upward) having a period longer than the size in the width direction on the image corresponding to the number of processed data.

【0025】次に、図4に示したプロフィール15の走
行方向積算データと図5に示したプロフィール16との
差分を取り、それに走行方向積算データの平均値を加え
ることにより幅方向の照度むらによって生じたデータの
歪みが補正される。図6は、走行方向積算データに含ま
れる、幅方向の照度むらによって生じたデータの歪みが
補正された後の画像データのプロフィールである。
Next, the difference between the running direction integrated data of the profile 15 shown in FIG. 4 and the profile 16 shown in FIG. 5 is calculated, and the average value of the running direction integrated data is added to the difference in the illuminance unevenness in the width direction. The generated data distortion is corrected. FIG. 6 is a profile of image data after the distortion of the data included in the traveling direction integrated data, which is caused by the unevenness of the illuminance in the width direction, is corrected.

【0026】図6に示すように、このプロフィール17
からは、幅方向の照度むらによって生じたデータの歪み
は除去されており、しかも欠陥30(図2参照)に相当
するピーク値31e付近のプロフィール形状はほとんど
影響を受けずに保存されている。(図4参照) データ歪み補正手段5(図1参照)により歪みが補正さ
れたデータは、表面欠陥検出手段6に送られる。
As shown in FIG. 6, this profile 17
From FIG. 5, the data distortion caused by the uneven illuminance in the width direction is removed, and the profile shape near the peak value 31e corresponding to the defect 30 (see FIG. 2) is stored with almost no influence. (See FIG. 4) The data whose distortion has been corrected by the data distortion correction means 5 (see FIG. 1) is sent to the surface defect detection means 6.

【0027】表面欠陥検出手段6では、歪み補正された
データを所定のしきい値と比較することにより、欠陥3
0が検出される。検出された欠陥の濃度レベルと健全部
の濃度レベルとの差を求めることにより、元の被検査領
域13にある欠陥30の欠陥レベルを判定することがで
きる。次に、本実施形態において、被検査領域内の走行
方向に異なる位置に複数の欠陥が存在する場合の欠陥検
出の様子について説明する。
The surface defect detecting means 6 compares the distortion-corrected data with a predetermined threshold value to detect the defect 3
0 is detected. The defect level of the defect 30 in the original inspection area 13 can be determined by obtaining the difference between the detected defect density level and the sound part density level. Next, in the present embodiment, a state of defect detection when a plurality of defects exist at different positions in the traveling direction in the inspection area will be described.

【0028】図7は、本実施形態における二次元画像中
に2つの欠陥が存在する様子を示す図と、幅方向Bの照
度むらLBを表す図、及びその二次元画像の各画素を表
す画像データを走行方向に積算した走行方向積算データ
のプロフィールである。図7(a)においても図2にお
けると同様、被検査領域13の走行方向Aの照度むらは
極めて少ないが、幅方向Bには大きい照度むらLBが存
在し、幅方向Bの中央部は明るいが、左右両端に近ずく
ほど暗くなっている。このような被検査領域13の幅方
向Bの中央部寄りに第1の欠陥30aがあり、やや右端
部寄りに、第1の欠陥30aとほぼ同一の欠陥レベルの
第2の欠陥30bがある。
FIG. 7 is a diagram showing a state in which two defects are present in the two-dimensional image in the present embodiment, a diagram showing illuminance unevenness LB in the width direction B, and an image showing each pixel of the two-dimensional image. 3 is a profile of running direction integrated data obtained by integrating data in the running direction. Similarly to FIG. 2, in FIG. 7A, the illuminance unevenness in the traveling direction A of the inspection region 13 is extremely small, but the large illuminance unevenness LB exists in the width direction B, and the central portion in the width direction B is bright. However, it gets darker as it gets closer to the left and right ends. The first defect 30a is located near the center of the inspection region 13 in the width direction B, and the second defect 30b having the same defect level as the first defect 30a is located slightly near the right end.

【0029】図7(b)に示すように、2次元画像デー
タを走行方向に積算した走行方向積算データのプロフィ
ール18では、プロフィール18全体に亘って照度むら
LBの成分が重畳されてはいるものの、第1の欠陥30
a及び第2の欠陥30bに相当するピーク値31a及び
ピーク値31bそれぞれの近傍レベルからの突出分の長
さはほぼ同一である。従って、後続のデータ歪み補正処
理を経ることにより、幅方向Bの位置の異なる2つの欠
陥30a,30bの欠陥レベルを同一と判定できるであ
ろうことが容易に推定できる。
As shown in FIG. 7B, in the profile 18 of the running direction integrated data obtained by integrating the two-dimensional image data in the running direction, the illuminance unevenness LB component is superimposed over the entire profile 18. , The first defect 30
The peak values 31a and the peak values 31b corresponding to a and the second defect 30b have substantially the same length of protrusion from the neighboring level. Therefore, it can be easily estimated that the defect levels of the two defects 30a and 30b having different positions in the width direction B can be determined to be the same by performing the subsequent data distortion correction process.

【0030】前述のように、幅方向Bに照度むらがなく
走行方向に照度むらLAがある場合のプロフィール19
(図8参照)において、走行方向Aの照度むらLAのた
めに、幅方向Bの位置の異なる2つの欠陥30a,30
bの欠陥レベルが同一とは判定されなかったのと比較す
れば、本発明の効果が明らかである。
As described above, the profile 19 in the case where there is no illuminance unevenness in the width direction B and there is illuminance unevenness LA in the running direction
In FIG. 8, two defects 30a, 30 having different positions in the width direction B are caused by the uneven illuminance LA in the traveling direction A.
The effect of the present invention is clear in comparison with the fact that the defect levels of b were not judged to be the same.

【0031】表1は、本実施形態の表面欠陥検査方法及
び装置による溶融亜鉛めっき鋼板の筋状欠陥の判定を示
す表である。
Table 1 is a table showing the determination of streak defects in the hot-dip galvanized steel sheet by the surface defect inspection method and apparatus of this embodiment.

【0032】[0032]

【表1】 [Table 1]

【0033】表1には、多数の被検査領域の筋状欠陥の
サンプルについての、本実施形態の表面欠陥検査装置に
よる欠陥判定結果と検査員の目視による欠陥判定結果と
が対比して示されている。数値は筋状欠陥と判定した欠
陥数を表す。なお、表1に、大、中、小とあるのは、欠
陥レベルの一つである欠陥のサイズを示している。この
表の見方について例を挙げて説明すると、例えば、本実
施形態の表面欠陥検査装置ではサイズ大の筋状欠陥が1
2個あると判定されたのに対して、同一サンプルについ
ての目視判定ではサイズ大の筋状欠陥が10個であり、
サイズ中の筋状欠陥が2個であると判定されたことを表
している。つまり、3×3のマトリックスの右下がりの
対角線上にある数値は双方の判定結果が一致しているこ
とを示しており、対角線上以外の個所にある数値は双方
の判定結果が不一致であった数を示す。
Table 1 shows a comparison between the defect determination result by the surface defect inspection apparatus of the present embodiment and the defect determination result visually by the inspector for a large number of streaky defect samples in the inspection area. ing. The numerical value represents the number of defects judged as streak defects. In Table 1, large, medium, and small indicate the size of a defect, which is one of the defect levels. The way to read this table will be described with reference to an example. For example, in the surface defect inspection apparatus of the present embodiment, the number of streaky defects having a large size is 1.
While it was judged that there were two, there were 10 streaky defects of large size in the visual judgment for the same sample,
This indicates that the number of streak defects in the size is determined to be two. That is, the numerical values on the diagonal line to the lower right of the 3 × 3 matrix indicate that the judgment results of both sides are the same, and the numerical values at the positions other than the diagonal line are not the same. Indicates a number.

【0034】双方の判定結果の一致数41(右下がりの
対角線上にある数値の合計)を全サンプル数44で割っ
た一致率は約93%を示しており、双方は良く一致して
いるといえる。なお、本実施形態では、幅方向の照度む
らによって生じたデータの歪みを補正するに際し、差分
法が用いられているが、幅方向の照度むらによって生じ
たデータの歪みの補正には、必ずしも本実施形態で説明
した差分法である必要はなく、幅方向の照度むらによる
画像濃度の変化の周期よりも十分に狭い範囲で微分する
微分処理法により、照度むらの影響を除去することもで
きる。
The coincidence rate obtained by dividing the number of coincidences 41 of both judgment results (total of numerical values on the diagonal line descending to the right) by the total number of samples 44 is about 93%, and both coincide well. I can say. In this embodiment, the difference method is used to correct the distortion of the data caused by the uneven illuminance in the width direction. It is not necessary to use the difference method described in the embodiment, and the effect of uneven illuminance can be removed by a differentiating method that differentiates in a range sufficiently narrower than the cycle of image density change due to uneven illuminance in the width direction.

【0035】なお、上記の実施形態では、被検査材が鋼
板である例についてのみ説明しているが、本発明の被検
査材は、鋼板のみに限定されるものではなく、アルミニ
ウム板、紙などにも適用することができる。
In the above embodiment, only the example in which the material to be inspected is a steel plate has been described, but the material to be inspected according to the present invention is not limited to the steel plate, but may be an aluminum plate, paper, etc. Can also be applied to.

【0036】[0036]

【発明の効果】以上説明したように、本発明の表面欠陥
検査方法及び装置によれば、従来法のように、被検査領
域の照度むらを被検査材の走行方向にも幅方向にもなく
すような大規模な照明設備を備える必要がなく、幅方向
に比べて走行方向に均一な照度で照明すればよいので、
検査装置の照明設備の規模が簡略化され、コストを低減
することができる。
As described above, according to the surface defect inspection method and apparatus of the present invention, the illuminance unevenness in the inspection area is eliminated in the traveling direction and the width direction of the inspection material as in the conventional method. Since it is not necessary to provide such a large-scale lighting equipment, it is sufficient to illuminate in the traveling direction with a uniform illuminance compared to the width direction,
The scale of the illumination equipment of the inspection device can be simplified, and the cost can be reduced.

【0037】また、従来法のように、走行方向と幅方向
との双方についての照度むら補正のための画像信号処理
装置を備える必要がなく、幅方向に比べて走行方向に均
一な照度で照明を行い、照度むらによって生じるデータ
歪み補正は幅方向の処理だけで済ますことができるの
で、データ歪み補正処理における移動平均演算の回数が
大幅に削減され、画像信号処理に要する時間が短縮され
るので、オンライン工程での高速の欠陥検査を可能とす
ることができる。
Further, unlike the conventional method, it is not necessary to provide an image signal processing device for correcting the illuminance unevenness in both the traveling direction and the width direction, and the illumination in the traveling direction is more uniform than that in the width direction. Since the data distortion correction caused by the uneven illuminance can be performed only in the width direction, the number of moving average calculations in the data distortion correction processing is significantly reduced, and the time required for image signal processing is shortened. It is possible to perform high-speed defect inspection in the online process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表面欠陥検査装置の一実施形態を示す
概要図である。
FIG. 1 is a schematic diagram showing an embodiment of a surface defect inspection apparatus of the present invention.

【図2】走行する被検査材表面の被検査領域を二次元C
CDカメラにより撮像して得られた二次元画像を示す
図、及び幅方向Bの照度むらLBを表す図である。であ
る。
[Fig. 2] Two-dimensional C of the inspection area on the surface of the traveling inspection material
It is a figure which shows the two-dimensional image imaged by the CD camera, and a figure showing the illuminance unevenness LB in the width direction B. It is.

【図3】図2に示した二次元画像の各画素を表す二次元
画像データのうち、幅方向1列分の画素データのプロフ
ィールを示す図である。
3 is a diagram showing a profile of pixel data for one column in the width direction of the two-dimensional image data representing each pixel of the two-dimensional image shown in FIG.

【図4】図2に示した二次元画像の各画素を表す二次元
画像データを走行方向Aに積算した走行方向積算データ
のプロフィールを示す図である。
FIG. 4 is a diagram showing a profile of traveling direction integrated data obtained by integrating two-dimensional image data representing each pixel of the two-dimensional image shown in FIG. 2 in a traveling direction A.

【図5】図4に示した走行方向積算データを構成する個
々のデータについて、前後16データの移動平均法によ
り平滑化した平滑化データのプロフィールを示す図であ
る。
FIG. 5 is a diagram showing a profile of smoothed data obtained by smoothing the individual pieces of data forming the traveling direction integrated data shown in FIG. 4 by a moving average method of front and rear 16 data.

【図6】走行方向積算データに含まれる、幅方向の照度
むらによって生じたデータの歪みが補正された後の画像
データのプロフィールを示す図である。
FIG. 6 is a diagram showing a profile of image data after correction of data distortion caused by unevenness in illuminance in the width direction, which is included in traveling direction integrated data.

【図7】本実施形態における二次元画像中に2つの欠陥
が存在する様子を示す図と、幅方向Bの照度むらLBを
表す図、及びその二次元画像の各画素を表す画像データ
を走行方向に積算した走行方向積算データのプロフィー
ルを示す図である。
FIG. 7 is a diagram showing a state in which two defects are present in a two-dimensional image according to the present embodiment, a diagram showing illuminance unevenness LB in the width direction B, and image data representing each pixel of the two-dimensional image. It is a figure which shows the profile of the traveling direction integrated data integrated in the direction.

【図8】被検査領域の幅方向には照度むらがなく、走行
方向に照度むらがある場合の二次元画像を示す図と、走
行方向Aの照度むらLAを表す図、及び二次元画像の各
画素を表す画像データを走行方向に積算した走行方向積
算データのプロフィールを示す図である。
FIG. 8 is a diagram showing a two-dimensional image in the case where there is no illuminance unevenness in the width direction of the region to be inspected and there is illuminance unevenness in the running direction, a diagram showing illuminance unevenness LA in the running direction A, and a two-dimensional image. It is a figure which shows the profile of the traveling direction integrated data which integrated the image data showing each pixel in the traveling direction.

【符号の説明】[Explanation of symbols]

1 被検査材 2 照明装置 3 二次元CCDカメラ 4 データ積算手段 5 データ歪み補正手段 6 表面欠陥検出手段 10 表面欠陥検査装置 13 被検査領域 13a 反射光 14,15,16,17,18,19 プロフィール 30,30a,30b 欠陥 31a,31b,31c,31d,31e ピーク値 DESCRIPTION OF SYMBOLS 1 Inspected material 2 Illumination device 3 Two-dimensional CCD camera 4 Data integration means 5 Data distortion correction means 6 Surface defect detection means 10 Surface defect inspection device 13 Inspected area 13a Reflected light 14, 15, 16, 17, 18, 19 Profile 30, 30a, 30b Defects 31a, 31b, 31c, 31d, 31e Peak value

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の走行方向に走行する被検査材表面
の所定の被検査領域を、該被検査領域内の照度が前記走
行方向に交わる幅方向と比べ該走行方向に均一な照度で
照明し、 前記被検査領域からの反射光を二次元撮像器により受光
し該被検査領域の二次元画像の各画素を表す二次元画像
データを生成し、 該二次元撮像器により得られた二次元画像データを前記
被検査材の走行方向に積算して走行方向積算データを生
成し、 生成された走行方向積算データに含まれる、前記被検査
領域の幅方向の照度むらによって生じたデータの歪みを
補正し、 歪みが補正されたデータから前記被検査材の走行方向に
沿って筋状に延びた表面欠陥を検出することを特徴とす
る表面欠陥検査方法。
1. Illumination of a predetermined inspected region on a surface of an inspected material traveling in a predetermined traveling direction with a uniform illuminance in the traveling direction as compared with a width direction in which the illuminance in the inspected region intersects the traveling direction. Then, the reflected light from the inspection area is received by a two-dimensional imager to generate two-dimensional image data representing each pixel of a two-dimensional image of the inspection area, and the two-dimensional image obtained by the two-dimensional imager Image data is integrated in the traveling direction of the inspection material to generate traveling direction integration data, and the distortion of the data included in the generated traveling direction integration data, which is caused by unevenness in the illuminance in the width direction of the inspection region, is corrected. A surface defect inspecting method, which comprises correcting and correcting the distortion to detect a surface defect extending linearly along the running direction of the material to be inspected.
【請求項2】 所定の走行方向に走行する被検査材表面
の所定の被検査領域を、該被検査領域内の照度が前記走
行方向に交わる幅方向と比べ該走行方向に均一な照度で
照明する照明器と、 前記被検査領域からの反射光を受光し該被検査領域の二
次元画像の各画素を表す二次元画像データを生成する二
次元撮像器と、 該二次元撮像器により得られた二次元画像データを前記
被検査材の走行方向に積算して走行方向積算データを生
成するデータ積算手段と、 該データ積算手段により得られた走行方向積算データに
含まれる、前記被検査領域の幅方向の照度むらによって
生じたデータの歪みを補正するデータ歪み補正手段と、 該データ歪み補正手段により歪みが補正されたデータか
ら前記被検査材の走行方向に沿って筋状に延びた表面欠
陥を検出する表面欠陥検出手段とを備えたことを特徴と
する表面欠陥検査装置。
2. Illuminating a predetermined inspected region on the surface of the inspected material traveling in a predetermined traveling direction with a uniform illuminance in the traveling direction as compared with a width direction in which the illuminance in the inspected region intersects the traveling direction. An illuminator, a two-dimensional image pickup device that receives reflected light from the inspection region, and generates two-dimensional image data representing each pixel of a two-dimensional image of the inspection region; Data accumulating means for accumulating the two-dimensional image data in the traveling direction of the inspected material to generate traveling direction accumulating data, and the inspecting area included in the traveling direction accumulating data obtained by the data accumulating means. Data distortion correction means for correcting data distortion caused by uneven illuminance in the width direction, and surface defects extending linearly from the data whose distortion has been corrected by the data distortion correction means along the running direction of the inspected material. Detect Surface defect inspection apparatus is characterized in that a surface defect detecting means that.
JP7305941A 1995-11-24 1995-11-24 Method and device for detecting surface defect Withdrawn JPH09145638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305941A JPH09145638A (en) 1995-11-24 1995-11-24 Method and device for detecting surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7305941A JPH09145638A (en) 1995-11-24 1995-11-24 Method and device for detecting surface defect

Publications (1)

Publication Number Publication Date
JPH09145638A true JPH09145638A (en) 1997-06-06

Family

ID=17951147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305941A Withdrawn JPH09145638A (en) 1995-11-24 1995-11-24 Method and device for detecting surface defect

Country Status (1)

Country Link
JP (1) JPH09145638A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992602A1 (en) * 1998-08-24 2000-04-12 Sms Schloemann-Siemag Aktiengesellschaft Method and device for quality control and reguation of the galvannealed-coating of steel sheets
JP2005077181A (en) * 2003-08-29 2005-03-24 Toppan Printing Co Ltd Method for inspecting striped unevenness in cyclic pattern
WO2007088250A1 (en) * 2006-02-01 2007-08-09 Viconsys Oy Device for monitoring a web
WO2008087961A1 (en) * 2007-01-16 2008-07-24 Olympus Corporation Defect detecting device, and defect detecting method
JP2013250188A (en) * 2012-06-01 2013-12-12 Seiko Epson Corp Defect detection device, defect detection method and defect detection program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992602A1 (en) * 1998-08-24 2000-04-12 Sms Schloemann-Siemag Aktiengesellschaft Method and device for quality control and reguation of the galvannealed-coating of steel sheets
US6206986B1 (en) 1998-08-24 2001-03-27 Sms Schloemann-Siemag Aktiengesellschaft Method and apparatus for monitoring and controlling the quality of a galvannealed coating of steel strip
JP2005077181A (en) * 2003-08-29 2005-03-24 Toppan Printing Co Ltd Method for inspecting striped unevenness in cyclic pattern
JP4507533B2 (en) * 2003-08-29 2010-07-21 凸版印刷株式会社 Method for inspecting streaky irregularities in periodic patterns
WO2007088250A1 (en) * 2006-02-01 2007-08-09 Viconsys Oy Device for monitoring a web
WO2008087961A1 (en) * 2007-01-16 2008-07-24 Olympus Corporation Defect detecting device, and defect detecting method
JP2013250188A (en) * 2012-06-01 2013-12-12 Seiko Epson Corp Defect detection device, defect detection method and defect detection program

Similar Documents

Publication Publication Date Title
EP0974831B1 (en) Apparatus for the integrated processing of defect images
US4958307A (en) Roll mark inspection apparatus
KR101867256B1 (en) Apparatus for inspecting surface defects of steel sheet and method for inspecting surface defects
WO2016158873A1 (en) Device for examining surface defect in hot-dipped steel plate, and method for examining surface defect
CN109102497B (en) High-resolution light guide plate image defect detection method
JPH1163959A (en) Surface-inspecting device
CN113820319A (en) Textile surface defect detection device and method
KR101862310B1 (en) Apparatus and Method for Detecting Mura Defects
JP2012251983A (en) Wrap film wrinkle inspection method and device
JPH09145638A (en) Method and device for detecting surface defect
JP5849397B2 (en) Surface defect detection device and surface defect detection method
JP4318776B2 (en) Nonuniformity inspection method and apparatus
JP4108829B2 (en) Thickness defect inspection apparatus and inspection method thereof
JP2005164565A (en) Defect detection method for flat panel light- related plate element in low and high resolution images
JP4212702B2 (en) Defect inspection apparatus, defect inspection method, and storage medium
JP2003156451A (en) Defect detecting device
JPH08145907A (en) Inspection equipment of defect
JPH09138200A (en) Method for determining surface defect of strip material
JP2004053477A (en) Color irregularity inspecting method and apparatus
JP2005265828A (en) Flaw detection method and apparatus
JPH0242407B2 (en)
JPH11281588A (en) Surface inspecting apparatus
JP4382210B2 (en) Periodic pattern inspection method and apparatus
KR100554578B1 (en) method for detecting regular mura in a light-related plate element for a flat panel
JP2004125629A (en) Defect detection apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204