JPH09139213A - Electrode material and secondary battery - Google Patents

Electrode material and secondary battery

Info

Publication number
JPH09139213A
JPH09139213A JP8038391A JP3839196A JPH09139213A JP H09139213 A JPH09139213 A JP H09139213A JP 8038391 A JP8038391 A JP 8038391A JP 3839196 A JP3839196 A JP 3839196A JP H09139213 A JPH09139213 A JP H09139213A
Authority
JP
Japan
Prior art keywords
battery
electrode material
compound
bonds
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8038391A
Other languages
Japanese (ja)
Other versions
JP3497318B2 (en
Inventor
Katsuhiko Naoi
勝彦 直井
Hiroshi Iizuka
弘 飯塚
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP03839196A priority Critical patent/JP3497318B2/en
Publication of JPH09139213A publication Critical patent/JPH09139213A/en
Application granted granted Critical
Publication of JP3497318B2 publication Critical patent/JP3497318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To remarkably improve the energy density in the application to electrode material for secondary battery by providing 2 or more and 6 or less continued S-S bonds. SOLUTION: As electrode material, a material having one or more thiol groups in the molecule is dissolved in an organic solvent such as methylene chloride. After disulfur dichloride or sulfur dichloride of a quantity corresponding to the quantity of the thiol groups is added to and reacted with it for about 20 hours, this system is poured into methanol so that the unreacted disulfur dichloride or sulfur dichloricie is reacted with methanol, and decomposed and precipitated, whereby a structure having 2 or more and 6 or less continued S-S bonds is provided. In this case, the continued S-S bonds are formed of bonds substituted by the hydrogens of thiol groups of a compound which is a molecule with small mass having a plurality of S-H (thiol groups). Thus, the energy density can be remarkably increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池用電極材料に関す
る。更に詳しくは、スルフィド系電極材料に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a battery electrode material. More specifically, it relates to a sulfide-based electrode material.

【0002】[0002]

【従来の技術】近年、通信機器やOA機器の可搬化がす
すみ、これら機器の軽量化及び小型化競争が繰り広げら
れている。このような各種機器や、或いは電気自動車等
の電源として利用される二次電池においてもその高効率
化が求められている。この要求に対し、新たな電極材を
用いた電池が開発されつつあるが、この中でエネルギー
密度が比較的高いことから、ジスルフィド化合物を用い
た電極材料(米国特許第4833048号等)が注目さ
れている。このものは、2つの有機物からなる基の間に
2つの硫黄からなるジスルフィド結合を有するもの(R
−S−S−R’)を電極材料に用いるものである。
2. Description of the Related Art In recent years, communication equipment and office automation equipment have become portable, and competition for weight reduction and miniaturization of these equipment has been promoted. Higher efficiency is also required for such various devices and secondary batteries used as power sources for electric vehicles and the like. In response to this demand, batteries using new electrode materials are being developed, but among them, since the energy density is relatively high, electrode materials using disulfide compounds (US Pat. No. 4833048 and the like) have attracted attention. ing. This compound has a disulfide bond consisting of two sulfurs between two organic groups (R
-S-S-R ') is used as an electrode material.

【0003】S−S結合は電解還元による2電子の供給
により開裂し、電解液中のカチオン或いはプロトン(M
+ )と結合して2(R−S- ・M+ )となり、電解酸化
時には元のR−S−S−Rに戻って、2電子を放出す
る。この二次電池においては、通常の他の二次電池並の
150Wh/kg 以上のエネルギー密度が期待できるとされ
ている。しかし、前述の米国特許の発明者らがJ.Electr
ochem.Soc.Vol.136.No.9,p.2570〜2575(1989)で報告
している内容から、このジスルフィド系二次電池の電極
反応の電子移動速度は極めて遅く、従って、室温付近で
は実用に見合う大電流を取り出すことが困難であり、6
0℃以上での使用に限られると云う問題が指摘された。
The SS bond is cleaved by the supply of two electrons by electrolytic reduction, and the cation or proton (M
+) Combine with 2 (R-S - · M +) next, during electrolytic oxidation back to the original R-S-S-R, to release the 2 electrons. It is said that this secondary battery can be expected to have an energy density of 150 Wh / kg or more, which is equivalent to that of other secondary batteries. However, the inventors of the aforementioned U.S. Patent
From the content reported in ochem.Soc.Vol.136.No.9, p.2570-2575 (1989), the electron transfer rate of the electrode reaction of this disulfide secondary battery is extremely slow, and therefore, at room temperature, It is difficult to extract a large current suitable for practical use.
A problem was pointed out that the use was limited to 0 ° C or higher.

【0004】その後、このジスルフィド系二次電池を改
良し、大電流に対応させる技術として、特開平5−74
459号公報等に示されるように、このジスルフィド基
を有する有機化合物にポリアニリン等の導電性高分子を
組み合わせた電極材料が提案された。しかし、以上のよ
うな技術によるジスルフィド系二次電池のエネルギー密
度は、全て、重量あたりのジスルフィド基(R−S−S
−R)の数に依存するものであり、現状の理論的エネル
ギー密度を格段に向上させるような技術は存在しなかっ
た。
Then, as a technique for improving this disulfide-based secondary battery to cope with a large current, Japanese Patent Application Laid-Open No. H5-74
As disclosed in Japanese Patent No. 459, etc., an electrode material has been proposed in which an organic compound having a disulfide group is combined with a conductive polymer such as polyaniline. However, the energy densities of the disulfide-based secondary batteries produced by the above techniques are all determined by the weight of the disulfide group (R-S-S).
It depends on the number of −R), and there has been no technology that significantly improves the current theoretical energy density.

【0005】[0005]

【発明が解決しようとする課題】本発明は、二次電池の
電極材料に応用した場合に、エネルギー密度を格段に向
上させることができるスルフィド系電極材料、及びエネ
ルギー密度が格段に高い二次電池を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention, when applied to an electrode material of a secondary battery, can improve the energy density remarkably, and a sulfide-based electrode material having a remarkably high energy density. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の有機電極材料
は、上記問題を解決するために、請求項1に記載の通
り、2以上6以下連続したS−S結合を有する構成を有
する。上記の課題を解決するための手段において、連続
したS−S結合が7の場合にはこれら硫黄は安定な単体
となって分離するため、現実には利用することができな
い。また、S−S結合が単独であって連続していない場
合には、エネルギー密度が低くなり、電極材料としての
利点を失う。
In order to solve the above-mentioned problems, the organic electrode material of the present invention has a structure having two or more and six or less continuous SS bonds as described in claim 1. In the means for solving the above problems, when the number of continuous S—S bonds is 7, these sulfur is separated as a stable simple substance and cannot be used in practice. Further, when the S—S bond is single and not continuous, the energy density becomes low and the advantage as an electrode material is lost.

【0007】[0007]

【発明の実施の形態】本発明において、これら2以上6
以下連続したS−S結合は、2,5−ジメルカプト−
1,3,4−チアジアゾール(以下「DMcT」と云
う。)、トリチオシアヌル酸(以下「TTCA」と云
う。)、及び、N,N,N’,N’−テトラメルカプト
エタン((HS)2 NCH2 CH2 N(SH)2 )、2
−メチル−5−メルカプト−1,3,4−チアジアゾー
ル(以下「MMT」と云う。)等の、質量の小さい分子
であって複数のS−H(チオール基)を有する化合物の
チオール基の水素と置換して結合しているものである
と、エネルギー密度が高くなるので望ましい。上記化合
物の他の例としては、化学式(I)〜(XIV)で表せ
られるものがある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, these two or more 6
Hereinafter, consecutive S-S bonds are 2,5-dimercapto-
1,3,4-thiadiazole (hereinafter referred to as “DMcT”), trithiocyanuric acid (hereinafter referred to as “TTCA”), and N, N, N ′, N′-tetramercaptoethane ((HS) 2 NCH). 2 CH 2 N (SH) 2 ), 2
-Methyl-5-mercapto-1,3,4-thiadiazole (hereinafter referred to as "MMT") and the like, hydrogen of a thiol group of a compound having a small mass and having a plurality of S-H (thiol groups). It is desirable that it is substituted by and is bonded to since it increases the energy density. Other examples of the above compounds include those represented by the chemical formulas (I) to (XIV).

【0008】[0008]

【化1】 Embedded image

【化2】 Embedded image

【化3】 Embedded image

【化4】 Embedded image

【化5】 Embedded image

【化6】 [Chemical 6]

【化7】 Embedded image

【化8】 Embedded image

【化9】 Embedded image

【化10】 Embedded image

【化11】 Embedded image

【化12】 Embedded image

【化13】 Embedded image

【化14】 Embedded image

【0009】なお、これら化学式(I)〜(XIV)に
おいて、XはO、S、Se、NH、NR、CH2 、CH
R、CRR’、C=O、C=NH、C=NR、C=Sな
どの基を示し、また、Y1 、Y2 、Y3 及びY4 は、そ
れぞれ、−CH3 、−C2 5 で代表される脂肪族基及
びその誘導体、−C6 5 で代表される芳香族基及びそ
の誘導体、−F、−Cl、−Br、−I等のハロゲン
基、−COOR、−NRR’、−OR、−COR、−S
3 R、−CONRR’、−N+ RR’R”、−SR、
−OCOR、−NHCOR、−N=CRR’、−SO2
R、−SOR、−SSR、−P(=O)RR’、−P
(=S)RR’、−ONO、−N=C=O、−N=C=
S、−OCN、−SCN、−CN、−NO2 、−H、−
PRR’、−P+ F、−P+ Cl、−P+ Br、−P+
Iであって、これらのR、R’及びR”は水素、脂肪族
或いは芳香族炭化水素基を示す。
Incidentally, in these chemical formulas (I) to (XIV),
Where X is O, S, Se, NH, NR, CHTwo, CH
R, CRR ', C = O, C = NH, C = NR, C = S
Which group is shown, and also Y1, YTwo, YThreeAnd YFourIs
-CHThree, -CTwoH FiveAliphatic groups represented by
And its derivatives, -C6HFiveAnd aromatic groups represented by
Derivative, halogen such as -F, -Cl, -Br, -I
Group, -COOR, -NRR ', -OR, -COR, -S
OThreeR, -CONRR ', -N+RR'R ", -SR,
-OCOR, -NHCOR, -N = CRR ', -SOTwo
R, -SOR, -SSR, -P (= O) RR ', -P
(= S) RR ', -ONO, -N = C = O, -N = C =
S, -OCN, -SCN, -CN, -NOTwo, -H,-
PRR ', -P+F, -P+Cl, -P+Br, -P+
I, wherein R, R'and R "are hydrogen, aliphatic
Alternatively, it represents an aromatic hydrocarbon group.

【0010】また、これら電極材料において、重合体で
あってもよいが、その重合度はエネルギー密度とは理論
上無関係である。
The electrode material may be a polymer, but the degree of polymerization is theoretically independent of the energy density.

【0011】本発明の電極材は、例えば、下に示すよう
にして得ることができる。分子中に1つ以上のチオール
基を有する物質を塩化メチレン等の有機溶媒に溶解し、
これに、そのチオール基の量に相当する量の二塩化二硫
黄或いは、二塩化硫黄を添加して20時間程度反応させ
る。その後、この系をメタノールに注ぎ入れ、未反応の
二塩化二硫黄或いは二塩化硫黄をメタノールと反応さ
せ、分解したときに沈殿として得られる。
The electrode material of the present invention can be obtained, for example, as shown below. Dissolving a substance having one or more thiol groups in the molecule in an organic solvent such as methylene chloride,
To this, an amount of disulfur dichloride or sulfur dichloride corresponding to the amount of the thiol group is added and reacted for about 20 hours. Then, this system is poured into methanol, and unreacted disulfur dichloride or sulfur dichloride is reacted with methanol to obtain a precipitate when decomposed.

【0012】また、同様に1つ以上のチオール基を有す
る物質を原料として、これをジエチルエーテルに溶解
し、そのチオール基の量に相当する量の二塩化二硫黄或
いは二塩化硫黄、及びピリジンを添加し、−80℃付近
で反応させ、その後、この系を水酸化ナトリウム水溶液
で中和して得られる。なお、上記において二塩化二硫黄
を用いたときには、偶数個のSが連結した結合が形成さ
れ、二塩化一硫黄を用いたときには、奇数個のSが連結
した結合が形成される。
Similarly, a substance having one or more thiol groups is used as a raw material, and this is dissolved in diethyl ether, and an amount of disulfur dichloride or sulfur dichloride corresponding to the amount of the thiol groups and pyridine are obtained. It is obtained by adding and reacting at around -80 ° C, and then neutralizing the system with an aqueous sodium hydroxide solution. When disulfur dichloride is used in the above, an even number of S-bonds is formed, and when monosulfur dichloride is used, an odd-numbered S-bond is formed.

【0013】[0013]

【実施例】【Example】

〔実施例1及び比較例1〕本発明に係る電極材料である
DMcTのテトラスルフィド化合物は次のように合成さ
れた。即ち、1mol/ lのDMcTと塩化メチレン溶
液と、同じく1mol/ lの二塩化二硫黄−塩化メチレ
ン溶液を20時間室温で良く撹拌して、DMcTと二塩
化二硫黄を反応させ重合させる。その後、この系をメタ
ノールに注ぎ入れ、未反応の二塩化二硫黄を分解・除去
する。これらをG4グレードのガラス濾過器で濾過した
のち、濾過残物をメタノールで洗浄後、60℃で真空乾
燥して、重合体Aを得た。
[Example 1 and Comparative Example 1] The tetrasulfide compound of DMcT, which is the electrode material according to the present invention, was synthesized as follows. That is, 1 mol / l DMcT and methylene chloride solution and 1 mol / l disulfur dichloride-methylene chloride solution are well stirred at room temperature for 20 hours to react DMcT with disulfur dichloride to polymerize. Then, this system is poured into methanol to decompose and remove unreacted disulfur dichloride. After filtering these with a G4 grade glass filter, the filtration residue was washed with methanol and then vacuum dried at 60 ° C. to obtain a polymer A.

【0014】この重合体AについてCHNS元素分析を
行ったところ、それぞれの存在比は、2:0:2:5で
あった。また酸素その他の元素は存在しないと算定され
た。また、赤外線分光分析によりC−S結合及びC=N
結合が存在し、C−N結合、N=N結合及びC=S結合
のないことが確認された。一方、この重合体Aの質量分
析を行ったが、NとSとの間の結合は検出されず、C2
5 2 、CS5 及びNNの各フラグメントが確認され
た。これらのことより、重合体Aには、C−S−(S)
n −S結合(n>1)があることが確認され、反応は化
学式15のように進行し、重合体Aはテトラスルフィド
化合物重合体であると推測される。
When CHNS elemental analysis was carried out on the polymer A, the abundance ratio of each was 2: 0: 2: 5. It was also calculated that oxygen and other elements do not exist. In addition, by infrared spectroscopy, C—S bond and C = N
It was confirmed that there was a bond and no C-N bond, N = N bond and C = S bond. On the other hand, when the mass analysis of this polymer A was carried out, the bond between N and S was not detected, and C 2
Fragments of S 5 N 2 , CS 5 and NN were confirmed. From these facts, the polymer A contains C-S- (S)
It was confirmed that an n- S bond (n> 1) was present, the reaction proceeded as in Chemical Formula 15, and it is speculated that the polymer A is a tetrasulfide compound polymer.

【0015】[0015]

【化15】 Embedded image

【0016】以下に本発明に係る電極材料を用いて二次
電池を作製した際の結果について示す。なお、以下の作
業は特に記載がない限り、グローブボックスを用いてア
ルゴン気流中で行った。0.21mm厚、2cm×2c
mの大きさのリチウム金属板に直径が1mmの白金線を
接続し、同じ大きさの黒鉛繊維補強黒鉛板に同様の白金
線を接続して他方の電極とし、これらを対向させて、か
つ、間に30μm厚の多孔性ポリプロピレン製セパレー
ターとを挟んで密着させたものを電極部とし、これを2
つ用意した。
The results of producing a secondary battery using the electrode material according to the present invention will be shown below. The following work was performed in an argon stream using a glove box unless otherwise specified. 0.21mm thick, 2cm x 2c
A platinum wire having a diameter of 1 mm is connected to a lithium metal plate having a size of m, a similar platinum wire is connected to a graphite fiber-reinforced graphite plate having the same size as the other electrode, and these electrodes are opposed to each other, and A porous polypropylene separator having a thickness of 30 μm was sandwiched between and adhered to each other to form an electrode portion.
I prepared one.

【0017】一方、重合体Aを40℃での真空乾燥後、
2g/ l、及びLiCF3 SO3 を1mol/ lの濃度
になるよう溶解させたγ−ブチロラクトン(溶液1)
と、常法(米国特許4833048号)に従って合成
し、ヘキサン溶媒中194nmと250nmでの紫外吸
収ピークによって、C−S−S−C結合の存在を確認し
たジスルフィド化合物1を40℃での真空乾燥後、これ
を2g/ l、及びLiCF3 SO3 を1mol/ lの濃
度になるよう溶解させたγ−ブチロラクトン(溶液2)
を作成した。
On the other hand, after the polymer A was vacuum dried at 40 ° C.,
Γ-butyrolactone (solution 1) in which 2 g / l and LiCF 3 SO 3 were dissolved to a concentration of 1 mol / l
And a disulfide compound 1 synthesized according to a conventional method (US Pat. No. 4,83,048) and confirmed by existence of a C--S--S--C bond in a hexane solvent by ultraviolet absorption peaks at 194 nm and 250 nm at 40.degree. Then, this was dissolved in 2 g / l and LiCF 3 SO 3 to a concentration of 1 mol / l, and γ-butyrolactone (solution 2) was dissolved.
It was created.

【0018】これら溶液1及び溶液2をそれぞれ50ml
づつ、100mlのトールビーカーに取り、それぞれに前
述の電極部を、電極全体が溶液内に浸漬するように入
れ、電池1(実施例1)及び電池2(比較例1)とし
た。電池1、電池2をそれぞれの初期電圧の70%にな
るまで100μAの電流で放電させ、その後放電前の初
期電圧と等しくなるまで100μAの電流で充電させ、
再度、前記放電と同条件で再放電させた。このときのそ
れぞれの電池についての電気量(Ah)を比較したとこ
ろ、電池1での再放電電気量(α)は電池2での再放電
電気量(β)の2.2倍であった。
50 ml of each of Solution 1 and Solution 2
Then, each was placed in a 100 ml tall beaker, and the above-mentioned electrode portions were placed in each so that the whole electrode was immersed in the solution, to obtain a battery 1 (Example 1) and a battery 2 (Comparative Example 1). Batteries 1 and 2 were discharged with a current of 100 μA until they reached 70% of their respective initial voltages, and then charged with a current of 100 μA until they became equal to the initial voltage before discharge,
It was again discharged again under the same conditions as the above discharge. When the electricity amounts (Ah) of the respective batteries at this time were compared, the re-discharge electricity amount (α) in the battery 1 was 2.2 times the re-discharge electricity amount (β) in the battery 2.

【0019】この後、電池1の電極を短絡させ10時間
放置し、その後、電池1の炭素板表面(サンプル1A)
及び電池溶液(サンプル1B)を微少量採取した後、更
に前記条件で充電させ、このときの電池1の炭素板表面
(サンプル2A)及び電池溶液(サンプル2B)を微少
量採取した。これらサンプル1A及びサンプル2Aは、
ジエチルエーテルで洗浄後、測定室がアルゴン置換され
たFT−IRで分光分析を行ったところ、サンプル1
A、サンプル2AにはC−S結合が確認された。また、
レーザーラマン分析を行ったところ、サンプル1Aには
S−S基は検出されず、一方、サンプル2AにはS−S
基の存在が確認された。
After that, the electrodes of the battery 1 were short-circuited and left for 10 hours, and then the carbon plate surface of the battery 1 (Sample 1A).
After collecting a small amount of the battery solution (Sample 1B), the battery was further charged under the above conditions, and a minute amount of the carbon plate surface (Sample 2A) and the battery solution (Sample 2B) of the battery 1 at this time were collected. These sample 1A and sample 2A are
After washing with diethyl ether, spectroscopic analysis was performed with FT-IR in which the measurement chamber was replaced with argon, and sample 1 was obtained.
C—S bond was confirmed in A and sample 2A. Also,
When laser Raman analysis was carried out, no S-S group was detected in sample 1A, while S-S group was detected in sample 2A.
The presence of the group was confirmed.

【0020】〔実施例2、実施例3及び比較例2〕次い
で、2−メチル−5−メルカプト−1,3,4−チアジ
アゾール(MMT)のジスルフィド、トリスルフィド、
及びテトラスルフィド化合物について、二次電池を形成
した。
[Examples 2, 3 and Comparative Example 2] Next, 2-methyl-5-mercapto-1,3,4-thiadiazole (MMT) disulfide, trisulfide,
A secondary battery was formed with the tetrasulfide compound.

【0021】MMTのジスルフィド化合物は下記のよう
に合成した。すなわち、アルゴン雰囲気下で、ヨウ素5
mmolを溶解した30mlのメタノールに、10mm
olのMMT及び5mmolのナトリウムメトキシドを
30mlのメタノールに溶解した溶液をゆっくり滴下
し、その後4時間攪拌を行った。次いで、これら系を−
60℃に冷却して析出した沈殿を濾過によって取り出
し、減圧乾燥後、エタノールで3回再結晶を行ってMM
Tのジスルフィドを得た。
The disulfide compound of MMT was synthesized as follows. That is, under an argon atmosphere, iodine 5
10 mm in 30 ml of methanol in which mmol was dissolved
A solution of ol MMT and 5 mmol of sodium methoxide dissolved in 30 ml of methanol was slowly added dropwise, followed by stirring for 4 hours. Then these systems
After cooling to 60 ° C, the deposited precipitate was taken out by filtration, dried under reduced pressure, and recrystallized three times with ethanol to give MM.
A disulfide of T was obtained.

【0022】また、MMTのトリスルフィド化合物は次
のようにして得た。すなわち、アルゴン雰囲気下−20
℃で15mmolのMMTを350mlのアセトニトリ
ルに溶解し、これに7.5mmolの二塩化一硫黄を1
5mlのアセトニトリルに溶解して作製した溶液をゆっ
くり滴下し、滴下終了後室温まで昇温する。生成した沈
殿を再度これを溶解するためにアセトニトリル200m
lを追加する。その後24時間攪拌を継続した後、クロ
ロフォルムを200ml添加し、エバポレーターで溶媒
を蒸発除去する。残留した固形物を塩化メチレンで溶解
し、その溶液から濾過によって夾雑物を除去し、この濾
液にヘキサンを加え、生じた沈殿物がMMTのトリスル
フィド化合物である。これをエタノールから再結晶させ
て精製する。
The MMT trisulfide compound was obtained as follows. That is, in an argon atmosphere-20
Dissolve 15 mmol of MMT in 350 ml of acetonitrile at ℃ and add 7.5 mmol of monosulfur dichloride to the solution.
A solution prepared by dissolving in 5 ml of acetonitrile is slowly added dropwise, and after the addition is completed, the temperature is raised to room temperature. 200m of acetonitrile was added to dissolve the formed precipitate again.
Add l. After continuing stirring for 24 hours thereafter, 200 ml of chloroform is added, and the solvent is removed by evaporation with an evaporator. The residual solid matter was dissolved with methylene chloride, impurities were removed from the solution by filtration, hexane was added to the filtrate, and the resulting precipitate was a trisulfide compound of MMT. This is recrystallized from ethanol for purification.

【0023】一方、MMTのテトラスルフィド化合物
は、次のようにして得た。すなわち、アルゴン雰囲気下
で10mmolのMMTを30mlの塩化メチレンに溶
解し、これに5mmolの二塩化二硫黄を20mlの塩
化メチレンに溶解した溶液をゆっくり滴下し、その後3
時間攪拌した。この系を−60℃に冷却し、生じた沈殿
を濾過によって取り出し、その溶媒を減圧下で蒸発除去
し、エタノールで3回再結晶を行い、MMTのトリスル
フィド化合物を得た。
On the other hand, the tetrasulfide compound of MMT was obtained as follows. That is, under an argon atmosphere, 10 mmol of MMT was dissolved in 30 ml of methylene chloride, and a solution of 5 mmol of disulfur dichloride in 20 ml of methylene chloride was slowly added dropwise to the solution.
Stirred for hours. The system was cooled to −60 ° C., the resulting precipitate was taken out by filtration, the solvent was removed by evaporation under reduced pressure, and recrystallized three times with ethanol to obtain a trisulfide compound of MMT.

【0024】なお、上記各合成の濾過工程において濾過
物以外に濾液中に目的物が含有されているため、その回
収及び精製を別途行ったが、それについての記載は省略
してある。また、これら得られた生成物については、F
AB質量分析器、赤外分光分析装置によって目的物であ
ることが確認されている。
In addition, since the target substance is contained in the filtrate in addition to the filtered substance in the filtration step of each synthesis described above, the target substance was collected and purified separately, but the description thereof is omitted. Further, regarding these obtained products, F
It has been confirmed to be a target substance by an AB mass spectrometer and an infrared spectroscopic analyzer.

【0025】上述のように得たMMTのジスルフィド、
トリスルフィド、テトラスルフィドの各化合物を用いて
電池を形成した。なお、以下の作業はすべてグローブボ
ックス内アルゴン気流下で行った。電解質としてトリフ
ルオロメタンスルホン酸リチウムを2mmol/ lの濃
度になるよう30mlのγ−ブチロラクトンに溶解した
電解液を3つ調製し、これらに上記で合成した3種のM
MTのスルフィド化合物をそれぞれ5mmol/ lの濃
度になるよう溶解した。
MMT disulfide obtained as described above,
A battery was formed using each compound of trisulfide and tetrasulfide. Note that all the following work was performed under an argon gas flow in the glove box. Three electrolytes were prepared by dissolving lithium trifluoromethanesulfonate as an electrolyte in 30 ml of γ-butyrolactone so as to have a concentration of 2 mmol / l.
The MT sulfide compound was dissolved to a concentration of 5 mmol / l.

【0026】これらの溶液を用いて試料極としてグラッ
シーカーボン、対極として金属リチウム板、参照極とし
て銀−銀イオン電極を用いて電池を形成した。このとき
MMTのジスルフィドを有する電池を電池3(比較例
2)、MMTのトリスルフィドを有する電池を電池4
(実施例2)、そしてMMTのテトラスルフィドを有す
る電池を電池5(実施例3)とした。これら電池3、4
及び5についてサイクリックボルタモグラムを測定し
た。それぞれの結果を図1(a)、(b)及び(c)に
示す。
Using these solutions, a battery was formed using glassy carbon as a sample electrode, a metallic lithium plate as a counter electrode, and a silver-silver ion electrode as a reference electrode. At this time, the battery having MMT disulfide is battery 3 (Comparative Example 2), and the battery having MMT trisulfide is battery 4.
(Example 2) and a battery having MMT tetrasulfide was used as a battery 5 (Example 3). These batteries 3, 4
Cyclic voltammograms were measured for samples Nos. 5 and 5. The respective results are shown in FIGS. 1 (a), (b) and (c).

【0027】図1により、放電電気量に相当する還元電
気量は、電池3は電池2の1.6倍、電池4は電池の
1.7倍となることが判った。このことによりMMTの
スルフィド化合物においても、トリスルフィド化合物及
びテトラスルフィド化合物は、ジスルフィド化合物に比
較して、より電気化学的活性が高いことが判る。
From FIG. 1, it was found that the reducing electricity quantity corresponding to the discharging electricity quantity was 1.6 times that of the battery 2 in the battery 3 and 1.7 times that of the battery 4 in the battery 4. This shows that even in the sulfide compound of MMT, the trisulfide compound and the tetrasulfide compound have higher electrochemical activity than the disulfide compound.

【0028】〔実施例4、実施例5及び比較例3〕上記
比較例2、実施例3及び実施例4で用いたMMTのジス
ルフィド化合物、トリスルフィド化合物、テトラスルフ
ィド化合物を用いてアルゴン雰囲気下で扁平型電池を作
製して、実使用時に近い状態での検討を行った。
Example 4, Example 5 and Comparative Example 3 The disulfide compound, trisulfide compound and tetrasulfide compound of MMT used in Comparative Example 2, Example 3 and Example 4 were used under an argon atmosphere. A flat-type battery was manufactured and examined in a state close to actual use.

【0029】(正極の作製)MMTのジスルフィド化合
物300mgと分散剤30mg(アルドリッチ社製Br
ij35)、電解質である過塩素酸リチウム185m
g、及び導電剤であるケッチェンブラック70mg、ポ
リエチレンオキサイド415mgをアセトニトリルと混
合し、これらの分散液を得た。この液体をシャーレ上に
展開してアセトニトリルを揮発させて、厚さ500μm
のシートとした。これを直径14mmに打ち抜いて、以
下、正極として用いた。
(Preparation of Positive Electrode) MMT disulfide compound 300 mg and dispersant 30 mg (Br manufactured by Aldrich)
ij35), an electrolyte, lithium perchlorate 185 m
g, and Ketjenblack 70 mg as a conductive agent and polyethylene oxide 415 mg were mixed with acetonitrile to obtain a dispersion liquid of these. This liquid is spread on a petri dish to evaporate acetonitrile to a thickness of 500 μm.
And the sheet. This was punched to a diameter of 14 mm and used as a positive electrode hereinafter.

【0030】(固体電解質の作製)アクリロニトリルと
メチルアクリレートとの共重合体1.5gを、1mol
/lの濃度の過塩素酸リチウムγ−ブチロラクトン溶液
に混合し均一分散させ、その後120℃に加熱シャーレ
上に展開して放冷し、厚さ1500μmの固体電解質を
得た。これを直径16mmに打ち抜いて以下セパレータ
として用いた。 (負極の作製)厚さ400μmのリチウム金属箔を直径
15mmに打ち抜いて負極とした。
(Preparation of Solid Electrolyte) 1 mol of 1.5 g of a copolymer of acrylonitrile and methyl acrylate
The mixture was uniformly dispersed in a lithium perchlorate γ-butyrolactone solution having a concentration of 1 / l, then spread on a petri dish heated to 120 ° C. and allowed to cool to obtain a solid electrolyte having a thickness of 1500 μm. This was punched into a diameter of 16 mm and used as a separator below. (Production of Negative Electrode) A lithium metal foil having a thickness of 400 μm was punched out to a diameter of 15 mm to obtain a negative electrode.

【0031】(電池の作製)上記正極、セパレータ、負
極を用いて扁平型電池(電池6:比較例3)を作製し
た。その電池のモデル断面図を図2に示す。図中符号1
は正極で正極缶2に圧着されている。正極1は固体電解
質からなるセパレータ6を挟んでリチウム箔からなる負
極3に面しており、負極3の他面は負極缶5に接してい
る。なお、正極缶2及び負極缶5の内部は絶縁パッキン
グによって気密となっている。
(Production of Battery) A flat battery (Battery 6: Comparative Example 3) was produced using the above positive electrode, separator and negative electrode. A model cross-sectional view of the battery is shown in FIG. Reference numeral 1 in the figure
Is a positive electrode and is pressure-bonded to the positive electrode can 2. The positive electrode 1 faces the negative electrode 3 made of lithium foil with a separator 6 made of a solid electrolyte interposed therebetween, and the other surface of the negative electrode 3 is in contact with the negative electrode can 5. The insides of the positive electrode can 2 and the negative electrode can 5 are hermetically sealed by insulating packing.

【0032】上記電池6と同様に、ただし正極活物質と
してMMTのジスルフィド化合物の代わりに、MMTの
トリスルフィド化合物、或いはMMTのテトラスルフィ
ド化合物を用いて、電池7(実施例4)及び電池8(実
施例5)を作製した。
Similar to the above battery 6, except that the trisulfide compound of MMT or the tetrasulfide compound of MMT was used as the positive electrode active material instead of the disulfide compound of MMT, and batteries 7 (Example 4) and 8 ( Example 5) was made.

【0033】(電池の評価)これら電池6、電池7及び
電池8について、その放電容量を調べた。これら電池に
0.1CmAの電流規制で10時間の充電を行い、その
後0.1CmAの電流規制で電圧が2.0Vとなるまで
放電を行った。なお、上記において「CmA」とは満充
電の電池を1時間で完全放電させる電流量の設定値を表
す単位である。このときの放電状況を図3に示した。な
お、図3において横軸は電池6の放電容量を100%と
したときの放電容量率である。図3より、本発明に係る
電池である電池7及び電池8の放電容量は、比較例であ
る電池6の放電容量の1.5倍及び1.8であり、本発
明の効果は明らかである。
(Evaluation of Battery) The discharge capacities of these batteries 6, 7 and 8 were examined. These batteries were charged for 10 hours under the current regulation of 0.1 CmA, and then discharged until the voltage reached 2.0 V under the current regulation of 0.1 CmA. In the above description, “CmA” is a unit representing a set value of the amount of current for completely discharging a fully charged battery in 1 hour. The discharge situation at this time is shown in FIG. In FIG. 3, the horizontal axis represents the discharge capacity ratio when the discharge capacity of the battery 6 is 100%. From FIG. 3, the discharge capacities of the batteries 7 and 8 which are batteries according to the present invention are 1.5 times and 1.8 times the discharge capacities of the battery 6 as a comparative example, and the effect of the present invention is clear. .

【0034】[0034]

【発明の効果】従来のスルフィド系電極材料は、そのジ
スルフィド基(R−S−S−R、R:有機化合物からな
る基。以下同じ。)での電解還元・電解酸化反応を利用
するものであり、下式のように、この電解還元・電解酸
化反応には基当たり2つの電子しか関与しない。なお、
以下式中Mは金属(ここでは金属の例として1価のもの
について記載するが、多価の金属であっても差し支えは
ない。)、または水素を表す。
EFFECTS OF THE INVENTION Conventional sulfide-based electrode materials utilize electrolytic reduction / electrolytic oxidation reactions at their disulfide groups (R—S—S—R, R: a group consisting of an organic compound; the same applies hereinafter). Therefore, as shown in the following formula, only two electrons are involved in this electrolytic reduction / electrolytic oxidation reaction per group. In addition,
In the following formula, M represents a metal (here, a monovalent one is described as an example of the metal, but a polyvalent metal may be used) or hydrogen.

【0035】[0035]

【化16】 Embedded image

【0036】一方、本発明に係る電極材料は、例えば、
R−S−(S)n −S−R’(1≦n≦5、R及びR’
は有機物からなる基)でn=2のとき、即ちテトラスル
フィド化合物のとき、化学式17で表すことができる。
On the other hand, the electrode material according to the present invention is, for example,
R-S- (S) n- S-R '(1≤n≤5, R and R'
Is a group consisting of an organic substance) and n = 2, that is, a tetrasulfide compound, can be represented by the chemical formula 17.

【0037】[0037]

【化17】 Embedded image

【0038】化学式17より、テトラスルフィド化合物
を用いた場合、6電子反応となることが判る。ここで、
重量当たりの電子の数がジスルフィド化合物の場合に比
べ増加し、エネルギー密度が増加する。
From the chemical formula 17, it can be seen that a 6-electron reaction occurs when a tetrasulfide compound is used. here,
The number of electrons per weight is increased as compared with the case of the disulfide compound, and the energy density is increased.

【0039】ここで、例えば、DMcT分子中の2つの
チオール基の水素が、それぞれ別のDMcTの2つの硫
黄の1つと置換し硫黄同士が結合して重合しているジス
ルフィド化合物重合体、このDMcTによるジスルフィ
ド結合の間に1〜5個の硫黄が入り込んだトリスルフィ
ド、テトラスルフィド、ペンタスルフィド、ヘキサスル
フィド、ヘプタスルフィドの各化合物重合体を想定した
場合、これらの電解還元及び電解酸化反応はそれぞれ、
2電子反応、4電子反応、6電子反応、8電子反応、1
0電子反応、12電子反応である。これらDMcTのス
ルフィド化合物重合体を電池の電極材料として用い、他
方電極にリチウムを用いた場合、起電力が3.5Vであ
るので、それぞれの理論エネルギー密度は図4に示すよ
うになる。
Here, for example, the hydrogen of the two thiol groups in the DMcT molecule is replaced with one of the two sulfurs of different DMcT, and the sulfur is bonded to each other to polymerize the disulfide compound polymer. Assuming each compound polymer of trisulfide, tetrasulfide, pentasulfide, hexasulfide, and heptasulfide in which 1 to 5 sulfurs are introduced between the disulfide bonds by, the electrolytic reduction and electrolytic oxidation reactions are
2-electron reaction, 4-electron reaction, 6-electron reaction, 8-electron reaction, 1
It is a 0-electron reaction and a 12-electron reaction. When these DMcT sulfide compound polymers are used as the electrode material of the battery and lithium is used for the other electrode, the electromotive force is 3.5 V, so the theoretical energy densities are as shown in FIG.

【0040】また、トリチオシアヌル酸(以下「TTC
A」と云う。)、及び、N,N,N’,N’−テトラメ
ルカプトエタン((HS)2 NCH2 CH2 N(SH)
2 )についても、そのジスルフィド、トリスルフィド、
テトラスルフィド、ペンタスルフィド、ヘキサスルフィ
ド、ヘプタスルフィド化合物の重合体での同様の理論エ
ネルギー密度を併せて図1に示す。なお、参考として化
学式18にTTCAのテトラスルフィド化合物重合体の
酸化還元反応式を示す。
Further, trithiocyanuric acid (hereinafter referred to as "TTC
"A". ) And N, N, N ′, N′-tetramercaptoethane ((HS) 2 NCH 2 CH 2 N (SH)
For 2 ), the disulfide, trisulfide,
Similar theoretical energy densities for polymers of tetrasulfide, pentasulfide, hexasulfide, and heptasulfide compounds are also shown in FIG. For reference, chemical formula 18 shows a redox reaction formula of a tetrasulfide compound polymer of TTCA.

【0041】[0041]

【化18】 Embedded image

【0042】図4より、本発明に係る電極材料を用いた
電池の理論エネルギー値が従来のジスルフィド化合物重
合体を用いた電池の理論エネルギー値より格段に高いこ
と、即ち、本発明に係る電極材料が優れた特性を持つこ
とが理解される。上記実施例により明らかにされるよう
に、本発明に係る電極材料を用い二次電池を作製する
と、そのエネルギー密度は従来のジスルフィド系電極材
料を用いた場合に比べ、格段に大きくなる。
From FIG. 4, the theoretical energy value of the battery using the electrode material according to the present invention is significantly higher than the theoretical energy value of the battery using the conventional disulfide compound polymer, that is, the electrode material according to the present invention. Is understood to have excellent properties. As is clear from the above-described examples, when a secondary battery is manufactured using the electrode material according to the present invention, its energy density is significantly higher than that when a conventional disulfide-based electrode material is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比較例である電池3、実施例である電
池4及び電池5のサイクリックボルタモグラフである。 (a)電池3のサイクリックボルタモグラフ (b)電池4のサイクリックボルタモグラフ (c)電池5のサイクリックボルタモグラフ
FIG. 1 is a cyclic voltammogram of a battery 3 as a comparative example of the present invention, and batteries 4 and 5 as examples. (A) Cyclic voltamograph of battery 3 (b) Cyclic voltamograph of battery 4 (c) Cyclic voltamograph of battery 5

【図2】扁平型電池モデルの断面図である。FIG. 2 is a cross-sectional view of a flat battery model.

【図3】本発明の比較例である電池6、実施例である電
池7及び電池8の放電容量率を示す図である。
FIG. 3 is a diagram showing discharge capacity ratios of a battery 6 which is a comparative example of the present invention, a battery 7 and a battery 8 which are examples.

【図4】本発明に係る電極材料を用いたリチウム二次電
池の理論エネルギー密度を示した図である。
FIG. 4 is a diagram showing a theoretical energy density of a lithium secondary battery using the electrode material according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極缶 3 負極 4 絶縁パッキング 5 負極缶 6 セパレータ 1 positive electrode 2 positive electrode can 3 negative electrode 4 insulating packing 5 negative electrode can 6 separator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 2以上6以下連続したS−S結合を有す
ることを特徴とする有機電極材料。
1. An organic electrode material having continuous S—S bonds of 2 or more and 6 or less.
【請求項2】 次式 R−S−(S)n −S−R’ (1≦n≦5、R及びR’は有機物からなる基)で示さ
れることを特徴とする請求項1記載の有機電極材料。
2. The following formula: R—S— (S) n —S—R ′ (1 ≦ n ≦ 5, R and R ′ are organic groups) Organic electrode material.
【請求項3】 次式 R−S−(S)n −M (1≦n≦6、Rは有機物からなる基、Mは金属または
水素)で示されることを特徴とする電極材料。
3. An electrode material represented by the following formula: R—S— (S) n —M (1 ≦ n ≦ 6, R is a group consisting of an organic material, and M is a metal or hydrogen).
【請求項4】 2以上6以下連続したS−S結合を有す
る有機電極材料を含有することを特徴とする二次電池。
4. A secondary battery containing an organic electrode material having continuous S—S bonds of 2 or more and 6 or less.
【請求項5】 次式 R−S−(S)n −S−R’ (1≦n≦5、R及びR’は有機物からなる基)で示さ
れる有機電極材料を含有することを特徴とする請求項4
記載の二次電池。
5. An organic electrode material represented by the following formula: R—S— (S) n —S—R ′ (1 ≦ n ≦ 5, R and R ′ are groups consisting of an organic substance) is contained. Claim 4
The secondary battery according to any one of the preceding claims.
【請求項6】 次式 R−S−(S)n −M (1≦n≦6、Rは有機物からなる基、Mは金属または
水素)で示される有機電極材料を含有することを特徴と
する二次電池。
6. An organic electrode material represented by the following formula: R—S— (S) n —M (1 ≦ n ≦ 6, R is a group composed of an organic material, and M is a metal or hydrogen). Rechargeable battery.
【請求項7】 次式 R−S−M (Rは有機物からなる基、Mは金属または
水素) で示される有機電極材料を含有し、かつ、硫化金属を含
有する電解液を有することを特徴とする二次電池。
7. An electrolytic solution containing an organic electrode material represented by the following formula: R—S—M (R is a group consisting of an organic substance, M is a metal or hydrogen) and containing a metal sulfide. And a secondary battery.
JP03839196A 1995-02-27 1996-02-26 Electrode materials and secondary batteries Expired - Fee Related JP3497318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03839196A JP3497318B2 (en) 1995-02-27 1996-02-26 Electrode materials and secondary batteries

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-38285 1995-02-27
JP3828595 1995-02-27
JP23277095 1995-09-11
JP7-232770 1995-09-11
JP03839196A JP3497318B2 (en) 1995-02-27 1996-02-26 Electrode materials and secondary batteries

Publications (2)

Publication Number Publication Date
JPH09139213A true JPH09139213A (en) 1997-05-27
JP3497318B2 JP3497318B2 (en) 2004-02-16

Family

ID=27289771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03839196A Expired - Fee Related JP3497318B2 (en) 1995-02-27 1996-02-26 Electrode materials and secondary batteries

Country Status (1)

Country Link
JP (1) JP3497318B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033130A1 (en) * 1997-12-19 1999-07-01 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing, organic polymers for use in electrochemical cells
US6117590A (en) * 1995-06-07 2000-09-12 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US6309778B1 (en) 1996-02-16 2001-10-30 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2001332306A (en) * 1999-11-22 2001-11-30 Hitachi Maxell Ltd Polymer electrolyte and secondary cell
JP2015054834A (en) * 2013-09-11 2015-03-23 独立行政法人国立高等専門学校機構 Method for producing organic polysulfide compound and organic polysulfide compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117590A (en) * 1995-06-07 2000-09-12 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US6174621B1 (en) 1995-06-07 2001-01-16 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US6309778B1 (en) 1996-02-16 2001-10-30 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
WO1999033130A1 (en) * 1997-12-19 1999-07-01 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing, organic polymers for use in electrochemical cells
US6201100B1 (en) 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
JP2001332306A (en) * 1999-11-22 2001-11-30 Hitachi Maxell Ltd Polymer electrolyte and secondary cell
JP4562896B2 (en) * 1999-11-22 2010-10-13 日立マクセル株式会社 Gel polymer electrolyte and secondary battery
JP2015054834A (en) * 2013-09-11 2015-03-23 独立行政法人国立高等専門学校機構 Method for producing organic polysulfide compound and organic polysulfide compound

Also Published As

Publication number Publication date
JP3497318B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
US5723230A (en) Oligosulfide type electrode material and secondary battery containing such electrode material
JP3525403B2 (en) Electrode materials and secondary batteries
JP3555097B2 (en) Electrode materials and secondary batteries
US20200411933A1 (en) Soluble oxygen evolving catalysts for rechargeable metal-air batteries
US6743877B1 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
DE60018791T2 (en) LITHIUM BATTERIES
US20130298386A1 (en) Method for producing a lithium or sodium battery
US10497932B2 (en) Lithium accumulator comprising a positive electrode material based on a specific carbon material functionalized by specific organic compounds
KR20090009210A (en) Lithium rechargeable electrochemical cell
US6072026A (en) Aniline polymer electrode material and secondary cell
WO1993009092A1 (en) Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
WO1988005064A1 (en) Allyl group-containing oligoethyleneoxypolyphosphazenes, process for their preparation, and their use
JP2003208897A (en) Lithium battery and manufacturing method thereof
KR101875785B1 (en) Cathode material for rechargeable magnesium battery and its preparation method
JP3497318B2 (en) Electrode materials and secondary batteries
ITMI951651A1 (en) COMPOSITE CATHOD PROCEDURE FOR ITS PREPARATION AND ITS USE IN SOLID ELECTROCHEMICAL CELLS
EP0143968A2 (en) Polymeric electrode coated with reaction product or organosulfur compound
EP0569037B1 (en) A reversible electrode
US20130302679A1 (en) Rechargeable battery, functional polymer, and method for synthesis thereof
EP3700962A1 (en) Poly(ketone)-based polymer electrolytes for high voltage lithium ion batteries
US10665894B2 (en) Lithium air battery that includes nonaqueous lithium ion conductor
CN110350154B (en) Lithium sulfonate-substituted fluorinated graphene and preparation method and application thereof
US4166160A (en) Cells having cathodes derived from ammonium-molybdenum-chalcogen compounds
JPH06275322A (en) Lithium battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees