JP3525403B2 - Electrode materials and secondary batteries - Google Patents

Electrode materials and secondary batteries

Info

Publication number
JP3525403B2
JP3525403B2 JP21273796A JP21273796A JP3525403B2 JP 3525403 B2 JP3525403 B2 JP 3525403B2 JP 21273796 A JP21273796 A JP 21273796A JP 21273796 A JP21273796 A JP 21273796A JP 3525403 B2 JP3525403 B2 JP 3525403B2
Authority
JP
Japan
Prior art keywords
methyltetrazole
dithiobis
phenyltetrazole
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21273796A
Other languages
Japanese (ja)
Other versions
JPH09153362A (en
Inventor
勝彦 直井
昭彦 鳥越
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP21273796A priority Critical patent/JP3525403B2/en
Priority to US08/720,033 priority patent/US5882819A/en
Publication of JPH09153362A publication Critical patent/JPH09153362A/en
Application granted granted Critical
Publication of JP3525403B2 publication Critical patent/JP3525403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池用電極材料に
関する。更に詳しくは、スルフィド系電極材料に関する
ものである。
TECHNICAL FIELD The present invention relates to a battery electrode material. More specifically, it relates to a sulfide-based electrode material.

【0002】[0002]

【従来の技術】近年、通信機器やOA機器の可搬化がす
すみ、これら機器の軽量化及び小型化競争が繰り広げら
れている。このような各種機器や、或いは電気自動車等
の電源として利用される二次電池においてもその高効率
化が求められている。この要求に対し新たな電極材を用
いた電池が開発されつつあるが、この中でエネルギー密
度が比較的高いことから、スルフィド化合物を用いた電
極材料(以下「スルフィド電極材料」と云う)(米国特
許第4833048号等)が注目されている。このもの
は、トリアジン環を有する、或いはチアジアゾール環を
有するスルフィド化合物などを電極材料に用いるもので
ある。
2. Description of the Related Art In recent years, communication equipment and office automation equipment have become portable, and competition for weight reduction and miniaturization of these equipment has been promoted. Higher efficiency is also required for such various devices and secondary batteries used as power sources for electric vehicles and the like. In response to this demand, batteries using new electrode materials are being developed, but because of the relatively high energy density among them, electrode materials using sulfide compounds (hereinafter referred to as “sulfide electrode materials”) (US Patent No. 4833048 and the like) are attracting attention. This uses a sulfide compound having a triazine ring or a thiadiazole ring as an electrode material.

【0003】ここで、ジスルフィド化合物をR−S−S
−R(Rは有機官能基)と表したとき、ジスルフィド結
合(S−S結合)は電解還元による2電子の供給により
開裂し、電解液中のカチオン或いはプロトン(M+)と
結合して2(R−S-・M+)で表せられるスルフィド化
合物となり、電解酸化時には元のR−S−S−Rに戻っ
て、2電子を放出する。この二次電池においては、通常
の他の二次電池並の150Wh/kg以上のエネルギー密度
が期待できるとされている。しかし、前述の米国特許の
発明者らがJ.Electrochem.Soc.Vol.136.No.9,p.2570〜
2575(1989)で報告している内容から、このスルフィド
系二次電池の電極反応の電子移動速度は極めて遅く、従
って、室温付近では実用に見合う大電流を取り出すこと
が困難であり、60℃以上での使用に限られると云う問
題が指摘された。
Here, the disulfide compound is R--S--S.
When represented as —R (R is an organic functional group), the disulfide bond (S—S bond) is cleaved by supplying two electrons by electrolytic reduction, and is bonded to a cation or a proton (M + ) in the electrolytic solution to give 2 (R-S - · M + ) becomes sulfide compound is represented by, at the time of electrolytic oxidation back to the original R-S-S-R, to release the 2 electrons. It is said that this secondary battery can be expected to have an energy density of 150 Wh / kg or more, which is equal to that of other ordinary secondary batteries. However, the inventors of the above-mentioned U.S. patents have been proposed by J. Electrochem. Soc. Vol. 136. No. 9, p.
From the content reported in 2575 (1989), the electron transfer rate of the electrode reaction of this sulfide-based secondary battery is extremely slow, and therefore it is difficult to extract a large current suitable for practical use near room temperature, and it is difficult to obtain a temperature of 60 ° C or more. A problem was pointed out that it was limited to use in the.

【0004】その後、このスルフィド系二次電池を改良
し、大電流に対応させる技術として、特開平5−744
59号公報等に示されるように、チアジアゾール環及び
ジスルフィド基を有する有機化合物にポリアニリン等の
導電性高分子を組み合わせた電極材料が提案された。し
かし、この従来技術に係る二次電池においては、反応速
度の増加による電流値の増大は見込めるものの、エネル
ギー密度の向上は図れず、むしろ低下すると云った欠点
がある。
Then, as a technique for improving this sulfide-based secondary battery to cope with a large current, Japanese Patent Laid-Open No. 5-744 has been proposed.
As disclosed in Japanese Patent No. 59, etc., an electrode material has been proposed in which an organic compound having a thiadiazole ring and a disulfide group is combined with a conductive polymer such as polyaniline. However, in the secondary battery according to the conventional technique, although the current value can be expected to increase due to the increase in the reaction rate, the energy density cannot be improved, but rather has a drawback that it decreases.

【0005】[0005]

【発明が解決しようとする課題】本発明は、二次電池の
電極材料に応用した場合に、エネルギー密度を格段に向
上させることができるスルフィド系電極材料、及びエネ
ルギー密度が格段に高い二次電池を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention, when applied to an electrode material of a secondary battery, can improve the energy density remarkably, and a sulfide-based electrode material having a remarkably high energy density. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の有機電極材料
は、上記問題を解決するために、請求項1に記載の通
り、テトラゾール環を有する非水系二次電池用スルフィ
ド系正極用電極材料であって、5,5’−ジチオビス
(1−メチルテトラゾール)、5,5’−トリチオビス
(1−メチルテトラゾール)、5,5’−テトラチオビ
ス(1−メチルテトラゾール)、5,5’−ジチオビス
(1−フェニルテトラゾール)、5,5’−トリチオビ
ス(1−フェニルテトラゾール)、および、5,5’−
テトラチオビス(1−フェニルテトラゾール)のいずれ
かであることを特徴とする非水系二次電池用スルフィド
系正極用電極材料である。また、本発明の非水系二次電
池は請求項2に記載の通り、テトラゾール環を有する物
質を正極活物質として含有する非水系二次電池であっ
て、該テトラゾール環を有する物質が5,5’−ジチオ
ビス(1−メチルテトラゾール)、5,5’−トリチオ
ビス(1−メチルテトラゾール)、5,5’−テトラチ
オビス(1−メチルテトラゾール)、5,5’−ジチオ
ビス(1−フェニルテトラゾール)、5,5’−トリチ
オビス(1−フェニルテトラゾール)、および、5,
5’−テトラチオビス(1−フェニルテトラゾール)の
いずれかであることを特徴とする非水系二次電池であ
る。
In order to solve the above-mentioned problems, the organic electrode material of the present invention has a tetrazole ring-containing sulfite for a non-aqueous secondary battery as described in claim 1.
An electrode material for a positive electrode, which is 5,5'-dithiobis
(1-methyltetrazole), 5,5'-trithiobis
(1-methyltetrazole), 5,5'-tetrathiobi
Sus (1-methyltetrazole), 5,5'-dithiobis
(1-phenyltetrazole), 5,5'-trithiobi
Su (1-phenyltetrazole) and 5,5'-
Any of tetrathiobis (1-phenyltetrazole)
Sulfide for non-aqueous secondary battery characterized by being
It is an electrode material for a positive electrode . In addition, the non-aqueous secondary battery of the present invention
The pond has a tetrazole ring as described in claim 2.
Is a non-aqueous secondary battery that contains quality as a positive electrode active material.
And the substance having the tetrazole ring is 5,5′-dithio.
Bis (1-methyltetrazole), 5,5'-trithio
Bis (1-methyltetrazole), 5,5'-tetrati
Obis (1-methyltetrazole), 5,5'-dithio
Bis (1-phenyltetrazole), 5,5'-triti
Obis (1-phenyltetrazole) and 5,
Of 5'-tetrathiobis (1-phenyltetrazole)
It is a non-aqueous secondary battery characterized by being either
It

【0007】[0007]

【発明の実施の形態】本発明においてテトラゾール環を
有するスルフィド系電極材料とは、テトラゾール環に直
接硫黄原子が結合した化合物、及びこれら化合物を含有
する材料を意味する。なお、テトラゾール環を有する化
合物において、テトラゾール環1個あたり2個以上の硫
黄を有する化合物を用いた場合、多量体を形成する。こ
の場合には、エネルギー密度が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the sulfide-based electrode material having a tetrazole ring means a compound in which a sulfur atom is directly bonded to the tetrazole ring, and a material containing these compounds. In addition, in a compound having a tetrazole ring, when a compound having two or more sulfur atoms per tetrazole ring is used, a multimer is formed. In this case, the energy density is improved.

【0008】このようなテトラゾール環を有するスルフ
ィド系電極材料の内、エネルギー密度が高いこと、合成
が容易であること等の理由により、化1で示される基ま
たは化2で示されるイオンを有するものであることが望
ましい。特に、二量体(化3参照)であると、充放電サ
イクルが多くなった際にもその容量の減少が極めて少な
いので望ましい。なお化3においてnが1以上5以下の
トリスルフィドなどのポリスルフィド化合物であると、
エネルギー密度が高くなるので好ましい。
Of these sulfide-based electrode materials having a tetrazole ring, those having a group represented by Chemical formula 1 or an ion represented by Chemical formula 2 for reasons such as high energy density and easy synthesis. Is desirable. In particular, a dimer (see Chemical Formula 3) is desirable because its capacity is not significantly reduced even when the number of charge / discharge cycles increases. In Chemical formula 3, when n is a polysulfide compound such as trisulfide having 1 or more and 5 or less,
It is preferable because the energy density becomes high.

【化3】 [Chemical 3]

【0009】しかし、化1に示される基及び化2に示さ
れるイオンまたは化3で表せられる物質において、Rと
してはメチル基、エチル基等のアルキル基、アミノ基、
カルボキシル基、アルキルアミノ基、アミド基、芳香属
化合物等環状有機物或いは水素を導入したものも用い得
るが、メチル基等の電子供与性を有する基であることが
望ましい。
However, in the group represented by the chemical formula 1 and the ion represented by the chemical formula 2 or the substance represented by the chemical formula 3, R is a methyl group, an alkyl group such as an ethyl group, an amino group,
A carboxyl group, an alkylamino group, an amide group, a cyclic organic compound such as an aromatic compound, or a compound having hydrogen introduced may be used, but a group having an electron donating property such as a methyl group is preferable.

【0010】なお、上記活物質は導電性を有しないた
め、電子導電材、イオン導電材と混合し正極を作製す
る。電子導電材料としては、カーボン或いはチタン、ニ
ッケル等の金属粉などを用いることができ、また、イオ
ン導電材としては過塩素酸塩等の電解質塩とプロピレン
カーボネート等の溶媒とを混合した液体電解質、或いは
電解質塩を溶解させたポリエチレンオキサイド等の固体
電解質が挙げられる。
Since the above active material does not have conductivity, it is mixed with an electronic conductive material and an ionic conductive material to prepare a positive electrode. As the electron conductive material, carbon or titanium, metal powder such as nickel can be used, and as the ionic conductive material, a liquid electrolyte obtained by mixing an electrolyte salt such as perchlorate and a solvent such as propylene carbonate, Alternatively, a solid electrolyte such as polyethylene oxide in which an electrolyte salt is dissolved can be used.

【0011】また、上記液体電解質、高分子固体電解質
のいずれも、電池の電解質として用いることができる。
一方、負極材としては、アルカリ金属若しくはアルカリ
金属を挿入・脱離するものを用い得る。
Further, any of the above liquid electrolyte and solid polymer electrolyte can be used as an electrolyte of a battery.
On the other hand, as the negative electrode material, an alkali metal or a material into / from which an alkali metal is inserted / removed can be used.

【0012】[0012]

【実施例】【Example】

[実施例1:5,5’−ジチオビス(1−メチルテトラ
ゾール)を用いたサイクリックボルタンメトリーによる
評価] 〔5,5’−ジチオビス(1−メチルテトラゾール)の
合成〕アルゴン雰囲気下で、30mlのメタノールに5
mmolのヨウ素を溶解し、これに予め5−メルカプト
−1−メチルテトラゾール10mmol、ナトリウムメ
トキシド5mmolを30mlのメタノールに溶解した
溶液をゆっくり滴下し、その後、3時間撹拌し、次いで
−60℃に冷却し、生じた沈殿物を濾過によって分離
し、減圧乾燥後、エタノールによって3回再結晶を行っ
て、5,5’−ジチオビス(1−メチルテトラゾール)
を得た。
[Example 1: Evaluation by cyclic voltammetry using 5,5'-dithiobis (1-methyltetrazole)] [Synthesis of 5,5'-dithiobis (1-methyltetrazole)] 30 ml of methanol under an argon atmosphere To 5
A solution of 10 mmol of 5-mercapto-1-methyltetrazole and 5 mmol of sodium methoxide dissolved in 30 ml of methanol was slowly added dropwise to dissolve 0.9 mmol of iodine, followed by stirring for 3 hours and then cooling to -60 ° C. The resulting precipitate was separated by filtration, dried under reduced pressure, and recrystallized three times with ethanol to give 5,5′-dithiobis (1-methyltetrazole).
Got

【0013】〔2,2’−ジチオビス(5−メチル−
1,3,4−チアジアゾール)の合成〕5−メルカプト
−1−メチルテトラゾールの代わりに2−メルカプト−
5−メチル−1,3,4−チアジアゾールを用いた他
は、上記5,5’−ジチオビス(1−メチルテトラゾー
ル)の合成と同様に行った。
[2,2'-dithiobis (5-methyl-
Synthesis of 1,3,4-thiadiazole)] 2-mercapto-instead of 5-mercapto-1-methyltetrazole
The same procedure as in the synthesis of 5,5′-dithiobis (1-methyltetrazole) was performed except that 5-methyl-1,3,4-thiadiazole was used.

【0014】なお、上記各合成の濾過工程において濾過
物以外に濾液中に目的物が含有されているため、その回
収及び精製を別途行ったが、それについての記載は省略
してある。また、これら得られた生成物については、F
AB質量分析器、赤外分光分析装置によって目的物であ
ることが確認されている。
In addition, since the target substance is contained in the filtrate in addition to the filtered substance in the filtration step of each synthesis described above, the recovery and purification were performed separately, but the description thereof is omitted. Further, regarding these obtained products, F
It has been confirmed to be a target substance by an AB mass spectrometer and an infrared spectroscopic analyzer.

【0015】上述のように得た5,5’−ジチオビス
(1−メチルテトラゾール)、及び、2,2’−ジチオ
ビス(5−メチル−1,3,4−チアジアゾール)を用
いて電池を形成した。なお、以下の作業はすべてグロー
ブボックス内アルゴン気流下で行った。
A battery was formed using 5,5'-dithiobis (1-methyltetrazole) and 2,2'-dithiobis (5-methyl-1,3,4-thiadiazole) obtained as described above. . Note that all the following work was performed under an argon gas flow in the glove box.

【0016】電解質としてトリフルオロメタンスルホン
酸リチウム(LiCF3SO3)を0.2mmol/ lの
濃度になるよう30mlのγ−ブチロラクトンに溶解し
た電解液を2つ調製し、これらそれぞれに上記で合成し
た5,5’−ジチオビス(1−メチルテトラゾール)
と、2,2’−ジチオビス(5−メチル−1,3,4−
チアジアゾール)の2つのジスルフィド化合物を5mm
ol/ lの濃度になるよう溶解した。
Two electrolytes were prepared by dissolving lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) as an electrolyte in 30 ml of γ-butyrolactone so as to have a concentration of 0.2 mmol / l. 5,5'-dithiobis (1-methyltetrazole)
And 2,2′-dithiobis (5-methyl-1,3,4-
5 mm of two disulfide compounds (thiadiazole)
Dissolved to a concentration of ol / l.

【0017】これらの2種の溶液を用いて、それぞれ試
料極としてグラッシーカーボン、対極として白金線、参
照極として銀−銀イオン電極を用いて電池を形成した。
このとき5,5’−ジチオビス(1−メチルテトラゾー
ル)を有する電池を電池1(実施例1)、2,2’−ジ
チオビス(5−メチル−1,3,4−チアジアゾール)
を有する電池を電池2(比較例2)とした。これら電池
1及び2についてサイクリックボルタモグラムを測定し
た。その結果を図1に示す。
Using these two kinds of solutions, a battery was formed using glassy carbon as a sample electrode, a platinum wire as a counter electrode, and a silver-silver ion electrode as a reference electrode, respectively.
At this time, a battery having 5,5′-dithiobis (1-methyltetrazole) was used as Battery 1 (Example 1), 2,2′-dithiobis (5-methyl-1,3,4-thiadiazole).
The battery having the above was designated as Battery 2 (Comparative Example 2). Cyclic voltammograms of these batteries 1 and 2 were measured. The result is shown in FIG.

【0018】図1において、電池1及び電池2のサイク
リックボルタモグラムを比較すると、酸化電流のピーク
を示す酸化電位と還元電流のピークを示す還元電位のず
れはほぼ同じであるが、ピーク電流値が大きく異なり、
反応速度に大きな違いがあることが判る。また、本発明
に係る電池1のこれら両ピーク電位はいずれも電池2と
比較すると貴な方向にずれており、より高い電圧を取り
出し得ることも判る。
In FIG. 1, when comparing the cyclic voltammograms of the battery 1 and the battery 2, the deviations of the oxidation potential showing the peak of the oxidation current and the reduction potential showing the peak of the reduction current are almost the same, but the peak current values are Very different,
It can be seen that there is a big difference in the reaction rate. It is also understood that both of these peak potentials of the battery 1 according to the present invention are shifted in a noble direction as compared with the battery 2, and a higher voltage can be taken out.

【0019】また、同様に図1により放電電気量に相当
する還元電気量に関し、電池1は電池2の1.7倍とな
ることが判った。このことにより5,5’−ジチオビス
(1−メチルテトラゾール)は、2,2’−ジチオビス
(5−メチル−1,3,4−チアジアゾール)に比較し
て、電気化学的活性が高いことが判る。また、そのとき
の還元電位は電池2に比較して貴側にシフトしており、
放電エネルギー量(還元電気量と電位差との積)はより
大きなものとなる。
Similarly, it was found from FIG. 1 that the amount of reducing electricity corresponding to the amount of discharging electricity of the battery 1 was 1.7 times that of the battery 2. This shows that 5,5′-dithiobis (1-methyltetrazole) has higher electrochemical activity than 2,2′-dithiobis (5-methyl-1,3,4-thiadiazole). . Further, the reduction potential at that time is shifted to the noble side as compared with Battery 2,
The amount of discharge energy (product of reduced electricity and potential difference) becomes larger.

【0020】ここで5,5’−ジチオビス(1−メチル
テトラゾール)の分子量は、2,2’−ジチオビス(5
−メチル−1,3,4−チアジアゾール)の分子量に比
べ小さいため、5,5’−ジチオビス(1−メチルテト
ラゾール)を活物質として用いた電池が有利であること
を考え併せると、本発明における電極材料は従来の2,
2’−ジチオビス(5−メチル−1,3,4−チアジア
ゾール)に比較して格段に優れていることは明らかであ
る。
Here, the molecular weight of 5,5'-dithiobis (1-methyltetrazole) is 2,2'-dithiobis (5
-Methyl-1,3,4-thiadiazole) is smaller than the molecular weight of (5,5'-dithiobis (1-methyltetrazole) as an active material, it is advantageous in the present invention. Conventional electrode material is 2,
It is clear that it is significantly superior to 2'-dithiobis (5-methyl-1,3,4-thiadiazole).

【0021】[実施例2〜7:コイン型セルによる検
討]以下にコイン型セルによる検討結果を示す。なお、
これら検討において、空気中の窒素、酸素、水分等の混
入を避けるべき工程では、必要に応じてアルゴンガス気
流中で作業を行った。また、溶媒等も必要に応じて、脱
水、蒸留等を行ったものを使用した。
[Examples 2 to 7: Examination by coin type cell] The examination results by the coin type cell are shown below. In addition,
In these examinations, in the process where the inclusion of nitrogen, oxygen, moisture, etc. in the air should be avoided, work was carried out in an argon gas stream as needed. Further, as the solvent and the like, those obtained by dehydration, distillation and the like were used.

【0022】〔活物質の合成〕 (5,5’−ジチオビス(1−メチルテトラゾール)の
合成)1000mlのナスフラスコ中で、5−メルカプ
ト−1−メチルテトラゾール100mmolを450m
lのメタノールに溶解し水浴により冷却した。この溶液
に34.5%過酸化水素水20mlをゆっくり滴下し
た。滴下後数分後に反応により発熱が生じ、沈殿物が生
成した。この濾過後の沈殿物をメタノールにより洗浄
し、その後減圧乾燥し、5,5’−ジチオビス(1−メ
チルテトラゾール)(化4参照:以下「活物質α」と云
う)を得た。
[Synthesis of Active Material] (Synthesis of 5,5′-dithiobis (1-methyltetrazole)) In a 1000 ml round-bottomed flask, 100 mmol of 5-mercapto-1-methyltetrazole was added to 450 m.
It was dissolved in 1 of methanol and cooled in a water bath. 20 ml of 34.5% hydrogen peroxide solution was slowly added dropwise to this solution. A few minutes after the dropping, the reaction generated heat and a precipitate was formed. The precipitate after the filtration was washed with methanol and then dried under reduced pressure to obtain 5,5′-dithiobis (1-methyltetrazole) (see Chemical formula 4: hereinafter referred to as “active material α”).

【0023】[0023]

【化4】 [Chemical 4]

【0024】(5,5’−トリチオビス(1−メチルテ
トラゾール)の合成)1000mlのナスフラスコに5
−メルカプト−1−メチルテトラゾール100mmol
を800mlのジエチルエーテルに溶解した。次いでこ
れに1.25mol/ lの二塩化硫黄・ジエチルエーテ
ル溶液100mlをゆっくり滴下した。液は徐々に白濁
し、沈殿物が生じた。滴下終了後1時間攪拌し、次いで
−40℃に冷却し、さらに沈殿させた。濾過した沈殿物
をジエチルエーテルで洗浄し、その後減圧乾燥して、
5,5’−トリチオビス(1−メチル−テトラゾール)
(化5参照:以下「活物質β」と云う)を得た。
(Synthesis of 5,5'-trithiobis (1-methyltetrazole)) 5
-Mercapto-1-methyltetrazole 100 mmol
Was dissolved in 800 ml of diethyl ether. Next, 100 ml of a 1.25 mol / l sulfur dichloride / diethyl ether solution was slowly added dropwise thereto. The liquid gradually became cloudy and a precipitate was formed. After completion of dropping, the mixture was stirred for 1 hour, then cooled to -40 ° C and further precipitated. The filtered precipitate is washed with diethyl ether and then dried under reduced pressure,
5,5'-trithiobis (1-methyl-tetrazole)
(See Chemical formula 5: hereinafter referred to as “active material β”).

【0025】[0025]

【化5】 [Chemical 5]

【0026】(5,5’−テトラチオビス(1−メチル
テトラゾール)の合成)5,5’−トリチオビス(1−
メチル−テトラゾール)の合成と同様に、ただし、1.
25mol/ lの二塩化硫黄・ジエチルエーテル溶液の
代わりに1.25mol/ lの二塩化二硫黄・ジエチル
エーテル溶液を用いて、(5,5’−テトラチオビス
(1−メチルテトラゾール)(化6参照:以下「活物質
γ」と云う)を得た。
(Synthesis of 5,5'-tetrathiobis (1-methyltetrazole)) 5,5'-trithiobis (1-
Methyl-tetrazole), but with 1.
Instead of the 25 mol / l sulfur dichloride / diethyl ether solution, a 1.25 mol / l disulfur dichloride / diethyl ether solution was used ((5,5′-tetrathiobis (1-methyltetrazole) Hereinafter referred to as "active material γ").

【0027】[0027]

【化6】 [Chemical 6]

【0028】(5,5’−ジチオビス(1−フェニルテ
トラゾール)の合成)5,5’−ジチオビス(1−メチ
ルテトラゾール)の合成と同様に、ただし5−メルカプ
ト−1−メチルテトラゾールの代わりに5−メルカプト
−1−フェニルテトラゾールを用いて5,5’−ジチオ
ビス(1−フェニルテトラゾール)(化7参照:以下
「活物質δ」と云う。)を得た。
(Synthesis of 5,5'-dithiobis (1-phenyltetrazole)) Similar to the synthesis of 5,5'-dithiobis (1-methyltetrazole) except that 5-mercapto-1-methyltetrazole is replaced by 5 -Mercapto-1-phenyltetrazole was used to obtain 5,5'-dithiobis (1-phenyltetrazole) (see Chemical formula 7: hereinafter referred to as "active material δ").

【0029】[0029]

【化7】 [Chemical 7]

【0030】(5,5’−トリチオビス(1−フェニル
テトラゾール)の合成)5,5’−トリチオビス(1−
メチルテトラゾール)と同様に、ただし、5−メルカプ
ト−1−メチルテトラゾールの代わりに5−メルカプト
−1−フェニルテトラゾールを用いて、5,5’−トリ
チオビス(1−フェニルテトラゾール)(化8参照:以
下「活物質ε」と云う)を得た。
(Synthesis of 5,5'-trithiobis (1-phenyltetrazole)) 5,5'-trithiobis (1-
Methyltetrazole), except that 5-mercapto-1-phenyltetrazole is used instead of 5-mercapto-1-methyltetrazole to obtain 5,5′-trithiobis (1-phenyltetrazole) (see Chemical Formula 8: “Active material ε”) was obtained.

【0031】[0031]

【化8】 [Chemical 8]

【0032】(5,5’−テトラチオビス(1−フェニ
ルテトラゾール)の合成)5,5’−テトラチオビス
(1−メチルテトラゾール)と同様に、ただし、5−メ
ルカプト−1−メチルテトラゾールの代わりに5−メル
カプト−1−フェニルテトラゾールを用いて、5,5’
−テトラチオビス(1−フェニルテトラゾール)(化9
参照:以下「活物質ζ」と云う)を得た。
(Synthesis of 5,5'-tetrathiobis (1-phenyltetrazole)) Same as 5,5'-tetrathiobis (1-methyltetrazole) except that 5-mercapto-1-methyltetrazole is replaced by 5- 5,5 ′ with mercapto-1-phenyltetrazole
-Tetrathiobis (1-phenyltetrazole)
Reference: hereinafter referred to as “active material ζ”) was obtained.

【0033】[0033]

【化9】 [Chemical 9]

【0034】(2,2’−ジチオビス(5−メチル−
1,3,4−チアジアゾール)の合成)2−メルカプト
−5−メチル−1,3,4−チアジアゾール150mm
olを450mlのメタノールに溶解し、これに39m
lの34.5%過酸化水素水をゆっくり滴下し、室温で
1時間撹拌する。その後減圧・加熱により沈殿物を生成
させ、濾過し、メタノールで洗浄し、その後減圧乾燥に
より粗結晶を得た。エタノールで再結晶させて、5,
5’−ジチオビス(5−メチル−1,3,4−チアジア
ゾール)(以下「活物質η」と云う)を得た。
(2,2'-dithiobis (5-methyl-
Synthesis of 1,3,4-thiadiazole) 2-mercapto-5-methyl-1,3,4-thiadiazole 150 mm
ol is dissolved in 450 ml of methanol and 39 m
1 of 34.5% hydrogen peroxide solution is slowly added dropwise, and the mixture is stirred at room temperature for 1 hour. After that, a precipitate was generated by reducing pressure and heating, filtering, washing with methanol, and then drying under reduced pressure to obtain a crude crystal. Recrystallize with ethanol,
5′-dithiobis (5-methyl-1,3,4-thiadiazole) (hereinafter referred to as “active material η”) was obtained.

【0035】(2,2’−トリチオビス(5−メチル−
1,3,4−チアジアゾール)の合成)2−メルカプト
−5−メチル−1,3,4−チアジアゾール100mm
olを200mlのテトラヒドロフランに溶解し、これ
に二塩化硫黄125mmolをゆっくり滴下させる(滴
下により沈殿物が生じる)。滴下終了後、室温で5〜1
0分間撹拌する。次いで濾過し、テトラヒドロフランで
洗浄後、沈殿物を減圧乾燥して5,5’−トリチオビス
(5−メチル−1,3,4−チアジアゾール)(以下
「活物質θ」と云う)を得た。
(2,2'-trithiobis (5-methyl-
Synthesis of 1,3,4-thiadiazole) 2-mercapto-5-methyl-1,3,4-thiadiazole 100 mm
is dissolved in 200 ml of tetrahydrofuran, and 125 mmol of sulfur dichloride is slowly added dropwise thereto (a precipitate is formed by the addition). 5-1 at room temperature after dropping
Stir for 0 minutes. Then, after filtration and washing with tetrahydrofuran, the precipitate was dried under reduced pressure to obtain 5,5′-trithiobis (5-methyl-1,3,4-thiadiazole) (hereinafter referred to as “active material θ”).

【0036】(2,2’−テトラチオビス(5−メチル
−1,3,4−チアジアゾール)の合成)2,2’−ト
リチオビス(5−メチル−1,3,4−チアジアゾー
ル)の合成と同様、ただし、二塩化硫黄125mmol
の代わりに二塩化二硫黄125mmolを用いて、2,
2’−テトラチオビス(5−メチル−1,3,4−チア
ジアゾール(以下「活物質ι」と云う)を得た。
(Synthesis of 2,2'-tetrathiobis (5-methyl-1,3,4-thiadiazole)) Similar to the synthesis of 2,2'-trithiobis (5-methyl-1,3,4-thiadiazole), However, 125 mmol of sulfur dichloride
Using 125 mmol of disulfur dichloride instead of 2,
2′-Tetrathiobis (5-methyl-1,3,4-thiadiazole (hereinafter referred to as “active material ι”) was obtained.

【0037】〔活物質の分析〕活物質α〜活物質ζにつ
いて分析を行った。すなわちCHNS分析とO分析(パ
ーキンエルマー社PEシリーズII、CHNS/Oアナ
ライザ)、FAB−MS分析、1H−NMR及び13C−
NMRスペクトル分析を行った。CHNS分析と0分析
結果(炭素、水素、窒素、硫黄及び酸素の質量比を窒素
基準で整数比にしたもの)及びFAB−MS分析によっ
て確認された分子量を表1に、1H−NMR及び13C−
NMRスペクトル分析結果について表2に、活物質αの
1H−NMRスペクトル及び13C−NMRスペクトルを
それぞれ図2及び図3に、活物質δの1H−NMRスペ
クトル及び13C−NMRスペクトルをそれぞれ図4及び
図5に示す。
[Analysis of Active Material] The active materials α to ζ were analyzed. That is, CHNS analysis and O analysis (Perkin Elmer PE series II, CHNS / O analyzer), FAB-MS analysis, 1 H-NMR and 13 C-
NMR spectrum analysis was performed. The molecular weight confirmed by CHNS analysis and 0 analysis result (mass ratio of carbon, hydrogen, nitrogen, sulfur, and oxygen in integer ratio based on nitrogen) and FAB-MS analysis are shown in Table 1, 1 H-NMR and 13 C-
The results of the NMR spectrum analysis are shown in Table 2 for the active material α.
1 H-NMR spectrum and 13 C-NMR spectra in FIGS. 2 and 3, respectively, showing the active material δ of 1 H-NMR spectrum and 13 C-NMR spectra in FIGS. 4 and 5.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】〔正極の作製〕上記活物質α〜活物質ιを
それぞれ33重量部、及び、トリフルオロメタンスルホ
ン酸リチウム(LiCF3SO3)18重量部、ポリエチ
レンオキサイド(分子量2百万)42重量部、カーボン
ブラック(ライオン製ケッチェンブラック)7重量部と
をそれぞれ配合し、これに混合を容易にするため若干量
のアセトニトリルを添加し、撹拌して均一になるよう混
合し、得られたスラリーをテフロンシャーレを用いて展
開し、その後80℃で一昼夜乾燥しフィルム(厚さ60
0μm(平均))とし、これらを直径15mmに打ち抜
いて正極とした。
[Preparation of Positive Electrode] 33 parts by weight of each of the active materials α to ι, 18 parts by weight of lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and 42 parts by weight of polyethylene oxide (molecular weight 2 million). , And 7 parts by weight of carbon black (Ketjenblack made by Lion) were respectively added, and a small amount of acetonitrile was added to this to facilitate mixing, and the mixture was stirred and mixed to obtain a slurry. The film was developed using a Teflon dish and then dried at 80 ° C for 24 hours.
0 μm (average), and these were punched out to a diameter of 15 mm to obtain a positive electrode.

【0041】〔固体電解質の作製〕アクリロニトリル−
メチルアクリレート共重合体1.5g、および1mol
/lの濃度のトリフルオロメタンスルホン酸リチウム
(LiCF3SO3)のγ−ブチロラクトン溶液6.0m
lを混合してシャーレ上に展開し、120℃まで加熱し
た後徐冷し、直径1.5mmとなるよう打ち抜いた。な
お、このものは電池組立時にはセパレータとしての働き
をも果たすものである。
[Preparation of Solid Electrolyte] Acrylonitrile-
Methyl acrylate copolymer 1.5g, and 1mol
Γ-butyrolactone solution of lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) at a concentration of 1 / l, 6.0 m
l was mixed, spread on a petri dish, heated to 120 ° C., then gradually cooled, and punched to have a diameter of 1.5 mm. This also serves as a separator during battery assembly.

【0042】〔陰極の作製〕陰極は、リチウム金属箔
(厚さ1.2mm)を直径15mmになるよう打ち抜い
て作製した。 〔コイン型セルの組立〕上記9種の活物質を活物質とし
て含有する正極、固体電解質及び陰極を用いて図6にそ
の断面を示すようなコイン型セル(9種、実施例2〜7
及び比較例2〜4)をそれぞれ2個ずつ作製した。なお
図中符号Aは負極缶、Bは負極、Cは固体電解質(セパ
レータ兼用)、Dは正極、Eはステンレス製の集電体、
Fは正極缶、及びGはガスケットでこれら電池の内部を
外気と隔て、なおかつ、負極缶と正極缶との短絡を防止
している。
[Production of Cathode] A cathode was produced by punching out a lithium metal foil (thickness: 1.2 mm) to have a diameter of 15 mm. [Assembly of Coin-Type Cell] A coin-type cell whose cross section is shown in FIG. 6 using a positive electrode, a solid electrolyte and a cathode containing the above-mentioned nine types of active materials as active materials (9 types, Examples 2 to 7).
And two each of Comparative Examples 2-4) were produced. In the figure, reference character A is a negative electrode can, B is a negative electrode, C is a solid electrolyte (also serves as a separator), D is a positive electrode, E is a stainless steel collector,
F is a positive electrode can, and G is a gasket that separates the inside of these batteries from the outside air and prevents a short circuit between the negative electrode can and the positive electrode can.

【0043】〔コイン型セルの評価〕上記活物質α〜ι
を有するコイン型セルの評価を行った。各活物質につき
2個ずつ作製したセルの一方を正極面積に対し0.2m
A/cm2、他方を0.4mA/cm2の電流密度となる
電流で行った。充放電はすべて20℃の恒温気槽内で行
い、充電は上記の電流密度で電極間電圧が4.5Vとな
るまで行い、放電は上記電流密度で電極間電圧が2.0
Vになるまで行った。なお、評価は予め充放電を2回繰
り返した後に、充電し、その後の放電時に行った。0.
2mA/cm2の電流密度での結果を表3に、0.4m
A/cm2の電流密度での結果を表4にそれぞれ示す。
なお、これら表中容量密度とは正極の重量当たりの容量
であり、エネルギー密度は放電時の平均電圧と容量密度
とを乗した値である。また、利用率とは正極中の活物質
がすべて放電に関与すると仮定した際の電気量を100
%としたときの実際の電気量の割合を示す値である。ま
た、図7として、これら評価時の活物質α、δ及びηを
用いるセル(それぞれ実施例2の電池、実施例5の電
池、比較例2の電池とする)での放電曲線(電流密度:
0.2mA/cm2)を示す。
[Evaluation of Coin Cell] The above active materials α to ι
The coin type cell having One of the two cells prepared for each active material was 0.2 m with respect to the positive electrode area.
A / cm 2, it was carried out and the other with a current which is a current density of 0.4 mA / cm 2. All charging / discharging is performed in a constant temperature air bath at 20 ° C., charging is performed at the above current density until the interelectrode voltage becomes 4.5 V, and discharging is performed at the above current density and the interelectrode voltage is 2.0.
It went to V. The evaluation was performed by repeating charging and discharging twice in advance and then charging and then discharging. 0.
The results at a current density of 2 mA / cm 2 are shown in Table 3, 0.4 m
Table 4 shows the results at a current density of A / cm 2 .
The capacity density in these tables is the capacity per weight of the positive electrode, and the energy density is the value obtained by multiplying the average voltage during discharge by the capacity density. In addition, the utilization rate is 100 when the active material in the positive electrode is assumed to be involved in discharge.
It is a value showing the ratio of the actual amount of electricity when it is defined as%. Further, as FIG. 7, discharge curves (current density: current density: in the cells using the active materials α, δ, and η at the time of evaluation (the battery of Example 2, the battery of Example 5, and the battery of Comparative Example 2 respectively).
0.2 mA / cm 2 ) is shown.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】表3及び表4中の実施例2〜4の二次電池
及び比較例2〜4の二次電池の平均放電電圧を比較する
と、本発明に係る電極材料を用いた二次電池の場合、チ
アジアゾール環を有する電極材料を用いた二次電池と比
較して、ほぼ300mV高くなっていて、実施例1及び
比較例1でのサイクリックボルタンメトリーで見られた
現象がボタン型セルでも発現することが確認された。こ
のように平均電圧が高く、かつ、容量密度が若干高いこ
とから、本発明に係る電極材料を用いた二次電池が、テ
トラゾール環を有する従来の電極材料を用いた二次電池
に比して高いエネルギー密度を有しているころが判る。
Comparing the average discharge voltages of the secondary batteries of Examples 2 to 4 and the secondary batteries of Comparative Examples 2 to 4 in Tables 3 and 4, the secondary batteries using the electrode material according to the present invention were compared. In this case, compared with a secondary battery using an electrode material having a thiadiazole ring, the voltage was increased by almost 300 mV, and the phenomenon observed by cyclic voltammetry in Example 1 and Comparative Example 1 was also exhibited in the button cell. It was confirmed. Thus, the average voltage is high, and since the capacity density is a little high, the secondary battery using the electrode material according to the present invention, compared with the secondary battery using the conventional electrode material having a tetrazole ring. It can be seen when it has a high energy density.

【0047】なお、フェニル基を有する活物質δ、ε及
びζを電極材料として用いている実施例5〜実施例7と
して示した二次電池をそれぞれ、メチル基を有する活物
質α、β及びγを電極材料として用いる実施例2〜実施
例4と比較すると利用率が高い。これは詳細は不明であ
るが、フェニル置換基のπ電子と集電材であるカーボン
のπ電子間に何らかの相互作用によって電極としての導
電率が向上し、利用率の向上を来しているのではないか
と考えられる。
The secondary batteries shown in Examples 5 to 7 in which the active materials δ, ε and ζ having a phenyl group are used as electrode materials are respectively active materials α, β and γ having a methyl group. The utilization rate is high as compared with Examples 2 to 4 in which is used as the electrode material. Although the details are not clear, the conductivity as an electrode is improved by some interaction between the π-electron of the phenyl substituent and the π-electron of carbon, which is the current collector, so that the utilization rate may be improved. It is thought that there is.

【0048】また、本発明に係る電極材料を用いた二次
電池において、放電条件を0.2mA/cm2から0.
4mA/cm2に上げても正極利用率の低下が少ないこ
とが判る。このように本発明に係る電極材料を用いた二
次電池は大電流での放電にも対応できる優れたものであ
ることが確認された。
Further, in the secondary battery using the electrode material according to the present invention, the discharge condition is 0.2 mA / cm 2 to 0.
It can be seen that the positive electrode utilization rate does not decrease much even if it is increased to 4 mA / cm 2 . As described above, it was confirmed that the secondary battery using the electrode material according to the present invention is excellent in that it can also be discharged with a large current.

【0049】[0049]

【発明の効果】環内に窒素原子を4つ持つテトラゾール
環は、その窒素原子の相互作用により他の芳香族複素環
を持つ有機電極材料と同様にレドックス活性を示す。ま
た、分子内に硫黄を持つチアジアゾールに比較して、母
核としての複素環の分子量が17%程度小さく、正極構
成物質であるスルフィド化合物の質量を減らすことがで
きる。また、上記実施例、比較例により明らかにされた
ように、レドックスの電位がチアジアゾールを用いた場
合と比較して貴な電位であるため、より高い電圧を取り
出すことができる。このように本発明に係る電極材料を
用いた二次電池は、そのエネルギー密度が従来の電極材
料を用いた場合に比べ、格段に大きくなる。さらに反応
速度が早いことから放電電流が大きくなった場合でも、
正極利用率の低下が少ない優れたものである。
The tetrazole ring having four nitrogen atoms in the ring exhibits redox activity due to the interaction of the nitrogen atoms, like the organic electrode material having another aromatic heterocycle. Further, as compared with thiadiazole having sulfur in the molecule, the molecular weight of the heterocycle as the mother nucleus is about 17% smaller, and the mass of the sulfide compound as the positive electrode constituent can be reduced. Further, as is clear from the above Examples and Comparative Examples, the redox potential is a noble potential as compared with the case where thiadiazole is used, so a higher voltage can be taken out. As described above, the energy density of the secondary battery using the electrode material according to the present invention is significantly higher than that in the case of using the conventional electrode material. Furthermore, even if the discharge current becomes large because the reaction speed is fast,
It is an excellent one with little decrease in the positive electrode utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例(実施例1)である電池1、及
び比較例(比較例2)である電池2のサイクリックボル
タモグラムである。
FIG. 1 is a cyclic voltammogram of a battery 1 which is an example (Example 1) of the present invention and a battery 2 which is a comparative example (Comparative Example 2).

【図2】活物質αの1H−NMRスペクトルを示す図で
ある。
FIG. 2 is a diagram showing a 1 H-NMR spectrum of an active material α.

【図3】活物質αの13C−NMRスペクトルを示す図で
ある。
FIG. 3 is a diagram showing a 13 C-NMR spectrum of an active material α.

【図4】活物質δの1H−NMRスペクトルを示す図で
ある。
FIG. 4 is a diagram showing a 1 H-NMR spectrum of an active material δ.

【図5】活物質δの13C−NMRスペクトルを示す図で
ある。
FIG. 5 is a diagram showing a 13 C-NMR spectrum of an active material δ.

【図6】実施例中で作製したコイン型セルの断面を示す
図である。
FIG. 6 is a view showing a cross section of a coin-type cell manufactured in an example.

【図7】活物質α、δ及びηを用いるセルでの放電曲線
(電流密度:0.2mA/cm 2)を示す図である。
FIG. 7: Discharge curve in a cell using active materials α, δ and η
(Current density: 0.2 mA / cm 2) Is a figure which shows.

【符号の説明】[Explanation of symbols]

A 負極缶 B 負極 C 固体電解質(兼セパレータ) D 正極 E 集電体 F 正極缶 G ガスケット A negative electrode can B negative electrode C Solid electrolyte (also separator) D positive electrode E current collector F positive electrode can G gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−135767(JP,A) 特開 平7−233057(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 CA(STN) JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-135767 (JP, A) JP-A-7-233057 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/40 CA (STN) JISST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 テトラゾール環を有する非水系二次電池
用スルフィド系正極用電極材料であって、5,5’−ジ
チオビス(1−メチルテトラゾール)、5,5’−トリ
チオビス(1−メチルテトラゾール)、5,5’−テト
ラチオビス(1−メチルテトラゾール)、5,5’−ジ
チオビス(1−フェニルテトラゾール)、5,5’−ト
リチオビス(1−フェニルテトラゾール)、および、
5,5’−テトラチオビス(1−フェニルテトラゾー
ル)のいずれかであることを特徴とする非水系二次電池
用スルフィド系正極用電極材料。
1. A non-aqueous secondary battery having a tetrazole ring.
A sulfide-based positive electrode material for
Thiobis (1-methyltetrazole), 5,5'-tri
Thiobis (1-methyltetrazole), 5,5'-teto
Lathiobis (1-methyltetrazole), 5,5'-di
Thiobis (1-phenyltetrazole), 5,5'-to
Lithiobis (1-phenyltetrazole), and
5,5'-tetrathiobis (1-phenyltetrazo
Non-aqueous secondary battery characterized in that
Electrode material for sulfide-based positive electrodes.
【請求項2】 テトラゾール環を有する物質を正極活物
質として含有する非水系二次電池であって、該テトラゾ
ール環を有する物質が5,5’−ジチオビス(1−メチ
ルテトラゾール)、5,5’−トリチオビス(1−メチ
ルテトラゾール)、5,5’−テトラチオビス(1−メ
チルテトラゾール)、5,5’−ジチオビス(1−フェ
ニルテトラゾール)、5,5’−トリチオビス(1−フ
ェニルテトラゾール)、および、5,5’−テトラチオ
ビス(1−フェニルテトラゾール)のいずれかであるこ
とを特徴とする非水系二次電池。
2. A positive electrode active material containing a substance having a tetrazole ring.
A non-aqueous secondary battery containing as a quality,
The substance having a polyol ring is 5,5′-dithiobis (1-methyl).
Rutetrazole), 5,5'-trithiobis (1-methyi)
Rutetrazole), 5,5'-tetrathiobis (1-me
Tyltetrazole), 5,5′-dithiobis (1-phen)
Nyltetrazole), 5,5′-trithiobis (1-phenyl)
Phenyltetrazole) and 5,5'-tetrathio
Must be either bis (1-phenyltetrazole)
And a non-aqueous secondary battery.
JP21273796A 1995-09-28 1996-08-12 Electrode materials and secondary batteries Expired - Fee Related JP3525403B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21273796A JP3525403B2 (en) 1995-09-28 1996-08-12 Electrode materials and secondary batteries
US08/720,033 US5882819A (en) 1995-09-28 1996-09-27 Sulfide-series electrode material and secondary battery with high energy density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-251403 1995-09-28
JP25140395 1995-09-28
JP21273796A JP3525403B2 (en) 1995-09-28 1996-08-12 Electrode materials and secondary batteries

Publications (2)

Publication Number Publication Date
JPH09153362A JPH09153362A (en) 1997-06-10
JP3525403B2 true JP3525403B2 (en) 2004-05-10

Family

ID=26519405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21273796A Expired - Fee Related JP3525403B2 (en) 1995-09-28 1996-08-12 Electrode materials and secondary batteries

Country Status (2)

Country Link
US (1) US5882819A (en)
JP (1) JP3525403B2 (en)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122860A (en) * 1999-10-28 2001-05-08 Wako Pure Chem Ind Ltd Production of heterocyclic trisulfides
WO2001036206A1 (en) 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
US6733924B1 (en) 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US20110165471A9 (en) * 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
WO2001039303A1 (en) 1999-11-23 2001-05-31 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US6797428B1 (en) * 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US6329789B1 (en) 1999-12-21 2001-12-11 Moltech Corporation Methods of charging lithium-sulfur batteries
US6344293B1 (en) 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
US6436583B1 (en) 2000-08-04 2002-08-20 Moltech Corporation Storage life enhancement in lithium-sulfur batteries
US6544688B1 (en) 2000-09-20 2003-04-08 Moltech Corporation Cathode current collector for electrochemical cells
US6566006B1 (en) 2000-09-20 2003-05-20 Moltech Corporation Sulfur-containing cathode
US6403263B1 (en) 2000-09-20 2002-06-11 Moltech Corporation Cathode current collector for electrochemical cells
CN1279633C (en) 2000-12-21 2006-10-11 分子技术股份有限公司 Lithum anodes for electrochemical cells
CN1502139A (en) * 2001-03-30 2004-06-02 直井健三 Energy storing device material from heterocyclic organic sulfur compound and method of designing it
JP4988095B2 (en) * 2001-04-13 2012-08-01 裕史 上町 Reversible electrode and secondary battery using the reversible electrode
US6835298B2 (en) 2002-02-01 2004-12-28 A.T.S. Electro-Lube Holdings, Ltd. Electrolytic generation of nitrogen using azole derivatives
US7189477B2 (en) * 2003-04-10 2007-03-13 Sion Power Corporation Low temperature electrochemical cells
US10629947B2 (en) * 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US7358012B2 (en) 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
US7433630B2 (en) * 2004-12-14 2008-10-07 Pargett Stacy M Method and apparatus for characterizing and compensating drive train rotational velocity errors
CA2541232A1 (en) * 2006-03-29 2007-09-29 Transfert Plus, S.E.C. Redox couples, compositions and uses thereof
KR101422311B1 (en) 2006-12-04 2014-07-22 시온 파워 코퍼레이션 Separation of electrolytes
US20110076560A1 (en) 2009-08-28 2011-03-31 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
CN103633285B (en) * 2007-10-26 2017-07-07 赛昂能源有限公司 For the primer of battery electrode
CN101939862B (en) 2008-01-08 2014-03-12 赛昂能源有限公司 Porous electrodes and associated methods
WO2010016881A1 (en) 2008-08-05 2010-02-11 Sion Power Corporation Application of force in electrochemical cells
EP2409349A4 (en) * 2009-03-19 2013-05-01 Sion Power Corp Cathode for lithium battery
CN102576855B (en) 2009-08-24 2015-11-25 赛昂能源有限公司 For the stripping system of electrochemical cell
US20110206992A1 (en) * 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
KR20130105838A (en) 2010-08-24 2013-09-26 바스프 에스이 Electrolyte materials for use in electrochemical cells
US8735002B2 (en) 2011-09-07 2014-05-27 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound
EP2721665B1 (en) 2011-06-17 2021-10-27 Sion Power Corporation Plating technique for electrode
CN103947027B (en) 2011-10-13 2016-12-21 赛昂能源有限公司 Electrode structure and manufacture method thereof
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9214678B2 (en) 2012-03-09 2015-12-15 Sion Power Corporation Porous support structures, electrodes containing same, and associated methods
WO2014071160A1 (en) 2012-11-02 2014-05-08 Sion Power Corporation Electrode active surface pretreatment
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
CN105190966B (en) 2012-12-19 2018-06-12 锡安能量公司 electrode structure and its manufacturing method
WO2014110136A1 (en) 2013-01-08 2014-07-17 Sion Power Corporation Passivation of electrodes in electrochemical cells
WO2014110131A1 (en) 2013-01-08 2014-07-17 Sion Power Corporation Conductivity control in electrochemical cells
WO2014138242A1 (en) 2013-03-05 2014-09-12 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
CN105051944B (en) 2013-03-15 2019-04-02 锡安能量公司 Protected electrode structure and method
US10862105B2 (en) 2013-03-15 2020-12-08 Sion Power Corporation Protected electrode structures
EP3017491B1 (en) 2013-07-03 2018-11-28 Sion Power Corporation Ceramic/polymer matrix for electrode protection in electrochemical cells, including rechargeable lithium batteries
EP3031096B1 (en) 2013-08-08 2019-06-05 Sion Power Corporation Self-healing electrode protection in electrochemical cells
CN106062995B (en) 2014-02-19 2020-02-04 巴斯夫欧洲公司 Electrode protection using composite comprising ionic conductor inhibiting electrolyte
EP2911221A1 (en) 2014-02-19 2015-08-26 Basf Se Electrode protection using a composite comprising an electrolyte-inhibiting ion conductor
US10490796B2 (en) 2014-02-19 2019-11-26 Sion Power Corporation Electrode protection using electrolyte-inhibiting ion conductor
CN106256034B (en) 2014-05-01 2019-04-23 锡安能量公司 Electrode manufacturing method and correlated product
EP3192112A4 (en) 2014-09-09 2018-04-11 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
CN107078272B (en) 2014-10-23 2022-01-18 赛昂能源有限公司 Ion-conducting composite for electrochemical cells
JP6964003B2 (en) 2015-05-20 2021-11-10 シオン・パワー・コーポレーション Protective layer for electrodes
US9825328B2 (en) 2015-11-24 2017-11-21 Sion Power Corporation Ionically conductive compounds and related uses
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
CN109415394B (en) 2016-06-21 2021-07-16 赛昂能源有限公司 Coating for components of electrochemical cells
CN106602068A (en) * 2016-11-28 2017-04-26 德阳九鼎智远知识产权运营有限公司 Sulphidepolymer positive electrode material of lithium battery and preparation method thereof
EP3340346B1 (en) 2016-12-23 2022-02-16 Sion Power Corporation Protected electrode structure for electrochemical cells
US11024923B2 (en) 2017-03-09 2021-06-01 Sion Power Corporation Electrochemical cells comprising short-circuit resistant electronically insulating regions
WO2018170413A1 (en) 2017-03-17 2018-09-20 Sion Power Corporation Electrode edge protection in electrochemical cells
KR20200000849A (en) 2017-05-24 2020-01-03 시온 파워 코퍼레이션 Ion Conductive Compounds and Related Applications
KR102609863B1 (en) 2017-06-09 2023-12-04 시온 파워 코퍼레이션 In-situ whole house
US11710828B2 (en) 2019-05-22 2023-07-25 Sion Power Corporation Electrochemical devices including porous layers
JP2022533232A (en) 2019-05-22 2022-07-21 シオン・パワー・コーポレーション Electrically connected electrodes and related articles and methods
EP4062484A1 (en) 2019-11-19 2022-09-28 Sion Power Corporation Batteries, and associated systems and methods
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
JP2023507160A (en) 2019-12-20 2023-02-21 シオン・パワー・コーポレーション lithium metal electrode
WO2021183858A1 (en) 2020-03-13 2021-09-16 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
US11705554B2 (en) 2020-10-09 2023-07-18 Sion Power Corporation Electrochemical cells and/or components thereof comprising nitrogen-containing species, and methods of forming them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833048A (en) * 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
US5324599A (en) * 1991-01-29 1994-06-28 Matsushita Electric Industrial Co., Ltd. Reversible electrode material
JPH05314979A (en) * 1992-05-07 1993-11-26 Matsushita Electric Ind Co Ltd Reversible electrode
US5460905A (en) * 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5512391A (en) * 1993-09-07 1996-04-30 E.C.R. - Electro-Chemical Research Ltd. Solid state electrochemical cell containing a proton-donating aromatic compound

Also Published As

Publication number Publication date
JPH09153362A (en) 1997-06-10
US5882819A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3525403B2 (en) Electrode materials and secondary batteries
JP3555097B2 (en) Electrode materials and secondary batteries
US6743877B1 (en) Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
CN102332609B (en) Electric power storing device, lithium rechargeable battery, double layer capacitor and lithium-ion capacitor
EP0495073A4 (en) Methide salts, formulations, electrolytes and batteries formed therefrom
JP2013527567A (en) Soluble oxygen evolution catalyst for rechargeable metal-air batteries
WO1993009092A1 (en) Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
EP3681892A1 (en) Magnesium salts
Li et al. Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid
Alkhayri et al. Evaluation of two-electron bispyridinylidene anolytes and a TEMPO catholyte for non-aqueous redox flow batteries
Nanbu et al. Lithium Tris [3-fluoro-1, 2-benzenediolato (2-)-O, O′] phosphate as a Novel Lithium Salt for Lithium Battery Electrolytes
AU2017363603B2 (en) Rechargeable electrochemical cell
JP3497318B2 (en) Electrode materials and secondary batteries
JP3704285B2 (en) Electrode and secondary battery using aniline polymer
US10665894B2 (en) Lithium air battery that includes nonaqueous lithium ion conductor
US4166160A (en) Cells having cathodes derived from ammonium-molybdenum-chalcogen compounds
JP2993272B2 (en) Reversible electrode
Oyama et al. New composite cathodes for lithium rechargeable batteries
JP4179746B2 (en) Electrically responsive complex
JPH09293513A (en) Electrode material and secondary battery
US10355277B2 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
WO2000045451A9 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
JP2000082468A (en) Lithium thiolate for battery positive electrode and lithium secondary battery using the same
JPH0660907A (en) Organic compound battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees