JPH09129982A - External resonator type ld light source - Google Patents

External resonator type ld light source

Info

Publication number
JPH09129982A
JPH09129982A JP30692595A JP30692595A JPH09129982A JP H09129982 A JPH09129982 A JP H09129982A JP 30692595 A JP30692595 A JP 30692595A JP 30692595 A JP30692595 A JP 30692595A JP H09129982 A JPH09129982 A JP H09129982A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
incident
beam splitter
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30692595A
Other languages
Japanese (ja)
Inventor
Minoru Maeda
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP30692595A priority Critical patent/JPH09129982A/en
Publication of JPH09129982A publication Critical patent/JPH09129982A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the number of the places to be adjusted in angle of optical parts for optical resonance reflection by forming the external reflector of an optical resonance reflector structure of a diffraction grating, a beam splitter which transmits and splits reflected light, corner-cube prism which changes the optical path of the reflected light in parallel, etc. SOLUTION: The light emitted from a semiconductor laser 24 is made incident to an optical fiber 34 through a lens 28, etc., and becomes output light. On the other hand, the light which is converted in optical path in parallel is made incident to an external reflector composed of a beam splitter 14, a diffraction grating 16, and a corner-cube prism (prism) 12 and, after wavelength selection, only the light having the Bragg wavelength is inputted to the light emitting position of the prism 12. The light which is again passed through the prism 12 is made incident to the beam splitter 14 and most of the incident light is made incident to the diffraction grating 16 through the beam splitter, while the light equal to the reflectivity returns to the laser 24 side. Since the incident angle of the incident light to the grating 16 is the same, the incident light is reflected to the splitter 14 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はLD光源に関するもの
であり、より具体的には光計測技術分野に適用される外
部共振器型LD光源についてのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LD light source, and more specifically to an external resonator type LD light source applied to the field of optical measurement technology.

【0002】[0002]

【従来の技術】半導体レーザなどのLD光源を光計測技
術で使用するためには、波長可変が可能で狭スペクトル
線幅でかつ波長安定度の良い単一モード発振LD光源が
必要である。単一モード発振LD光源の構造は、LD素
子内部の導波路に回折格子を形成したモノリシック型L
D構造と、LD素子の外部に回折格子等の反射器を配置
した外部共振器型LD構造とに大別できる。
2. Description of the Related Art In order to use an LD light source such as a semiconductor laser in an optical measurement technique, a single mode oscillation LD light source capable of tunable wavelength, having a narrow spectral line width and good wavelength stability is required. The structure of the single mode oscillation LD light source is a monolithic type L in which a diffraction grating is formed in the waveguide inside the LD element.
It can be roughly classified into a D structure and an external resonator type LD structure in which a reflector such as a diffraction grating is arranged outside the LD element.

【0003】図4はこのような従来技術における外部共
振器型LD光源の構造を示したものであり、ここでは片
端面に無反射膜を施したLD24の外部に回折格子46
を配置した外部共振器型LD光源の側面から見た時の構
造を示している。この構造で、回折格子46はLD24
の出射光に対してリトロー配置で配設されている。回折
格子46で選択され、LD24に反射される波長はブラ
ッグ波長と呼ばれ、回折格子46を回転させることによ
りブラッグ波長が変化するため、回折格子46の回転で
波長可変が可能である。
FIG. 4 shows the structure of such an external resonator type LD light source in the prior art. Here, a diffraction grating 46 is provided outside the LD 24 having a non-reflective film on one end face.
The structure when seen from the side of the external resonator type LD light source in which is arranged. With this structure, the diffraction grating 46 is the LD 24.
It is arranged in a Littrow arrangement with respect to the emitted light. The wavelength selected by the diffraction grating 46 and reflected by the LD 24 is called the Bragg wavelength. Since the Bragg wavelength is changed by rotating the diffraction grating 46, the wavelength can be tuned by rotating the diffraction grating 46.

【0004】しかし、広範囲に波長可変させるには、図
4に示した回折格子46の回転軸に対しての回折格子4
6の平行度(θ1)とLD出射光の回折格子回転軸への
入射角度(θ2)の2箇所の角度調整が重要である。そ
の調整精度としては、0.01度程度有ればよく、光軸
調整は容易である。
However, in order to change the wavelength over a wide range, the diffraction grating 4 with respect to the rotation axis of the diffraction grating 46 shown in FIG.
It is important to adjust the two angles of the parallelism of 6 (θ1) and the incident angle (θ2) of the LD output light to the rotation axis of the diffraction grating. The adjustment accuracy may be about 0.01 degree, and the optical axis adjustment is easy.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこの種の
回折格子46のみの外部共振器型LD光源では、スペク
トル線幅や波長安定度で十分な性能を得ることができな
かった。このため、このような要求を満たす高性能のL
D光源として、たとえば特開平6−112583号公報
には光共鳴反射器(ROR:Resonant Optical Refrect
or)構造を取り入れたLD光源が開示されている。具体
的には、回折格子46、ビームスプリッタ14および全
反射ミラー38からROR構造が形成され、片端面に無
反射膜を施したLD24の外部反射器として配置された
外部共振器型LD光源がある。外部共振器型LD光源に
ROR構造を取り入れると、光の共振特性を用いて波長
依存性のある急峻な反射特性から、外部共振器を長くせ
ずに狭スペクトル線幅が得られる。
However, in the external resonator type LD light source having only the diffraction grating 46 of this kind, sufficient performance cannot be obtained in the spectral line width and the wavelength stability. Therefore, a high-performance L that satisfies such requirements
As a D light source, for example, in Japanese Patent Laid-Open No. 6-112583, an optical resonance reflector (ROR) is used.
An LD light source incorporating an or) structure is disclosed. Specifically, there is an external resonator type LD light source in which an ROR structure is formed from the diffraction grating 46, the beam splitter 14 and the total reflection mirror 38, and is arranged as an external reflector of the LD 24 having a non-reflection film on one end surface. . When the ROR structure is incorporated in the external resonator type LD light source, a narrow spectral line width can be obtained without lengthening the external resonator due to the steep reflection characteristic having wavelength dependence using the resonance characteristic of light.

【0006】しかし、ROR構造を、回折格子46、ビ
ームスプリッタ14および全反射ミラー38の光学部品
から形成するには、空間光で共振特性を作る必要がある
ため、光軸調整が非常に難しい。すなわち、回折格子4
6、ビームスプリッタ14および全反射ミラー38から
形成するROR構造をLD光源に使用するには、LD部
24を含んだ光学部品の角度調整箇所として最低5箇所
必要となる。その調整精度も0.001度程度と、回折
格子46のみを使用した時の10倍程度の精度を必要と
するため、光軸調整が非常に難しくなっている。また、
温度変化等で光軸に角度調整の変化が生じるとROR共
振特性が変化し、再現性や安定性が悪くなるという問題
がある。そのため、ROR構造の外部共振器型LD光源
を製造しようとしても、光軸調整に多大な時間がかか
り、再現性・安定度の問題もあり、製品化は非常に困難
であった。
However, in order to form the ROR structure from the optical components of the diffraction grating 46, the beam splitter 14 and the total reflection mirror 38, it is necessary to create a resonance characteristic with spatial light, and it is very difficult to adjust the optical axis. That is, the diffraction grating 4
6. In order to use the ROR structure formed by the beam splitter 14 and the total reflection mirror 38 in the LD light source, at least 5 positions are required as the angle adjusting parts of the optical component including the LD part 24. Since the adjustment accuracy is about 0.001 degree, which is about 10 times as high as that when only the diffraction grating 46 is used, it is very difficult to adjust the optical axis. Also,
When the angle adjustment is changed on the optical axis due to temperature change or the like, there is a problem that the ROR resonance characteristic is changed and the reproducibility and stability are deteriorated. Therefore, even if an external cavity type LD light source having an ROR structure is manufactured, it takes a lot of time to adjust the optical axis, and there are problems of reproducibility and stability, and it is very difficult to commercialize the product.

【0007】また、従来のROR構造で図3に示される
LD24からの平行光をビームスプリッタ14で全反射
ミラー側に反射させる構造では、ROR共振特性が弱い
場合、全反射ミラーとLDの無反射膜が施されていない
端面でできるファブリ・ペロ(FP)共振器で、FPモ
ード発振してしまう問題も生じた。
In the conventional ROR structure in which the parallel light from the LD 24 shown in FIG. 3 is reflected by the beam splitter 14 toward the total reflection mirror side, when the ROR resonance characteristic is weak, no reflection occurs between the total reflection mirror and the LD. The Fabry-Perot (FP) resonator formed on the end face without the film also causes a problem of FP mode oscillation.

【0008】この発明は、ROR共振のための光学部品
の角度調整箇所を少なくし、調整を容易にして調整時間
の短縮と外部共振器型LD光源の再現性・安定性を向上
させる外部共振器型LD光源を提供することを目的とす
る。
The present invention reduces the number of angle adjustment points of the optical component for ROR resonance, facilitates the adjustment, shortens the adjustment time, and improves the reproducibility and stability of the external resonator type LD light source. A type LD light source is provided.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、この発明は、一方の端面に無反射膜を施し、半導体
レーザ駆動回路により駆動されるLD24と、無反射端
面からの出射光を平行光に変換するレンズ22と、平行
光に変換された出射光を波長選択し反射する外部反射器
を備え、他の一方の端面からの出射光を出力光とする外
部共振器型LD光源は、LD24の無反射膜側からの出
射光を反射分岐し、回折格子16とコーナーキューブプ
リズム12からの反射光を透過分岐するビームスプリッ
タ14と、ビームスプリッタ14と回折格子16からの
反射光を平行に光路変換するコーナーキューブプリズム
12と、コーナーキューブプリズム12からの反射光を
波長選択して反射する回折格子16とを有し、ビームス
プリッタ14、コーナーキューブプリズム12および回
折格子16により光共鳴反射器構造の外部反射器が形成
される。
To achieve this object, according to the present invention, one end face is provided with a non-reflective film, and the light emitted from the non-reflective end face is parallel to the LD 24 driven by the semiconductor laser drive circuit. An external resonator type LD light source that includes a lens 22 that converts light into light and an external reflector that selects and reflects the emitted light that has been converted into parallel light and that uses the light emitted from the other end face as output light is The beam splitter 14 that reflects and splits the light emitted from the non-reflection film side of the LD 24 and transmits and splits the reflected light from the diffraction grating 16 and the corner cube prism 12, and the reflected light from the beam splitter 14 and the diffraction grating 16 in parallel. It has a corner cube prism 12 for changing the optical path, and a diffraction grating 16 for wavelength-selecting and reflecting the reflected light from the corner cube prism 12, External reflector optical resonant reflector structure is formed by over-cube prism 12 and the diffraction grating 16.

【0010】[0010]

【発明の実施の形態】次に、この発明による外部共振器
型LD光源の実施の形態を図1と図2を参照して説明す
る。図1は、外部共振器型LD光源の光源上面から見た
構造を示しており、また、図2はLD側から見た側面図
を示している。図1・図2において、10は位相調整駆
動回路、12はコーナーキューブプリズム、13は並行
移動機構、14は反射率の低いビームスプリッタ、16
は回折格子、18は波長可変駆動回路、20は回転調整
機構、22,28,32はレンズ、24は片端面に無反
射膜が施された半導体レーザであるLD素子、26はL
D駆動回路、30は光アイソレータ、34は出力ファイ
バである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of an external resonator type LD light source according to the present invention will be described with reference to FIGS. FIG. 1 shows the structure of the external resonator type LD light source seen from the light source upper surface, and FIG. 2 shows the side view seen from the LD side. In FIGS. 1 and 2, 10 is a phase adjustment drive circuit, 12 is a corner cube prism, 13 is a parallel moving mechanism, 14 is a beam splitter with low reflectance, 16
Is a diffraction grating, 18 is a variable wavelength driving circuit, 20 is a rotation adjusting mechanism, 22, 28 and 32 are lenses, 24 is an LD element which is a semiconductor laser having a non-reflective film on one end face, and 26 is L.
D drive circuit, 30 is an optical isolator, and 34 is an output fiber.

【0011】図1において、外部共振器型LD光源に使
用されるLD素子24は、一方の端面には無反射膜が施
されており、他方の端面には無反射膜が施されていない
LD素子である。LD素子24はLD駆動回路26によ
って電流注入されることで光が出射される。すなわち、
LD駆動回路26によってLD素子24に電流注入され
ると、無反射膜が施されていない端面からの出射光はレ
ンズ28、光アイソレータ30およびレンズ30を通過
して光ファイバ34に入射され、出力光となる。一方、
無反射膜端面からの出射光はレンズ22によって平行光
に変換され、回折格子16とビームスプリッタ14とコ
ーナーキューブプリズム12から形成されるROR構造
の外部反射器に入力される。
Referring to FIG. 1, an LD element 24 used in an external resonator type LD light source has an antireflection film on one end face and an antireflection film on the other end face. It is an element. The LD drive circuit 26 injects a current into the LD element 24 to emit light. That is,
When a current is injected into the LD element 24 by the LD drive circuit 26, the light emitted from the end face on which the antireflection film is not applied passes through the lens 28, the optical isolator 30 and the lens 30, and is incident on the optical fiber 34, and is output. Become light. on the other hand,
The light emitted from the end surface of the non-reflection film is converted into parallel light by the lens 22 and input to the external reflector of the ROR structure formed by the diffraction grating 16, the beam splitter 14, and the corner cube prism 12.

【0012】ビームスプリッタ14は反射率が10%か
ら30%のビームスプリッタであり、レンズ22からの
平行光はこれによりコーナーキューブプリズム12に光
路変換される。コーナーキューブプリズム12は、入射
光が角度を持って入射されても、その反射光は入射光自
身に平行で逆向きに反射される機能を持っている。その
ため、コーナーキューブプリズム12に入射した平行光
は、コーナーキューブプリズム12の入射位置から18
0度の軸回転対象の位置から出射され、その出射光路は
入射光路と平行となって回折格子16に入射される。し
たがって、角度調整が必要でなく、回折格子16のみを
使用した外部共振器型LD光源ように、回折格子16の
回転軸との平行度調整と回折格子回転軸への平行光の入
射角度調整の2箇所を精度良く角度調整すれば良い。
The beam splitter 14 is a beam splitter having a reflectance of 10% to 30%, and the parallel light from the lens 22 is converted into a light path by the corner cube prism 12. The corner cube prism 12 has a function of reflecting the reflected light in parallel with the incident light itself and in the opposite direction even when the incident light is incident at an angle. Therefore, the collimated light that has entered the corner cube prism 12 is 18 degrees from the incident position of the corner cube prism 12.
The light is emitted from the position of 0 ° axial rotation target, and its emission optical path is incident on the diffraction grating 16 in parallel with the incident optical path. Therefore, it is not necessary to adjust the angle, and the parallelism with the rotation axis of the diffraction grating 16 and the incident angle of the parallel light with respect to the rotation axis of the diffraction grating 16 are adjusted as in the external resonator type LD light source using only the diffraction grating 16. It suffices to adjust the angles of the two locations with high accuracy.

【0013】回折格子16には回転調整機構20が設け
られ、コーナーキューブプリズム12には平行移動機構
13が設けられている。また、回転調整機構20にはこ
れを駆動する波長可変駆動回路18が、平行移動機構1
3には位相調整駆動回路10が備えられている。波長可
変駆動回路18からの制御信号によって回折格子16の
回転調整が行われ、これにより外部共振器型LD光源の
波長可変が行われる。また、位相調整駆動回路10から
の制御信号によって平行移動機構13の移動調整が行わ
れ、これにより外部共振器型LD光源の位相調整が行わ
れる。これら位相調整駆動回路10と波長可変駆動回路
18により、レーザ発振したときの位相整合条件を保っ
たまま回折格子16の回転とコーナーキューブプリズム
12の平行移動を同時に行えば、モードホップのない連
続した波長可変も行える。
The diffraction grating 16 is provided with a rotation adjusting mechanism 20, and the corner cube prism 12 is provided with a parallel moving mechanism 13. Further, the rotation adjusting mechanism 20 has a variable wavelength driving circuit 18 for driving the rotation adjusting mechanism 20,
3 includes a phase adjustment drive circuit 10. The rotation of the diffraction grating 16 is adjusted by a control signal from the wavelength tunable drive circuit 18, whereby the wavelength of the external resonator type LD light source is tuned. Further, the movement adjustment of the parallel moving mechanism 13 is performed by the control signal from the phase adjustment drive circuit 10, and thus the phase adjustment of the external resonator type LD light source is performed. If the phase adjustment drive circuit 10 and the wavelength tunable drive circuit 18 simultaneously rotate the diffraction grating 16 and move the parallel movement of the corner cube prism 12 while maintaining the phase matching condition at the time of laser oscillation, continuous operation without mode hopping is performed. The wavelength can be changed.

【0014】回折格子16に入射した光は、回折格子1
6で波長選択されたブラッグ波長のみが再度コーナーキ
ューブプリズム12側へ反射され、同一光路を通りコー
ナーキューブプリズム12の出射位置に入射される。コ
ーナーキューブプリズム12を再度通過した平行光は、
再度ビームスプリッタ14に入射され、反射率分の光が
LD24側に戻る。しかし、入射光の大半(90%〜7
0%)がビームスプリッタ14を透過し、図2に示され
るように上記と異なった回折格子16の位置に入射され
る。そして、再度回折格子16で波長選択されるが、回
折格子16への入射角度は上記と同一であるため、入射
光がそのまま反射光となり、ビームスプリッタ14側に
反射される。
The light incident on the diffraction grating 16 is reflected by the diffraction grating 1
Only the Bragg wavelength selected in 6 is reflected again to the corner cube prism 12 side, passes through the same optical path, and enters the exit position of the corner cube prism 12. The parallel light that has passed through the corner cube prism 12 again is
The light is again incident on the beam splitter 14, and the light corresponding to the reflectance returns to the LD 24 side. However, most of the incident light (90% ~ 7
0%) is transmitted through the beam splitter 14 and is incident on the position of the diffraction grating 16 different from the above as shown in FIG. Then, the wavelength is again selected by the diffraction grating 16, but since the incident angle to the diffraction grating 16 is the same as the above, the incident light becomes the reflected light as it is and is reflected to the beam splitter 14 side.

【0015】これらが繰り返されるために共振特性が得
られ、コーナーキューブプリズム12を用いているため
両端面が回折格子であるROR型共振器が形成され、L
D24の無反射膜側の外部反射器として機能する。
Resonance characteristics are obtained by repeating these, and since the corner cube prism 12 is used, an ROR type resonator having diffraction gratings on both end surfaces is formed, and L
It functions as an external reflector on the non-reflection film side of D24.

【0016】このコーナーキューブプリズム12を用い
たROR構造の外部共振器型LD光源での光学部品の角
度調整は、図4に示した回折格子16のみを使用した外
部共振器型LD光源の角度調整箇所と同一となり、回折
格子16の回転軸に対しての回折格子16の平行度とL
D出射光の回折格子回転軸への入射角度の2箇所とな
る。ただし、コーナーキューブプリズム12を使用して
も共振特性であるため、調整精度は10倍程度厳しいの
は、従来のROR構造と同じである。コーナーキューブ
プリズム12の角度調整は必要ないが、入射光と反射光
の光路を回折格子16の回転軸上に合わせるために、位
置調整は必要であるが、角度調整のような厳しい精度は
必要ない。
The angle adjustment of the optical components in the external resonator type LD light source of the ROR structure using the corner cube prism 12 is performed by adjusting the angle of the external resonator type LD light source using only the diffraction grating 16 shown in FIG. And the parallelism of the diffraction grating 16 with respect to the rotation axis of the diffraction grating 16 and L
There are two positions of the incident angle of the D emission light on the rotation axis of the diffraction grating. However, even if the corner cube prism 12 is used, since the resonance characteristic is obtained, the adjustment accuracy is about 10 times severer as in the conventional ROR structure. The angle adjustment of the corner cube prism 12 is not necessary, but the position adjustment is necessary in order to match the optical paths of the incident light and the reflected light on the rotation axis of the diffraction grating 16, but the strict accuracy like the angle adjustment is not necessary. .

【0017】これらの結果、角度調整箇所が少なく光軸
調整が容易になり、調整時間の短縮とLD光源の再現性
と安定度の向上が図れる。
As a result, the number of angle adjustment points is small and the optical axis adjustment becomes easy, and the adjustment time can be shortened and the reproducibility and stability of the LD light source can be improved.

【0018】また、従来のROR構造でLDからの平行
光をビームスプリッタ14で全反射ミラー側に反射させ
る構造では、ROR共振特性が弱い場合に、全反射ミラ
ーとLD24の無反射膜が施されていない端面でできる
ファブリ・ペロ(FP)共振器で、FPモード発振して
しまう問題もあったが、本実施の形態のROR構造で
は、回折格子16が両端面の構造となるので、回折格子
16で選択された波長のみが発振することになり、RO
R共振特性が弱くなった場合でも安定した単一モード発
振が得られる。
In the conventional ROR structure in which the parallel light from the LD is reflected by the beam splitter 14 toward the total reflection mirror side, when the ROR resonance characteristic is weak, the total reflection mirror and the non-reflection film of the LD 24 are applied. There is also a problem that a Fabry-Perot (FP) resonator formed by an end face which is not formed oscillates in the FP mode. However, in the ROR structure of the present embodiment, the diffraction grating 16 has a structure of both end faces, Only the wavelength selected in 16 will oscillate, and RO
Stable single-mode oscillation can be obtained even when the R resonance characteristic is weakened.

【0019】以上のように、ROR構造を形成するため
の光学部品に、波長選択性のある回折格子と反射率10
%〜30%・透過率90%〜70%のビームスプリッタ
のほかに光学部品の角度に依存せず、入射光と反射光と
が何時も平行になる機能を持つコーナーキューブプリズ
ムを用い、形成されたROR構造をLDの無反射膜側の
外部反射器として使用する。このため、高精度で調整す
る光学部品の角度調整箇所は、回折格子の回転軸に対し
ての回折格子の平行度と、回折格子回転軸への平行光の
入射角度の2箇所の角度調整だけとなる。コーナーキュ
ーブプリズムの位置調整は必要であるが、光学部品の角
度調整のような調整精度は必要ではなく、かつ回折格子
の回転軸に対して水平方向の位置調整だけで良い。
As described above, the optical component for forming the ROR structure has a wavelength-selective diffraction grating and a reflectance of 10
% -30%, transmittance 90% -70%, and a corner cube prism that has a function of making incident light and reflected light parallel at all times independent of the angle of optical components. The ROR structure is used as an external reflector on the non-reflection film side of the LD. Therefore, the only angle adjustment points of the optical component that can be adjusted with high accuracy are the angle adjustments of two points, the parallelism of the diffraction grating with respect to the rotation axis of the diffraction grating and the incident angle of the parallel light to the rotation axis of the diffraction grating. Becomes Although it is necessary to adjust the position of the corner cube prism, adjustment accuracy such as angle adjustment of optical components is not necessary, and only position adjustment in the horizontal direction with respect to the rotation axis of the diffraction grating is required.

【0020】[0020]

【発明の効果】この発明によれば、ROR共振のための
光学部品の角度調整箇所が少なくて済むため、光軸調整
が大幅に簡素化され、調整時間の短縮と製造の再現性向
上が図れる。また、従来のROR構造でLDからの出射
光を全反射ミラー側に反射させた時でROR特性が弱い
場合に発生するFPモード発振も無くなり、安定した単
一モード発振が得られ、LD光源としての再現性・安定
性が向上する。
As described above, according to the present invention, since the number of angle adjusting points of the optical component for ROR resonance is small, the optical axis adjustment is greatly simplified, and the adjustment time can be shortened and the manufacturing reproducibility can be improved. . Further, in the conventional ROR structure, when the emitted light from the LD is reflected to the total reflection mirror side, the FP mode oscillation that occurs when the ROR characteristic is weak is eliminated, and a stable single mode oscillation is obtained. Reproducibility and stability are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による外部共振器型LD光源の実施の
形態の構成図である。
FIG. 1 is a configuration diagram of an embodiment of an external resonator type LD light source according to the present invention.

【図2】図1に示した外部共振器型LD光源をLD側か
ら見たときの側面図である。
FIG. 2 is a side view of the external resonator type LD light source shown in FIG. 1 when viewed from the LD side.

【図3】従来のROR構造の外部共振器型LD光源の概
略図である。
FIG. 3 is a schematic diagram of a conventional external cavity LD light source having a ROR structure.

【図4】従来の回折格子のみの外部共振器型LD光源の
側面概略図である。
FIG. 4 is a schematic side view of an external resonator type LD light source including only a conventional diffraction grating.

【符号の説明】[Explanation of symbols]

10 位相調整駆動回路 12 コーナーキューブプリズム 13 平行移動機構 14 ビームスプリッタ 16 回折格子 18 波長可変駆動回路 20 回転調整機構 22・28・32 レンズ 24 半導体レーザ(LD) 30 光アイソレータ 34 出力ファイバ 10 Phase Adjustment Driving Circuit 12 Corner Cube Prism 13 Parallel Moving Mechanism 14 Beam Splitter 16 Diffraction Grating 18 Wavelength Tunable Driving Circuit 20 Rotation Adjustment Mechanism 22 ・ 28 ・ 32 Lens 24 Semiconductor Laser (LD) 30 Optical Isolator 34 Output Fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方の端面に無反射膜を施し、半導体レ
ーザ駆動回路により駆動される半導体レーザ(24)と、無
反射端面からの出射光を平行光に変換するレンズ(22)
と、平行光に変換された出射光を波長選択し反射する外
部反射器を備え、他の一方の端面からの出射光を出力光
とする外部共振器型LD光源において、 半導体レーザ(24)の無反射膜側からの出射光を反射分岐
し、回折格子(16)とコーナーキューブプリズム(12)から
の反射光を透過分岐するビームスプリッタ(14)と、 ビームスプリッタ(14)と回折格子(16)からの反射光を平
行に光路変換するコーナーキューブプリズム(12)と、 コーナーキューブプリズム(12)からの反射光を波長選択
して反射する回折格子(16)とを有し、 ビームスプリッタ(14)、コーナーキューブプリズム(12)
および回折格子(16)により光共鳴反射器構造の外部反射
器が形成されることを特徴とする外部共振器型LD光
源。
1. A semiconductor laser (24) provided with a non-reflection film on one end face thereof and driven by a semiconductor laser drive circuit, and a lens (22) for converting light emitted from the non-reflection end face into parallel light.
And an external reflector that includes an external reflector that wavelength-selects and reflects the emitted light converted into parallel light, and uses the emitted light from the other end face as the output light. A beam splitter (14) that reflects and splits the light emitted from the non-reflective film side and transmits and splits the reflected light from the diffraction grating (16) and the corner cube prism (12), the beam splitter (14) and the diffraction grating (16). )) Has a corner cube prism (12) for converting the reflected light from the parallel path to a parallel path, and a diffraction grating (16) for selecting and reflecting the reflected light from the corner cube prism (12). ), Corner cube prism (12)
An external resonator type LD light source, characterized in that an external reflector having an optical resonance reflector structure is formed by the diffraction grating (16).
JP30692595A 1995-10-31 1995-10-31 External resonator type ld light source Pending JPH09129982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30692595A JPH09129982A (en) 1995-10-31 1995-10-31 External resonator type ld light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30692595A JPH09129982A (en) 1995-10-31 1995-10-31 External resonator type ld light source

Publications (1)

Publication Number Publication Date
JPH09129982A true JPH09129982A (en) 1997-05-16

Family

ID=17962932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30692595A Pending JPH09129982A (en) 1995-10-31 1995-10-31 External resonator type ld light source

Country Status (1)

Country Link
JP (1) JPH09129982A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907229A2 (en) * 1997-09-26 1999-04-07 Ando Electric Co., Ltd. External resonator light source
JP2000174368A (en) * 1998-12-04 2000-06-23 Photonetics Sa Multiple wavelength laser source
JP2001057457A (en) * 1999-06-30 2001-02-27 Photonetics Sa Partially reflective optical component and laser source comprising the same
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser
JP2020109856A (en) * 2014-06-05 2020-07-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser device
CN113615017A (en) * 2019-03-25 2021-11-05 浜松光子学株式会社 Optical kit and optical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907229A2 (en) * 1997-09-26 1999-04-07 Ando Electric Co., Ltd. External resonator light source
EP0907229A3 (en) * 1997-09-26 1999-05-06 Ando Electric Co., Ltd. External resonator light source
US6343091B1 (en) 1997-09-26 2002-01-29 Ando Electric Co., Ltd. External resonator light source
JP2000174368A (en) * 1998-12-04 2000-06-23 Photonetics Sa Multiple wavelength laser source
JP4521793B2 (en) * 1998-12-04 2010-08-11 イェニスタ オプティクス Multiple wavelength laser source
JP2001057457A (en) * 1999-06-30 2001-02-27 Photonetics Sa Partially reflective optical component and laser source comprising the same
JP2012033956A (en) * 1999-06-30 2012-02-16 Yenista Optics Optical component of partial reflection type and laser source with built-in the same component
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser
JP2020109856A (en) * 2014-06-05 2020-07-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Laser device
CN113615017A (en) * 2019-03-25 2021-11-05 浜松光子学株式会社 Optical kit and optical device

Similar Documents

Publication Publication Date Title
US5331651A (en) Method and apparatus for adjusting the wavelength in an optical device and laser using the method
US5594744A (en) Singlemode laser source tunable in wavelength with a self-aligned external cavity
US6940879B2 (en) External cavity laser with dispersion compensation for mode-hop-free tuning
JPH0766482A (en) Variable wavelength light source
JPH11163450A (en) Wavelength variable light source
US5442651A (en) External cavity control semiconductor laser
US6700904B2 (en) Light source for an external cavity laser
EP2235579A1 (en) External cavity tunable laser with an air gap etalon comprising wedges
JP2001284716A (en) External resonance type laser light source
JPH09129982A (en) External resonator type ld light source
US20040062281A1 (en) Tuning mechanism for a tunable external-cavity laser
EP0911924B1 (en) External cavity laser type light source
JPH1168248A (en) External resonator type wavelength variable semiconductor laser light source
US20050094681A1 (en) Tunable laser source
EP1005117B1 (en) External cavity type tunable semiconductor laser source
JPH06140717A (en) External resonator type semiconductor laser light source
JPH1117286A (en) Tunable laser device
EP1537637B1 (en) Wavelength tunable resonator with a prism
JP2003069146A (en) External resonator type wavelength variable semiconductor laser
JP2000353854A (en) External-resonator type variable-wavelength light source
JPH051989B2 (en)
JPH1168233A (en) Variable wavelength laser light source
JP2000183453A (en) External resonator type light source
JPH10107370A (en) Phase-adjusting device of external resonator-type wavelength variable semiconductor laser light source
JPH01231387A (en) Semiconductor light emitting device