JPH09126436A - Combustion controller of dust coal combustion boiler - Google Patents

Combustion controller of dust coal combustion boiler

Info

Publication number
JPH09126436A
JPH09126436A JP28533495A JP28533495A JPH09126436A JP H09126436 A JPH09126436 A JP H09126436A JP 28533495 A JP28533495 A JP 28533495A JP 28533495 A JP28533495 A JP 28533495A JP H09126436 A JPH09126436 A JP H09126436A
Authority
JP
Japan
Prior art keywords
coal
furnace
amount
combustion
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28533495A
Other languages
Japanese (ja)
Inventor
Shunichi Tsumura
俊一 津村
Shigeki Morita
茂樹 森田
Kenji Kiyama
研滋 木山
Koji Yamamoto
晃二 山本
Yukio Miyama
幸穂 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28533495A priority Critical patent/JPH09126436A/en
Publication of JPH09126436A publication Critical patent/JPH09126436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion controller capable of optimum vapor temperature control even when an in-furnce water wall pipe heat transfer surface of a coal combustion boiler is contaminated and a fuel ratio of stock coal is changed. SOLUTION: A dust coal combustion boiler is adapted such that it includes grinders 58, 59 to which stock coals 56, 57 having different fuel ratios are supplied respectively, and a corresponding burner is connected with each grinder, and that, it receives supply of dust coal from the corresponding grinder, and the coal is burned in the furnace to form a flame 15. When a detection value 64 of furnace outlet combustion gas temperature or an estimation value of the same temperature estimated by a heat transfer dynamic characteristic model 40 is higher than an output value (outlet temperature set value) 63 of a furnace outlet gas temperature setting unit 45, the amount of supply of X stock coal 56 having a lower fuel ration is increased through a grinder coal delivery amount controller 39, and the amount of supply of Y stock coal 57 having a higher fuel ration is reduced. In contrast, when a detection value or an estimation value of the outlet gas temperature is lower than a set value, the amount of the X stock coal 56 is reversely reduced, and the amount of supply of the Y stock coal 57 having a higher fuel ration is correspondingly increased. A mechanism to achieve the above operation is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微粉炭燃焼ボイラ
の燃焼制御装置に係り、特に多種多様な石炭に対して
も、常に良好な制御応答性を確保するのに好適な微粉炭
燃焼ボイラの燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for a pulverized coal combustion boiler, and more particularly to a pulverized coal combustion boiler suitable for always ensuring good control response even for a wide variety of coals. The present invention relates to a combustion control device.

【0002】[0002]

【従来の技術】図2は微粉炭製造設備と、当該設備が算
出する微粉炭を燃焼させるボイラ装置、および従来技術
による制御装置を図示したものである。原料炭1を供給
する給炭機2は速度信号3に従って原料炭運搬速度を加
減され、信号3に比例する原料炭を微粉炭製造設備(粉
砕機)10のホッパ4に与える。原料炭1は電動機5に
より回転され、かつ混合手段をなすターンテーブル6上
に落下し、後述する分級手段による捕集炭11、13と
混合され保有炭7となる。保有炭7は、遠心力により粉
砕手段を構成する前述のターンテーブル6の外周とその
上に置かれたローラ8の間に供給され、ローラの圧下力
と回転により粉砕され、ターンテーブル外周を吹上げる
搬送空気9によって粉砕機10内を上方に搬送され、粗
い粒子11はこの途中で分離され、残りは分級機のベー
ン12を通過する際に次に粗い粒子13が分離され、タ
ーンテーブル6に戻される。粗粉を分離された微粉炭は
搬送空気9とともに微粉炭輸送管14を経てボイラのバ
ーナ部に搬送され、燃焼により火炎15を形成する。
2. Description of the Related Art FIG. 2 shows a pulverized coal production facility, a boiler device for burning pulverized coal calculated by the facility, and a control device according to a conventional technique. The coal feeder 2 supplying the coking coal 1 adjusts the coking coal transportation speed according to the speed signal 3 and supplies the hopper 4 of the pulverized coal manufacturing facility (crusher) 10 with the coking coal proportional to the signal 3. The raw coal 1 is rotated by an electric motor 5 and drops onto a turntable 6 which is a mixing unit, and is mixed with a collecting coal 11 and 13 by a classifying unit to be described later to form a holding coal 7. The retained charcoal 7 is supplied by centrifugal force between the outer circumference of the above-mentioned turntable 6 which constitutes the grinding means and the roller 8 placed thereon, and is ground by the rolling force and rotation of the roller and blows on the outer circumference of the turntable. It is conveyed upward in the crusher 10 by the conveying air 9 to be raised, the coarse particles 11 are separated in the middle thereof, and the remaining coarse particles 13 are separated when passing through the vane 12 of the classifier, and then the turntable 6 is separated. Will be returned. The pulverized coal from which the coarse powder has been separated is conveyed to the burner portion of the boiler through the pulverized coal transportation pipe 14 together with the carrier air 9 and forms a flame 15 by combustion.

【0003】このようなボイラ装置にあって、給水16
は給水ポンプ37からドラム17に供給され、下降管1
8を下り、水冷壁19、ライザ20を通って蒸気とな
り、ドラム17上部に蓄えられた後、過熱器連絡管21
を経て過熱器29により過熱される。過熱器を出た過熱
蒸気に対し、蒸気温度検出器31の信号と、蒸気温度設
定器32による蒸気温度目標値(設定)信号33との偏
差により、比例・積分要素(PID調節器)35を用い
て注水弁36の開度を調整し、蒸気減温器30での注水
による蒸気温度制御を行う。一方、蒸気供給ラインの蒸
気流量は少量の注水弁36による注水量を除けば大半は
火炉水冷壁19による蒸発により供給されるから、蒸気
圧力は火炉水冷壁19の熱吸収量を支配する微粉炭輸送
管14による燃料供給量を調節して蒸気圧力を制御でき
る。従って、蒸気圧力検出器22の信号と蒸気圧力設定
信号24との偏差26をPID調節器27に与えて給炭
機速度信号3を得る。
In such a boiler device, the water supply 16
Is supplied from the water supply pump 37 to the drum 17, and the downcomer pipe 1
8, the water passes through the water cooling wall 19 and the riser 20, becomes steam, and is accumulated in the upper portion of the drum 17, and then the superheater connecting pipe 21.
And is overheated by the superheater 29. The proportional / integral element (PID controller) 35 is set by the deviation between the signal from the steam temperature detector 31 and the steam temperature target value (setting) signal 33 from the steam temperature setter 32 with respect to the superheated steam exiting the superheater. The opening degree of the water injection valve 36 is adjusted by using the steam temperature controller 30 to control the steam temperature by the water injection in the steam desuperheater 30. On the other hand, most of the steam flow of the steam supply line is supplied by evaporation by the furnace water cooling wall 19 except for the small amount of water injected by the water injection valve 36, so the steam pressure controls the amount of pulverized coal that controls the heat absorption amount of the furnace water cooling wall 19. The vapor pressure can be controlled by adjusting the amount of fuel supplied by the transportation pipe 14. Therefore, the deviation 26 between the signal from the steam pressure detector 22 and the steam pressure setting signal 24 is given to the PID controller 27 to obtain the coal feeder speed signal 3.

【0004】図2に示すボイラ装置は、原則として蒸気
の需要先の任意の蒸気量の抜出しを前提に運転し、比例
・積分調節要素35、要素27を中核とする制御ループ
は、それぞれ蒸気温度、圧力を蒸気量にかかわらず一定
値に保持する制御を行う。該ボイラ制御装置は、ボイラ
や石炭粉砕機に汚れが少なく、石炭性状がほぼ一定であ
れば良好に動作する。
The boiler apparatus shown in FIG. 2 operates in principle on the assumption that an arbitrary amount of steam at a steam demand destination is extracted, and the control loops having the proportional / integral adjusting element 35 and the element 27 as cores respectively have a steam temperature. , Controls to keep the pressure at a constant value regardless of the amount of steam. The boiler control device works well if the boiler and the coal crusher are less contaminated and the coal properties are almost constant.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、ボイ
ラの汚れまたは石炭性状の変化があると、後述するよう
に蒸気温度の過渡的変動に対処できない場合が生じると
いう問題があった。図3は、ボイラの制御特性を支配す
るといわれる火炉水冷壁熱吸収量について、石炭の固定
炭素分と揮発分の比を示す燃料比、および火炉水冷壁の
汚れの関係を示している。同一燃料流量の燃焼を行って
も、燃料比や火炉の汚れの増加とともに火炉水冷壁熱吸
収量は減少し、燃焼ガスについて後流側の過熱器の熱吸
収が増加する。このとき火炉出口ガス温度は増加し、同
一燃料量の定常状態では、火炉水冷壁熱吸収量と火炉出
口ガス温度は互いに一方を知れば一意的に他方を求めら
れるから、火炉水冷壁熱吸収量特性は把握の容易な火炉
出口ガス温度特性として取扱われる。
The above-mentioned prior art has a problem that when the boiler becomes dirty or the coal property changes, it may not be possible to cope with transient fluctuations in steam temperature, as will be described later. FIG. 3 shows the relationship between the heat absorption amount of the reactor water cooling wall, which is said to control the control characteristics of the boiler, the fuel ratio indicating the ratio of the fixed carbon content to the volatile content of coal, and the contamination of the reactor water cooling wall. Even if combustion is performed at the same fuel flow rate, the heat absorption amount of the water wall of the furnace water decreases with an increase in the fuel ratio and the contamination of the furnace, and the heat absorption of the superheater on the downstream side of the combustion gas increases. At this time, the furnace outlet gas temperature increases, and in a steady state with the same fuel amount, the furnace water cooling wall heat absorption amount and the furnace outlet gas temperature can be uniquely obtained by knowing one another, so the furnace water cooling wall heat absorption amount The characteristics are handled as furnace outlet gas temperature characteristics that are easy to understand.

【0006】以上を前提として、図2のボイラ装置には
次の問題がある。すなわち、石炭の燃料比の変化、火炉
の汚れの進行により、火炉水冷壁19と過熱器29の熱
吸収配分が変化する。当該熱吸収バランスの変化につ
き、例えば燃料比増加により、火炉水冷壁19での熱吸
収が減少、過熱器29での熱吸収が増加した場合、過熱
器出口蒸気温度上昇防止と水冷壁での蒸発量不足の補充
のため、注水弁36の開度を増加する必要がある。逆の
場合も含め、該バランス補正は定常的に必要なため、注
水弁36の開度が全開または全閉近傍で常時運用する事
態となり易い。当該全開、全閉近傍では、注水弁36の
開度の片側の制御余地が小さく、蒸気温度の過渡的変動
に対処できない場合が生じる。
Based on the above, the boiler device of FIG. 2 has the following problems. That is, the heat absorption distribution of the furnace water cooling wall 19 and the superheater 29 changes due to the change of the fuel ratio of coal and the progress of fouling of the furnace. Regarding the change of the heat absorption balance, when the heat absorption in the furnace water cooling wall 19 decreases and the heat absorption in the superheater 29 increases due to the increase in the fuel ratio, for example, the superheater outlet steam temperature rise prevention and the evaporation in the water cooling wall It is necessary to increase the opening degree of the water injection valve 36 in order to supplement the insufficient amount. Since the balance correction is constantly required including the reverse case, it is likely that the water injection valve 36 is always operated near the fully opened or fully closed position. In the vicinity of the fully open and fully closed positions, there is little room for control of the opening degree of the water injection valve 36 on one side, and it may not be possible to cope with the transient fluctuation of the steam temperature.

【0007】本発明の目的は、燃料比の変化および火炉
の汚れに対しても、最適な制御が可能なボイラ燃焼制御
装置を提供することにある。
An object of the present invention is to provide a boiler combustion control device capable of optimal control even with respect to changes in the fuel ratio and fouling of the furnace.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求される発明は以下のとおりである。 (1)ボイラ火炉内の複数の位置にそれぞれ微粉炭バー
ナを配置し、該微粉炭バーナは個別またはグループ別で
燃料比の異なる微粉炭が供給される手段を備え、かつ各
々の微粉炭流量の調整手段を備えるとともに、火炉水冷
壁部で発生した蒸気を過熱する過熱器を設けた微粉炭燃
焼ボイラの燃焼制御装置において、火炉出口燃焼ガス温
度計測器の計測値および/または火炉出口ガス温度を算
出する計算モデルによる算出値と、火炉出口ガス温度の
目標値との偏差に応じて、微粉炭バーナを通して供給さ
れるボイラへの燃料比の異なる微粉炭の割合を調整する
手段を設けたことを特徴とする微粉炭燃焼ボイラの燃焼
制御装置。
The invention claimed in the present application to achieve the above object is as follows. (1) Pulverized coal burners are arranged at a plurality of positions in the boiler furnace, and the pulverized coal burners are provided with means for supplying pulverized coal with different fuel ratios individually or in groups, In a combustion control device of a pulverized coal combustion boiler provided with an adjusting means and provided with a superheater that superheats steam generated in the water wall of the furnace, the measured value of the furnace outlet combustion gas temperature measuring instrument and / or the furnace outlet gas temperature A means for adjusting the proportion of pulverized coal with different fuel ratios to the boiler supplied through the pulverized coal burner according to the deviation between the calculated value by the calculation model and the target value of the furnace outlet gas temperature is provided. Combustion control device for pulverized coal combustion boilers.

【0009】(2)燃料比の異なる原料炭をそれぞれ供
給してこれを粉砕する複数台の粉砕機と、各粉砕機ごと
に接続され燃料比の異なる微粉炭の供給を受けてこれを
ボイラ火炉内で燃焼する複数個の微粉炭バーナと、火炉
水冷壁部で発生した蒸気を過熱する火炉後流域に設けら
れた過熱器とを備えた微粉炭燃焼ボイラの燃焼制御装置
において、火炉出口燃焼ガス温度計測器および/または
該温度計算モデルを設け、前記計測器の計測値および/
または計算モデルによる算出値が該温度目標値に対して
高いとき、燃料比の低い原料炭を粉砕する粉砕機への給
炭量を増加し、燃料比の高い原料炭を粉砕する粉砕機へ
の給炭量を減少する機構と、前記計測器の計測値および
/または計算モデルによる算出値が該温度目標値に対し
て低いとき、燃料比の低い原料炭を粉砕する粉砕機への
給炭量を減少し、燃料比の高い原料炭を粉砕する粉砕機
への給炭量を増加する機構とを設けたことを特徴とする
微粉炭燃焼ボイラの燃焼制御装置。
(2) A plurality of pulverizers for respectively supplying raw coals having different fuel ratios and pulverizing the coals, and pulverized coals connected to each pulverizer and having different fuel ratios are supplied to the boiler furnace. In the combustion control device of the pulverized coal combustion boiler, which is provided with a plurality of pulverized coal burners that burn inside, and a superheater provided in the downstream region of the furnace that superheats the steam generated in the water wall of the furnace, A temperature measuring device and / or the temperature calculation model is provided, and the measured value of the measuring device and / or
Alternatively, when the value calculated by the calculation model is higher than the target temperature value, the amount of coal supplied to the crusher for crushing the raw coal with a low fuel ratio is increased, and the crusher for crushing the raw coal with a high fuel ratio is added. Mechanism for reducing the amount of coal supply, and the amount of coal supplied to the pulverizer for pulverizing the raw coal having a low fuel ratio when the value measured by the measuring instrument and / or the value calculated by the calculation model is lower than the temperature target value. And a mechanism for increasing the amount of coal fed to a pulverizer for pulverizing a raw coal having a high fuel ratio, and a combustion control device for a pulverized coal combustion boiler.

【0010】石炭性状の燃料比と火炉出口ガス温度との
間には相関関係があり、燃料比が低いほど揮発分の割合
が高くなるためバーナ火炎の輝度が高くなり、主にバー
ナゾーンでの輻射伝熱量が増加し、火炉水冷壁熱吸収量
は増加し、燃焼ガスについて後流側の過熱器の熱吸収が
減少する。従って、結果としてボイラ出口(過熱器出
口)蒸気温度低または該蒸気圧力高となり、火炉出口ガ
ス温度は低となる。
There is a correlation between the fuel ratio of coal properties and the furnace outlet gas temperature. The lower the fuel ratio, the higher the proportion of volatile components, and therefore the higher the brightness of the burner flame, mainly in the burner zone. The radiant heat transfer amount increases, the furnace water cooling wall heat absorption amount increases, and the heat absorption of the superheater on the downstream side of the combustion gas decreases. Therefore, as a result, the steam temperature at the boiler outlet (superheater outlet) becomes low or the steam pressure becomes high, and the furnace outlet gas temperature becomes low.

【0011】従って、火炉出口ガス温度の計測器および
/または火炉出口ガス温度を算出する伝熱動特性モデル
によって得られた現時点における火炉出口ガス温度と火
炉出口ガス温度目標値との偏差に応じて、ボイラに対す
る燃料比の異なる複数炭種の微粉炭バーナへの投入分配
比率を調整することにより、火炉出口ガス温度を常時目
標値に設定可能なため、常に良好な制御応答性を確保で
きる。
Therefore, according to the deviation between the present furnace outlet gas temperature and the furnace outlet gas temperature target value obtained by the measuring device for the furnace outlet gas temperature and / or the heat transfer dynamic characteristic model for calculating the furnace outlet gas temperature. Since the furnace outlet gas temperature can be set to the target value at all times by adjusting the distribution ratio of the charging to the pulverized coal burner of a plurality of coal types having different fuel ratios to the boiler, it is possible to always ensure good control response.

【0012】[0012]

【発明の実施の形態】図1は本発明の実施例を示すもの
であり、従来技術による図2に示したボイラ装置に本発
明を適用した状況を示している。したがって、図2と共
通の構成部については説明を省略する。本実施例ではA
粉砕機58とB粉砕機59の2つの粉砕機において、A
粉砕機58には燃料比約1.5のX原料炭56、B粉砕
機59には燃料比約2.0のY原料炭57がそれぞれ給
炭され、火炉出口ガス温度制御装置38に内蔵された伝
熱動特性モデル40によって得られた現時点における火
炉出口ガス温度と火炉出口ガス温度設定器45から得ら
れた火炉出口ガス温度目標値63との偏差に応じて、粉
砕機出炭量制御装置39を介して、A粉砕機58への給
炭量とB粉砕機59への給炭量を最適値に制御する構成
としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention and shows a situation in which the present invention is applied to the boiler apparatus shown in FIG. 2 according to the prior art. Therefore, the description of the components common to FIG. 2 is omitted. In this embodiment, A
In the two crushers, crusher 58 and B crusher 59,
The X-coal coal 56 having a fuel ratio of about 1.5 is fed to the crusher 58, and the Y-coal coal 57 having a fuel ratio of about 2.0 is fed to the B crusher 59, and is incorporated in the furnace outlet gas temperature control device 38. According to the deviation between the present furnace outlet gas temperature obtained by the heat transfer dynamic characteristic model 40 and the furnace outlet gas temperature target value 63 obtained from the furnace outlet gas temperature setting device 45, Through 39, the amount of coal supplied to the A crusher 58 and the amount of coal supplied to the B crusher 59 are controlled to optimal values.

【0013】現時点における火炉出口ガス温度が目標値
に対して高い場合は、粉砕機出炭量制御装置39を介し
て、燃料比の低いX原料炭56の給炭量を増加、燃料比
の高いY原料炭57の給炭量を減少させ、結果として火
炉出口ガス温度が目標値となるように最適制御される。
また、火炉出口ガス温度が目標値に対して低い場合は、
X原料炭の給炭量を減少、Y原料炭の給炭量を増加す
る。従って、石炭性状の経時的な変化またはボイラの汚
れに対しても、火炉出口ガス温度を設定値に制御可能な
ため、収熱特性、蒸気温度特性の偏差が低減でき、高負
荷変化率にも対応できる。
When the furnace outlet gas temperature at the present time is higher than the target value, the feed amount of the X coking coal 56 having a low fuel ratio is increased and the fuel ratio is high via the crusher coal output control device 39. The supply amount of the Y coking coal 57 is reduced, and as a result, the furnace outlet gas temperature is optimally controlled so as to reach the target value.
If the furnace outlet gas temperature is lower than the target value,
Decrease the amount of X coking coal and increase the amount of Y coking coal. Therefore, even if the coal properties change over time or the boiler fouls, the furnace outlet gas temperature can be controlled to the set value, so the deviation of the heat collection characteristics and steam temperature characteristics can be reduced, and even at high load change rates. Can handle.

【0014】なお、火炉出口ガス温度は伝熱動特性モデ
ル40により求める代わりに、図1に示すように火炉出
口ガス温度検出器60により直接求め、この検出値64
と火炉出口ガス温度目標値63との偏差に応じて前記と
同様の制御を行うこともできる。
The furnace outlet gas temperature is directly obtained by the furnace outlet gas temperature detector 60 as shown in FIG. 1 instead of being obtained by the heat transfer dynamic characteristic model 40.
It is also possible to perform the same control as described above in accordance with the deviation between the target value 63 of the furnace outlet gas temperature.

【0015】[0015]

【発明の効果】【The invention's effect】

(1)ボイラからの抜出し蒸気量変化時などに発生す
る、過熱器と火炉水冷壁部の過渡的な熱吸収量のアンバ
ランスによるボイラ出口蒸気温度と、該蒸気圧力の変動
を低減できる。 (2)燃料比の変化、火炉の汚れの進行により、火炉水
冷壁部と過熱器の熱吸収配分が変化し、蒸気温度変動へ
の制御性の低下を防止することができる。
(1) It is possible to reduce fluctuations in the boiler outlet steam temperature and fluctuations in the steam pressure caused by a transient imbalance in the heat absorption amount between the superheater and the water cooling wall of the furnace, which occurs when the amount of steam withdrawn from the boiler changes. (2) Due to the change of the fuel ratio and the progress of fouling of the furnace, the heat absorption distribution between the water cooling wall of the furnace and the superheater is changed, and it is possible to prevent the deterioration of the controllability to the steam temperature fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】従来技術を示す図。FIG. 2 is a diagram showing a conventional technique.

【図3】ボイラ火炉の熱吸収量と燃料の燃料比および火
炉内伝熱管の汚れの関係を示す図。
FIG. 3 is a diagram showing a relationship between a heat absorption amount of a boiler furnace, a fuel ratio of fuel, and contamination of a heat transfer tube in the furnace.

【符号の説明】[Explanation of symbols]

1…原料炭、2…給炭機、3…給炭機速度信号、4…ホ
ッパ、5…電動機、6…ターンテーブル、7…保有炭、
8…粉砕手段、9…搬送空気、10…粉砕機、12…ベ
ーン、14…微粉炭輸送管、15…火炎、17…ドラ
ム、18…下降管、19…水冷壁、20…ライザ、21
…過熱器連絡管、22…蒸気圧力検出器、23…信号設
定器、24…蒸気圧力設定信号、28…火炉出口燃焼ガ
ス、29…過熱器、30…減温器、31…蒸気温度検出
器、32…蒸気温度設定器、33…蒸気温度設定信号、
34…蒸気温度偏差信号、36…注水流量制御弁、38
…火炉出口ガス温度制御装置、39…粉砕機出炭量制御
装置、40…伝熱動特性モデル、44…総燃料量指令信
号、45…火炉出口ガス温度設定器、46…A粉砕機対
応バーナ微粉炭量指令信号、47…B粉砕機対応バーナ
微粉炭量指令信号、49…粉砕機給炭量指令信号、53
…信号設定器、56…X原料炭、57…Y原料炭、58
…A粉砕機、59…B粉砕機、60…火炉出口ガス温度
検出器、61…信号減算器、62…火炉出口ガス温度偏
差信号、63…火炉出口ガス温度設定信号、64…火炉
出口ガス温度検出信号。
1 ... Coking coal, 2 ... Coal feeder, 3 ... Coal feeder speed signal, 4 ... Hopper, 5 ... Electric motor, 6 ... Turntable, 7 ... Owned coal,
8 ... Crushing means, 9 ... Carrier air, 10 ... Crusher, 12 ... Vane, 14 ... Pulverized coal transportation pipe, 15 ... Flame, 17 ... Drum, 18 ... Downcomer pipe, 19 ... Water cooling wall, 20 ... Riser, 21
... superheater connecting pipe, 22 ... steam pressure detector, 23 ... signal setting device, 24 ... steam pressure setting signal, 28 ... furnace outlet combustion gas, 29 ... superheater, 30 ... desuperheater, 31 ... steam temperature detector , 32 ... Steam temperature setting device, 33 ... Steam temperature setting signal,
34 ... Steam temperature deviation signal, 36 ... Water injection flow control valve, 38
... Furnace outlet gas temperature control device, 39 ... Grinder coal output control device, 40 ... Heat transfer dynamic characteristic model, 44 ... Total fuel amount command signal, 45 ... Furnace exit gas temperature setting device, 46 ... Burner for A grinder Pulverized coal amount command signal, 47 ... B crusher compatible burner pulverized coal amount command signal, 49 ... Crusher coal feeding amount command signal, 53
... Signal setting device, 56 ... X coking coal, 57 ... Y coking coal, 58
... A crusher, 59 ... B crusher, 60 ... Furnace exit gas temperature detector, 61 ... Signal subtractor, 62 ... Furnace exit gas temperature deviation signal, 63 ... Furnace exit gas temperature setting signal, 64 ... Furnace exit gas temperature Detection signal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 晃二 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 深山 幸穂 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Yamamoto, 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi, Ltd. Kure Factory (72) Koho Miyama, 36-36 Takaracho, Kure, Hiroshima Babcock Hitachi Ltd. Kure Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ火炉内の複数の位置にそれぞれ微
粉炭バーナを配置し、該微粉炭バーナは個別またはグル
ープ別で燃料比の異なる微粉炭が供給される手段を備
え、かつ各々の微粉炭流量の調整手段を備えるととも
に、火炉水冷壁部で発生した蒸気を過熱する過熱器を設
けた微粉炭燃焼ボイラの燃焼制御装置において、火炉出
口燃焼ガス温度計測器の計測値および/または火炉出口
ガス温度を算出する計算モデルによる算出値と、火炉出
口ガス温度の目標値との偏差に応じて、微粉炭バーナを
通して供給されるボイラへの燃料比の異なる微粉炭の割
合を調整する手段を設けたことを特徴とする微粉炭燃焼
ボイラの燃焼制御装置。
1. A pulverized coal burner is arranged at each of a plurality of positions in a boiler furnace, and the pulverized coal burner is provided with means for supplying pulverized coal with different fuel ratios individually or in groups, and each pulverized coal burner is provided. In a combustion control device for a pulverized coal combustion boiler equipped with a flow rate adjusting means and a superheater for superheating steam generated in the water wall of the furnace, the measured value of the furnace outlet combustion gas temperature measuring instrument and / or the furnace outlet gas A means was provided to adjust the proportion of pulverized coal with different fuel ratios to the boiler supplied through the pulverized coal burner according to the deviation between the value calculated by the calculation model for calculating the temperature and the target value of the furnace outlet gas temperature. A combustion control device for a pulverized coal combustion boiler, which is characterized in that
【請求項2】 燃料比の異なる原料炭をそれぞれ供給し
てこれを粉砕する複数台の粉砕機と、各粉砕機ごとに接
続され燃料比の異なる微粉炭の供給を受けてこれをボイ
ラ火炉内で燃焼する複数個の微粉炭バーナと、火炉水冷
壁部で発生した蒸気を過熱する火炉後流域に設けられた
過熱器とを備えた微粉炭燃焼ボイラの燃焼制御装置にお
いて、火炉出口燃焼ガス温度計測器および/または該温
度計算モデルを設け、前記計測器の計測値および/また
は計算モデルによる算出値が温度目標値に対して高いと
き、燃料比の低い原料炭を粉砕する粉砕機への給炭量を
増加し、燃料比の高い原料炭を粉砕する粉砕機への給炭
量を減少する機構と、前記計測器の計測値および/また
は計算モデルによる算出値が温度目標値に対して低いと
き、燃料比の低い原料炭を粉砕する粉砕機への給炭量を
減少し、燃料比の高い原料炭を粉砕する粉砕機への給炭
量を増加する機構とを設けたことを特徴とする微粉炭燃
焼ボイラの燃焼制御装置。
2. A plurality of pulverizers for respectively supplying raw coals having different fuel ratios and pulverizing the coals, and pulverized coals connected to the pulverizers and having different fuel ratios are supplied to the pulverizers and then supplied to a boiler furnace. In the combustion control device of the pulverized coal combustion boiler, which is equipped with a plurality of pulverized coal burners that burn in the furnace, and a superheater provided in the downstream region of the furnace that superheats the steam generated in the water wall of the furnace, A measuring device and / or the temperature calculation model is provided, and when the measured value of the measuring device and / or the value calculated by the calculation model is higher than the temperature target value, it is supplied to a crusher for crushing the raw coal having a low fuel ratio. A mechanism that increases the amount of coal and reduces the amount of coal supplied to a crusher that crushes raw coal with a high fuel ratio, and the measured value of the measuring instrument and / or the value calculated by the calculation model is lower than the temperature target value. When the source of fuel is low A pulverized coal combustion boiler characterized by being provided with a mechanism for reducing the amount of coal supplied to a pulverizer for pulverizing raw coal and increasing the amount of coal supplied to a pulverizer for pulverizing raw coal having a high fuel ratio. Combustion control device.
JP28533495A 1995-11-01 1995-11-01 Combustion controller of dust coal combustion boiler Pending JPH09126436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28533495A JPH09126436A (en) 1995-11-01 1995-11-01 Combustion controller of dust coal combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28533495A JPH09126436A (en) 1995-11-01 1995-11-01 Combustion controller of dust coal combustion boiler

Publications (1)

Publication Number Publication Date
JPH09126436A true JPH09126436A (en) 1997-05-16

Family

ID=17690212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28533495A Pending JPH09126436A (en) 1995-11-01 1995-11-01 Combustion controller of dust coal combustion boiler

Country Status (1)

Country Link
JP (1) JPH09126436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304143A (en) * 1998-04-23 1999-11-05 Babcock Hitachi Kk Boiler fuel mixing control device
JP2000249331A (en) * 1999-02-26 2000-09-12 Babcock Hitachi Kk Boiler controller
JP2018105592A (en) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 Rotational frequency controller of mill classifier and fuel ratio calculation device suitable for the same
CN109668144A (en) * 2018-11-21 2019-04-23 大唐东北电力试验研究院有限公司 A kind of combustion system optimized and revised for the wide load steam temperature of circle of contact pulverized-coal fired boiler
CN112066405A (en) * 2020-08-27 2020-12-11 宁夏京能宁东发电有限责任公司 Boiler depth peak regulation system of thermal generator set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304143A (en) * 1998-04-23 1999-11-05 Babcock Hitachi Kk Boiler fuel mixing control device
JP2000249331A (en) * 1999-02-26 2000-09-12 Babcock Hitachi Kk Boiler controller
JP2018105592A (en) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 Rotational frequency controller of mill classifier and fuel ratio calculation device suitable for the same
CN109668144A (en) * 2018-11-21 2019-04-23 大唐东北电力试验研究院有限公司 A kind of combustion system optimized and revised for the wide load steam temperature of circle of contact pulverized-coal fired boiler
CN109668144B (en) * 2018-11-21 2020-09-18 大唐东北电力试验研究院有限公司 Combustion system for optimizing and adjusting wide-load steam temperature of tangential pulverized coal fired boiler
CN112066405A (en) * 2020-08-27 2020-12-11 宁夏京能宁东发电有限责任公司 Boiler depth peak regulation system of thermal generator set

Similar Documents

Publication Publication Date Title
JP4855518B2 (en) Pulverized coal fired boiler
JP4576365B2 (en) Coal / biomass mixed combustion system and mixed combustion method
WO2008068883A1 (en) Coal burning boiler apparatus
WO2017134856A1 (en) Solid fuel pulverization device and control method for same
US7926751B2 (en) Systems and methods for grinding coal with secondary air bias and bowl pressure control loops and perforation plates
CA1252368A (en) Improved splitter for use with a coal-fired furnace utilizing a low load burner
JP2008080285A (en) Biomass crushing apparatus and its control method
JP2744019B2 (en) Vertical mill control device
JP7362253B2 (en) Solid fuel pulverizer, power plant equipped with the same, and method for controlling the solid fuel pulverizer
JPH09126436A (en) Combustion controller of dust coal combustion boiler
US4489664A (en) Closed loop fuel feed system for multiple direct fired burners
JPH08338602A (en) Boiler controller
JPS62288405A (en) Fluidized-bed combustion apparatus and operation method thereof
CN101596477B (en) Method and assembly for regulating the grind drying procedure of a coal dust ventilator mill
KR20200121315A (en) Systems and methods for operating combustion chambers
JP2947900B2 (en) Minimum load control unit for coal combustion equipment
US2894696A (en) Coal pulverizing apparatus
JP7274876B2 (en) Solid fuel crusher, power plant equipped with same, and control method for solid fuel crusher
JPH09248482A (en) Coal production control apparatus of coal pulverizer
US3467036A (en) Steam generator and coal pulverizing apparatus
JP2021085634A (en) Solid fuel crushing system and electric power generating plant comprising the same as well as control method for solid fuel crushing system
CN111558433A (en) Solid fuel pulverizing device and method, and power generation facility provided with same
JPH08338603A (en) Boiler controller
JP7316074B2 (en) Pulverized fuel-fired boiler
JPH1038257A (en) Method for estimating stable combustion by coal property