JPH08338602A - Boiler controller - Google Patents

Boiler controller

Info

Publication number
JPH08338602A
JPH08338602A JP14773895A JP14773895A JPH08338602A JP H08338602 A JPH08338602 A JP H08338602A JP 14773895 A JP14773895 A JP 14773895A JP 14773895 A JP14773895 A JP 14773895A JP H08338602 A JPH08338602 A JP H08338602A
Authority
JP
Japan
Prior art keywords
value
coal
furnace
boiler
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14773895A
Other languages
Japanese (ja)
Inventor
Yukio Miyama
幸穂 深山
Shunichi Tsumura
俊一 津村
Koji Yamamoto
晃二 山本
Takayo Kawase
隆世 川瀬
Katsumi Shimodaira
克己 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14773895A priority Critical patent/JPH08338602A/en
Publication of JPH08338602A publication Critical patent/JPH08338602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE: To reduce variations of boiler outlet steam-temperature and steam pressure by estimating an actually measurable physical quantity based upon previously supposed parameters (fuel ratio, crushing property figure, etc.), and when the physical quantity is not coincident with a corresponding actually measured value, correcting the parameters in succession. CONSTITUTION: A boiler heat transfer dynamic characteristic model 40 obtains a fire furnace outlet gas temperature calculated value 51 by analysis of combustion and radiation in a fire furnace based upon fine powdered coal amount estimation signals 45, 46 of each burner at that time and a signal 48 yielded by synthesizing a presupposed fuel ratio increase and a fire furnace contamination increase. A fuel ratio estimation value 43 judges the previously supposed signal 48 to be overestimated and reduces it provided a calculated value 49 of combustion waste gas temperature at an superheater outlet based upon an optimum coefficient (Karman gain) estimated by an expanded Karman filter technique is larger than a calculated value. The fuel ratio estimator 43 increases the signal 48 provided a relation between the calculated value 49 and the actually measured value signal 47 is opposite to the above described case, and finally converges the signal 48 to a true value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭焚きボイラの制
御装置に係わり、特に多種多様な石炭を粉砕し、かつ、
該設備の経年変化に際しても、該ボイラの蒸気温度、圧
力について、常に良好な制御応答性を確保するに好適な
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a pulverized coal burning boiler, and particularly for pulverizing a wide variety of coals, and
The present invention relates to a control device suitable for always ensuring good control responsiveness with respect to steam temperature and pressure of the boiler even when the equipment changes over time.

【0002】[0002]

【従来の技術】図4は、微粉炭製造設備と、当該設備が
算出する微粉炭を燃焼させるボイラ装置、及び、従来技
術による制御装置を図示したものである。
2. Description of the Related Art FIG. 4 shows a pulverized coal production facility, a boiler device for combusting the pulverized coal calculated by the facility, and a control device according to the prior art.

【0003】原料炭1を供給する給炭機2は、速度信号
3に従って原料炭運搬速度を加減され、信号3に比例す
る原料炭を微粉炭製造設備のホッパ4に与える。
The coal feeder 2 for supplying the raw coal 1 adjusts the raw coal feeding speed according to the speed signal 3 and supplies the raw coal in proportion to the signal 3 to the hopper 4 of the pulverized coal manufacturing facility.

【0004】原料炭1は、電動機5により回転され、混
合手段6をなすターンテーブル上に落下し、後述する分
級手段による捕集炭11,13と混合され、保有炭7と
なる。
The raw coal 1 is rotated by an electric motor 5, drops on a turntable forming a mixing means 6, and is mixed with a collecting coal 11, 13 by a classifying means which will be described later to form a retained coal 7.

【0005】保有炭7は、遠心力により粉砕手段8をな
す前述のターンテーブルの外周に置かれたローラにより
粉砕され、該外周を吹き上げる搬送空気9に乗り、需要
先に輸送される。この時、該粉砕手段8の外側には粉炭
による流動層10が形成されている。
The retained coal 7 is crushed by a roller placed on the outer circumference of the above-mentioned turntable which constitutes the crushing means 8 by centrifugal force, and is carried by carrier air 9 blowing up the outer circumference to be transported to a customer. At this time, a fluidized bed 10 made of pulverized coal is formed outside the crushing means 8.

【0006】次に、搬送空気9に乗った粉炭は、重力と
のバンランスにより、大粒径の粒子が前述の混合手段6
へ再循環する重力分級捕集炭11の流れを生じさせる。
また、比較的粒径が小さく該重力分級を通過した粉炭
は、ベーン12により旋回を受けて遠心力により粒径が
大なる粒子が同様に再循環する遠心力分級捕集炭13の
流れを生じる。
[0006] Next, the pulverized coal carried on the carrier air 9 has a large particle size due to the balance with gravity.
A flow of the gravity-classified collecting coal 11 is recirculated to the flow.
Further, the pulverized coal having a relatively small particle size and having passed through the gravitational classification is swirled by the vanes 12 and a flow of centrifugally classified collecting coal 13 in which particles having a large particle size are similarly recirculated by centrifugal force is generated. .

【0007】このような2段の分級手段を通過した、粒
径が小さい石炭は、微粉炭輸送管14を経てボイラ装置
に送られ、燃焼により火炎15を形成する。
Coal having a small particle size, which has passed through such a two-stage classification means, is sent to the boiler device through the pulverized coal transport pipe 14 and forms a flame 15 by combustion.

【0008】該ボイラ装置にあっては、汽缶給水16
は、給水ポンプ37から汽缶17に供給され、下降管1
8を下り、ライザ20を通って汽缶17上部に蓄えられ
た後、過熱器連絡管21を経て、過熱器29により過熱
される。過熱器29を出た蒸気は、蒸気供給ラインより
需要先に供給されるが、この時、蒸気温度検出器31の
信号と、蒸気温度信号設定器32による蒸気温度目標値
信号(設定信号)33との偏差により、比例・積分要素
(PID調節器)35を用いて注水弁36の開度を調整
し、蒸気減温器30での注水による蒸気温度制御を行
う。
In the boiler device, steam boiler water supply 16
Is supplied to the steam can 17 from the water supply pump 37, and the downcomer pipe 1
After passing through the riser 20 and being stored in the upper part of the steam can 17, the superheater 29 is superheated through the superheater connecting pipe 21. The steam exiting the superheater 29 is supplied to the demand destination from the steam supply line. At this time, the signal from the steam temperature detector 31 and the steam temperature target value signal (setting signal) 33 from the steam temperature signal setting unit 32 are supplied. The opening degree of the water injection valve 36 is adjusted using the proportional / integral element (PID adjuster) 35 based on the deviation from and, and the steam temperature control is performed by the water injection in the steam desuperheater 30.

【0009】一方、蒸気供給ラインの蒸気流量は、少量
の注水弁36による注水量を除けば、大半は火炉水壁1
9による蒸発により供給されるから、蒸気圧力は火炉水
壁19の熱吸収量を支配する微粉炭管14による燃料供
給量を調節して蒸気圧力は制御できる。
On the other hand, most of the steam flow rate of the steam supply line except for the small amount of water injection by the water injection valve 36 is the water wall 1 of the furnace.
Since the steam pressure is supplied by evaporation, the steam pressure can be controlled by adjusting the fuel supply amount by the pulverized coal tube 14 that controls the heat absorption amount of the furnace water wall 19.

【0010】従って、蒸気圧力検出器22の信号と蒸気
圧力設定信号24の偏差信号26を、PID調節器27
に与えて、給炭機速度信号3を得る。23は信号設定
器、26は蒸気圧力偏差信号、28は火炉出口燃焼ガス
である。
Therefore, the deviation signal 26 between the signal from the steam pressure detector 22 and the steam pressure setting signal 24 is converted into the PID controller 27.
To obtain a coal feeder speed signal 3. Reference numeral 23 is a signal setting device, 26 is a steam pressure deviation signal, and 28 is a furnace outlet combustion gas.

【0011】図4のボイラ装置は、原則として蒸気の需
要先の任意の蒸気量の抜き出しを前提に運転し、要素3
5、要素27を中核とする制御ループはそれぞれ、蒸気
圧力、温度を蒸気量に拘わらず一定値に保持する制御を
行う。
The boiler apparatus of FIG. 4 operates in principle on the assumption that an arbitrary amount of steam is extracted from a steam demand destination, and the element 3
5. The control loop having the element 27 as a core controls the steam pressure and the temperature to be kept constant regardless of the steam amount.

【0012】[0012]

【発明が解決しようとする課題】図4のボイラ及びボイ
ラ制御装置は、ボイラや石炭粉砕機に汚れや磨耗が小さ
く、石炭の性状がほぼ一定であれば、良好に動作する。
しかしながら、これらのボイラの運転に好都合な条件が
崩れると後述する問題を生じる。
The boiler and the boiler control device shown in FIG. 4 operate well if the boiler and the coal crusher have little dirt and wear and the property of coal is almost constant.
However, if the conditions favorable to the operation of these boilers collapse, the problems described below will occur.

【0013】石炭の性状には種々の要素があるが、粉砕
性指数と燃料比が以下の議論において重要である。前者
は当該値が大であれば容易に粉砕され、後者は石炭の固
定炭素と揮発分の比であって、当該値が大であれば燃焼
に時間を要する。これらの値は、炭種の銘柄が異なると
大きく相違するし、同一銘柄炭でもかなりのばらつきが
あることが知られている。
Although there are various factors in the properties of coal, the grindability index and the fuel ratio are important in the following discussion. The former is easily crushed if the value is large, and the latter is the ratio of fixed carbon to volatile matter of coal, and if the value is large, it takes time to burn. It is known that these values differ greatly depending on the type of coal, and that there is considerable variation even for the same type of coal.

【0014】図5はボイラの制御特性を支配すると言え
る「ミル応答時定数」及び「火炉水壁熱吸収量」につい
て、上述した粉砕性指数、粉砕機構の磨耗、燃料比、火
炉水壁の汚れの関係で示している。
FIG. 5 shows the "mill response time constant" and the "heat absorption amount of the furnace water wall" which can be said to control the control characteristics of the boiler. The relationship is shown.

【0015】ここで、「ミル応答時定数」は、石炭粉砕
機へ供給される石炭量の変化に対する当該粉砕機がバー
ナへ供給する微粉炭量の変化が概略としては一次遅れ特
性であることに着目し、当該遅れの大きさとして定義す
る。該時定数は、粉砕性指数の減少、粉砕機構の磨耗の
進行と共に増加する。
Here, the "mill response time constant" is that the change in the amount of pulverized coal supplied to the burner by the crusher with respect to the change in the amount of coal supplied to the crusher is a first-order lag characteristic. Focusing attention, it is defined as the magnitude of the delay. The time constant increases as the crushability index decreases and the wear of the crushing mechanism progresses.

【0016】また、同一燃料流量の燃焼を行っても、燃
料比や火炉の汚れの増加と共に、「火炉水壁熱吸収量」
は減少し、燃焼ガスについて後流側の過熱器の熱吸収が
増加する。
Further, even if the fuel is burned at the same fuel flow rate, the fuel ratio and the fouling of the furnace increase and the "heat absorption amount of the water wall of the furnace" increases.
Decreases and the heat absorption of the superheater on the downstream side of the combustion gas increases.

【0017】この時、「火炉出口ガス温度」は増加し、
同一燃料量の定常状態では、「火炉出口ガス温度」と
「火炉水壁熱吸収量」は互いに一方を知れば一意に他方
を求められるから、しばしば「火炉水壁熱吸収量」特性
は、把握の容易な「火炉出口ガス温度」特性として取り
扱われる。
At this time, the "furnace outlet gas temperature" increases,
In the steady state with the same amount of fuel, the “furnace outlet gas temperature” and the “furnace water wall heat absorption amount” can be uniquely obtained by knowing one of them, so the “furnace water wall heat absorption amount” characteristic is often understood. Treated as an easy "furnace exit gas temperature" characteristic of.

【0018】以上を前提として、図4のボイラ及びボイ
ラ制御装置には次の問題がある。
Based on the above, the boiler and the boiler control device of FIG. 4 have the following problems.

【0019】a)燃料比の変化、火炉の汚れの進行によ
り、火炉水壁19と過熱器29の熱吸収配分が変化す
る。当該熱吸収バランスの変化につき、例えば、燃料比
増加により、火炉水壁19が減少、過熱器29が増加し
た場合、蒸気温度上昇防止と水壁での蒸発量不足の補充
のため、注水弁36の開度を増加する必要がある。逆の
場合も含め、該バランス補正は定常的に必要なため、注
水弁36の開度が全開または全閉近傍で常時運用する事
態となりやすい。当該全開、全閉近傍では、注水弁36
の開度の片側の制御余地が小さく、蒸気温度の過渡的変
動に対処できない場合が生じる。
A) The heat absorption distribution of the furnace water wall 19 and the superheater 29 changes due to the change of the fuel ratio and the progress of the fouling of the furnace. Regarding the change in the heat absorption balance, for example, when the furnace water wall 19 decreases and the superheater 29 increases due to an increase in the fuel ratio, the water injection valve 36 is provided to prevent the steam temperature from rising and to supplement the insufficient evaporation amount on the water wall. It is necessary to increase the opening. Since the balance correction is constantly required including the reverse case, it is likely that the water injection valve 36 is always operated near the fully opened or fully closed position. In the vicinity of the fully opened and fully closed, the water injection valve 36
There is a small room for control on one side of the opening, and it may not be possible to cope with the transient fluctuation of the steam temperature.

【0020】b)石炭の粉砕性指数、燃料比の変化、粉
砕機構の磨耗、火炉の汚れの進行により、石炭粉砕機の
応答時定数、火炉内の燃料の燃焼速度、水壁への伝熱遅
れが変化し、石炭粉砕機入口の給炭量に対する蒸気圧力
検出器22の応答特性は大幅に相違する。従って、PI
D要素27は、如何なる状況でもハンチングを防ぐた
め、該給炭量−蒸気圧力応答の最も遅い場合を基準に、
感度を低く、積分時間を長く設定する必要があり、良好
な制御性能の実現には程遠い。
B) The response time constant of the coal crusher, the burning rate of the fuel in the furnace, and the heat transfer to the water wall due to the progress of the crushability index of coal, the change in the fuel ratio, the wear of the crushing mechanism, and the progress of dirt in the furnace. The delay changes, and the response characteristics of the steam pressure detector 22 with respect to the amount of coal fed at the inlet of the coal pulverizer differ greatly. Therefore, PI
In order to prevent hunting under any circumstance, the D element 27 is based on the case of the slowest feed rate-steam pressure response,
It is necessary to set low sensitivity and long integration time, which is far from achieving good control performance.

【0021】本発明は上記従来技術の欠点を解消し、ボ
イラ出口蒸気温度と蒸気圧力の変動を低減することので
きるボイラ制御装置を提供することを目的とするもので
ある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a boiler control device capable of reducing fluctuations in steam temperature and steam pressure at a boiler outlet.

【0022】[0022]

【課題を解決するための手段】上記の問題点a)は下記
の1),2)項、b)は3),4)項により、それぞれ
解決できる。要するに、本発明のポイントは、下記
2),3)項であって、オンライン稼動の動特性モデル
により、火炉出口ガス温度、バーナ入口微粉炭流量等の
状態量の推定、及び、石炭の燃料比、粉砕性指数、火炉
の汚れ、微粉炭粉砕部の磨耗等の運転特性変動要因(パ
ラメータ)検出を行う。
The above problem a) can be solved by the following items 1) and 2), and b) by items 3) and 4), respectively. In short, the points of the present invention are the following 2) and 3), and the estimation of the state quantities such as the furnace outlet gas temperature, the burner inlet pulverized coal flow rate, etc., and the coal fuel ratio are made by the dynamic characteristic model of online operation. Detects operating characteristic fluctuation factors (parameters) such as pulverization index, furnace dirt, abrasion of pulverized coal pulverization part, etc.

【0023】殊に後者の検出は、モデルのパラメータの
探索であり、予め仮定したパラメータ(燃料比、粉砕性
指数等)に基づき実測可能な物理量を算出し、当該値が
対応する実測値と一致しない際は逐次にパラメータを修
正し、両者の合致まで該修正を繰り返す手段による。
In particular, the latter detection is a search for model parameters, in which a measurable physical quantity is calculated based on preliminarily assumed parameters (fuel ratio, pulverizability index, etc.), and the value matches the corresponding measured value. If not, the parameters are sequentially corrected, and the correction is repeated until the two match.

【0024】1)ボイラ出口の蒸気温度と圧力の実測値
を目標値と比較し、該蒸気温度高または該蒸気圧力低の
時は火炉出口ガス温度の目標値を低下し、逆に該温度低
または該圧力高の時は該火炉出口ガス温度の目標値を増
加させる。
1) The measured values of the steam temperature and pressure at the boiler outlet are compared with the target values, and when the steam temperature is high or the steam pressure is low, the target value of the furnace outlet gas temperature is lowered, and conversely the temperature is low. Alternatively, when the pressure is high, the target value of the furnace outlet gas temperature is increased.

【0025】2)当該時点の各バーナへの燃料供給量を
逐次入力するオンライン稼動のボイラ伝熱の動特性モデ
ルを設け、過熱器より後流の燃焼ガス温度について、実
測値と該モデルによる計算値の偏差に着目して、当該時
点の石炭の燃料比、火炉の汚れを検出し、両者が増加し
た場合、及び、火炉出口ガス温度について、1)項の手
段で与えられた目標値に対し、該モデルによる算出値が
上回った場合には、当該時点でボイラに供給する燃料を
火炉内において排ガスの出口から遠い位置のバーナに多
く配分する。逆に、燃料比、火炉の汚れが減少した場
合、及び、該火炉出口ガス温度算出値が該目標値より低
下した場合、燃料を排ガスの出口から近い位置のバーナ
に多く配分する。
2) An on-line boiler heat transfer dynamic characteristic model for sequentially inputting the fuel supply amount to each burner at that time is provided, and the combustion gas temperature downstream from the superheater is measured and calculated by the model. Focusing on the deviation of the values, the fuel ratio of the coal at that time, the contamination of the furnace are detected, and when both increase, with respect to the furnace outlet gas temperature, with respect to the target value given by the method of 1) When the value calculated by the model exceeds, the fuel to be supplied to the boiler at that time is distributed to the burner located far from the exhaust gas outlet in the furnace. On the contrary, when the fuel ratio and the fouling of the furnace are reduced, and when the calculated value of the furnace outlet gas temperature is lower than the target value, a large amount of fuel is distributed to the burner located near the exhaust gas outlet.

【0026】3)当該時点の原料炭供給量、粉砕機構の
加圧力等の運転条件を逐次入力するオンライン稼動の石
炭粉砕機の動特性モデルを設け、該粉砕機の石炭粉砕機
構近傍において、搬送用空気により発生する差圧につい
て、実測値と該モデルによる計算値の偏差に着目して、
当該時点の石炭の粉砕性指数、粉砕機構の磨耗を検出
し、前者が減少または後者が増加した場合には、当該粉
砕機の粉砕機構の加圧力を増加する。逆の場合は該加圧
力を減少する。
3) A dynamic characteristic model of an on-line coal crusher that sequentially inputs operating conditions such as the amount of coking coal supplied at that time and the pressing force of the crusher is provided, and the model is conveyed in the vicinity of the coal crusher of the crusher. Regarding the differential pressure generated by the working air, paying attention to the deviation between the measured value and the calculated value by the model,
The crushability index of the coal at that time and the wear of the crushing mechanism are detected, and when the former decreases or the latter increases, the pressing force of the crushing mechanism of the crusher is increased. In the opposite case, the applied pressure is reduced.

【0027】また、該粉砕機がバーナに供給する微粉炭
量について、該粉砕機動特性モデルの算出値が2)項の
手段で与えられた目標値より低下した場合、該粉砕機へ
の原料炭供給量を増加し、逆の場合は減少する。
Further, when the amount of pulverized coal supplied to the burner by the pulverizer falls below the target value given by the means in the item 2), the raw coal for the pulverizer is supplied. Increase the supply, and vice versa.

【0028】4)2)項による燃料比、火炉の汚れの検
出値と、3)項の粉砕性指数、粉砕機構の磨耗の検出値
を総合して、上記した給炭量−蒸気圧力応答の遅れ時定
数を評価し、当該値が増加した場合、PID要素の感度
を低下、積分時間を延長する。当該値が減少した際は、
PID要素に逆の調節を行う。該調節は、a)項による
各バーナへの燃料配分、及び、本項の加圧力の補正を施
してもなお給炭量−蒸気圧力応答の遅れ時定数が所定の
値より変化する際に実施する。
4) The fuel ratio according to the item 2), the detected value of the fouling of the furnace, the grindability index according to the item 3), and the detected value of the wear of the crushing mechanism are combined to obtain the above-mentioned coal supply amount-steam pressure response. The delay time constant is evaluated, and if the value increases, the sensitivity of the PID element is reduced and the integration time is extended. When the value decreases,
The reverse adjustment is made to the PID element. The adjustment is carried out when the delay time constant of the coal supply amount-steam pressure response changes from a predetermined value even after the fuel distribution to each burner according to the item a) and the correction of the pressing force according to this item are performed. To do.

【0029】[0029]

【作用】上記手段1)〜4)の作用の詳細は下記の通り
である。これらの作用の中核は2),3)であって、上
述通りプラントモデルを用いて、直接的なオンライン計
測手段では把握できないプラント状態量の推定、運転特
性変動要因の検出に基づき、必要な操作を行う。
The operation of the above means 1) to 4) will be described in detail below. The core of these actions are 2) and 3), and the necessary operation is performed based on the estimation of the plant state quantity that cannot be grasped by the direct online measuring means and the detection of the operating characteristic variation factors using the plant model as described above. I do.

【0030】1)ボイラ出口蒸気温度高または該蒸気圧
力低の時は、火炉出口ガス温度の目標値を低下させ、
2)項等の作用を介して、熱吸収量につき、過熱器で減
少、火炉水壁で増加させる作用となる。逆の場合は、過
熱器で増加、火炉水壁で減少をもたらす作用がある。
1) When the boiler outlet steam temperature is high or the steam pressure is low, the target value of the furnace outlet gas temperature is lowered,
Through the action of item 2), the heat absorption amount is reduced by the superheater and increased by the water wall of the furnace. In the opposite case, the superheater has the effect of increasing the water wall of the furnace.

【0031】2)燃料比、火炉の汚れが増加した場合、
及び、該火炉出口ガス温度算出値が該目標値より上昇し
た場合、燃料を排ガスの出口から遠い位置のバーナに多
く配分することにより、燃焼排ガスの火炉内通過時間を
延長し、燃焼時間の確保、火炉熱吸収量増加、火炉出口
ガス温度低下、過熱器熱吸収量低下の作用がある。燃料
比減少等、上述と逆の場合、火炉熱吸収量減少以下、逆
方向に同様の作用がある。
2) When the fuel ratio and the fouling of the furnace increase,
And, when the calculated value of the furnace outlet gas temperature rises above the target value, a large amount of fuel is distributed to the burner located far from the exhaust gas outlet to extend the passage time of the combustion exhaust gas in the furnace and secure the combustion time. It has the effects of increasing the heat absorption of the furnace, lowering the temperature of the gas at the furnace outlet, and lowering the heat absorption of the superheater. In the case where the fuel ratio is decreased or the like is the reverse of the above, the same effect is exerted in the opposite direction below the decrease in the furnace heat absorption amount.

【0032】3)石炭の粉砕性指数の低下、または、粉
砕機構の磨耗が進行した場合は、粉砕機構の加圧力を増
加し、粉砕能力を強化する作用がある。逆の場合は、該
加圧力を低減して、粉砕機構の磨耗進行の抑制、振動を
低減する作用がある。該粉砕機が受け持つバーナへの微
粉炭供給量に過不足がある場合は、直ちに該粉砕機への
給炭量を調節して、これを補正する作用がある。
3) When the crushability index of coal is reduced or the wear of the crushing mechanism progresses, the pressing force of the crushing mechanism is increased to enhance the crushing ability. In the opposite case, the pressing force is reduced to suppress the progress of wear of the crushing mechanism and reduce vibration. If there is an excess or deficiency in the amount of pulverized coal supplied to the burner that the crusher is responsible for, the amount of coal supplied to the crusher is immediately adjusted to correct it.

【0033】4)給炭量−蒸気圧力応答の遅れ時定数が
短い場合は、PID要素の感度を上昇、積分時間を短縮
して制御性を一層向上する作用がある。逆の場合は、P
ID要素に慎重な制御動作を行わせ、ハンチングを防止
する作用がある。
4) When the delay time constant of the coal supply amount-steam pressure response is short, the sensitivity of the PID element is increased, the integration time is shortened, and the controllability is further improved. In the opposite case, P
The ID element is carefully controlled to prevent hunting.

【0034】[0034]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】図3は実施例に係るボイラ装置全体の系統
図である。図4に示す従来例と共通の構成部については
説明を省略する。
FIG. 3 is a system diagram of the entire boiler apparatus according to the embodiment. Descriptions of components common to the conventional example shown in FIG. 4 are omitted.

【0036】課題を解決するための手段の項で述べた
1)〜4)の手段は、対応して次の通り実施される。
The means 1) to 4) described in the section of means for solving the problems are correspondingly implemented as follows.

【0037】1)火炉出口燃焼ガス温度設定器55は、
手段の1)項を実施し、蒸気温度偏差信号34、蒸気圧
力偏差信号26に、別途定めた両信号それぞれに対する
「重み係数」を乗じて加算し、火炉出口ガス温度基本信
号の値の補正を実現する。当該「重み係数」の最適値
は、プラント伝熱モデルに公知の最適レギュレータの方
法を適用して求められる。
1) The furnace outlet combustion gas temperature setting device 55 is
By implementing the method 1), the steam temperature deviation signal 34 and the steam pressure deviation signal 26 are multiplied by "weighting coefficient" for each of the separately determined signals and added to correct the value of the furnace outlet gas temperature basic signal. To be realized. The optimum value of the “weighting coefficient” is obtained by applying a known optimum regulator method to the plant heat transfer model.

【0038】該方法で当該「重み係数」を求めれば、公
知のLQG規範のもとで最適な制御特性が実現できる。
また、本機能を達成するために、PI調節器やファジィ
演算器を適用することもできる。
If the "weighting coefficient" is obtained by this method, optimum control characteristics can be realized under the known LQG standard.
Further, in order to achieve this function, a PI controller or a fuzzy calculator can be applied.

【0039】2)火炉出口ガス温度制御装置38は、手
段の2)項を実施し、その詳細を図1に示す。
2) The furnace outlet gas temperature control device 38 implements the means 2), and details thereof are shown in FIG.

【0040】ボイラ伝熱動特性モデル40は、当該時点
の各バーナの微粉炭量推定信号45,46と、予め仮定
した燃料比増加と火炉汚れ進行を合成した信号48に基
づき、実験式等を併用した火炉内燃焼、輻射の解析によ
り、火炉出口ガス温度計算値51を得る。
The boiler heat transfer kinetic characteristic model 40 is based on the pulverized coal amount estimation signals 45 and 46 of each burner at that time point and the signal 48 obtained by combining the presumed fuel ratio increase and the furnace fouling progress, based on an empirical formula and the like. A furnace outlet gas temperature calculated value 51 is obtained by analysis of combustion and radiation in the furnace used together.

【0041】さらに、該火炉出口ガス温度と各バーナの
微粉炭量から求まる排ガス量、排ガスのエンタルピ、過
熱器出口蒸気温度信号74、蒸気圧力信号75から求ま
る過熱器蒸気側の熱吸収量から、熱収支の計算により該
過熱器出口の燃焼排ガス温度の計算値49を得る。
Furthermore, from the exhaust gas amount obtained from the furnace outlet gas temperature and the amount of pulverized coal of each burner, the enthalpy of the exhaust gas, the superheater outlet steam temperature signal 74, and the heat absorption amount on the superheater steam side obtained from the steam pressure signal 75, By calculating the heat balance, a calculated value 49 of the exhaust gas temperature at the outlet of the superheater is obtained.

【0042】燃料比推定器43は、公知の拡張カルマン
フィルタの手法により求めた最適な係数(カルマンゲイ
ン)により、該過熱器出口の燃焼排ガス温度の計算値4
9が実測値信号47より大であれば、先に仮定した信号
48が過大評価であると結論し、これを低減する。
The fuel ratio estimator 43 calculates the combustion exhaust gas temperature at the outlet of the superheater by using the optimum coefficient (Kalman gain) obtained by the known extended Kalman filter method.
If 9 is larger than the measured value signal 47, it is concluded that the previously assumed signal 48 is overestimated, and this is reduced.

【0043】燃料比推定器43は、計算値49が実測値
信号47の関係が上述と逆であれば信号48を増加し、
最終的に該信号48を真値に収束させる。当該収束性
は、カルマンフィルタの手法により求めた最適な係数を
用いることにより、論理的に保証される。
The fuel ratio estimator 43 increases the signal 48 when the calculated value 49 has the relationship of the measured value signal 47 opposite to the above,
Finally, the signal 48 is converged to a true value. The convergence is logically guaranteed by using the optimum coefficient obtained by the Kalman filter method.

【0044】各バーナ入口最適微粉炭量算出器44は、
PID要素27で求めた総燃料量信号53を、信号48
及び火炉出口ガス温度の制御偏差54に基づき比例配分
し、各バーナの微粉炭供給量目標信号56,57を算出
する。この際の当該配分係数は、信号48、信号54
に、「重み係数」を乗じて加算して求められる。
The optimum pulverized coal amount calculator 44 at each burner inlet is
The total fuel amount signal 53 obtained by the PID element 27 is converted into the signal 48
And proportional distribution based on the control deviation 54 of the furnace outlet gas temperature, and the pulverized coal supply amount target signals 56 and 57 of each burner are calculated. In this case, the distribution coefficient is the signal 48, the signal 54.
Is multiplied by a “weighting coefficient” and added.

【0045】当該「重み係数」の最適値は、火炉内燃
焼、輻射伝熱モデルに公知の最適レギュレータの方法を
適用して求められる。該方法で当該「重み係数」を求め
れば、公知のLQG規範のもとで最適な制御特性が実現
できる。
The optimum value of the "weighting coefficient" is obtained by applying a known optimum regulator method to the combustion in the furnace and the radiant heat transfer model. If the "weighting coefficient" is obtained by the method, the optimum control characteristic can be realized under the known LQG standard.

【0046】さらに、燃料比推定器43、及び、各バー
ナ入口最適微粉炭量算出器44は、それぞれ、ファジィ
演算器やPI調節器を適用することもできる。
Further, the fuel ratio estimator 43 and the burner inlet optimum pulverized coal amount calculator 44 may each be a fuzzy calculator or a PI controller.

【0047】また、本実施例では、各バーナの微粉炭量
推定信号45,46として、後述の粉砕機出炭量制御装
置で求めた計算値69を適用しているが、当該値を実測
できる場合はこれを用いればよいし、ビンシステムに微
粉炭を蓄えてこれをバルブを介して各バーナに供給する
ケースのように、信号56,57の指令に無視できる程
度の遅れで各バーナの微粉炭量が追従する場合は、信号
45,46に替えて信号56,57を用いれば簡単であ
る。
Further, in the present embodiment, the calculated value 69 obtained by the pulverizer coal output control device described later is applied as the pulverized coal amount estimation signals 45 and 46 of each burner, but the values can be measured. In this case, this can be used, or as in the case of storing pulverized coal in the bin system and supplying it to each burner via a valve, the pulverized coal of each burner can be ignored with a delay that can be ignored by the commands of signals 56 and 57. When the amount of charcoal follows, it is easy to use signals 56 and 57 instead of signals 45 and 46.

【0048】3)粉砕機出炭量制御装置39は、手段の
3)項を実施し、その詳細を図2に示す。
3) The pulverizer coal output control device 39 executes the means 3), and details thereof are shown in FIG.

【0049】粉砕機動特性モデル58は、当該時点に該
粉砕機へ供給される石炭量を信号65、粉砕機構加圧力
を信号64として入力し、予め仮定した粉砕性指数減少
と粉砕機構の磨耗の進行を合成した信号66に基づき、
粉砕機内の粉砕、分級、混合等の現象実験式等の解析に
より、粉砕機構近傍の差圧計算値67と、該粉砕機が担
当する単数または特定のグループに属する複数のバーナ
へ供給する微粉炭量計算値69を得る。
The crusher dynamic characteristic model 58 receives the amount of coal supplied to the crusher at that time as a signal 65 and the crushing mechanism pressing force as a signal 64, and reduces the crushability index and the wear of the crushing mechanism which are assumed in advance. Based on the signal 66 that is a composite of the progression,
Pulverized coal supplied to the differential pressure calculation value 67 in the vicinity of the crushing mechanism and a single burner or a plurality of burners belonging to a specific group, which is in charge of the crusher, by analyzing phenomena such as crushing, classification, and mixing in the crusher The calculated quantity 69 is obtained.

【0050】粉砕性指数推定器60は、公知の拡張カル
マンフィルタの手法により求めた最適な係数(カルマン
ゲイン)により、差圧計算値67と実測値63の差よ
り、負荷上昇時に計算値67が実測値信号63より大で
あるか、負荷下降時に計算値67が実測値信号63より
小であれば、計算値の位相が実測値より進んでおり、先
に仮定した信号66が過大評価であると結論し、これを
低減する。
The grindability index estimator 60 uses the optimum coefficient (Kalman gain) obtained by the method of the known extended Kalman filter to calculate the calculated value 67 when the load is increased from the difference between the calculated differential pressure value 67 and the measured value 63. If the calculated value 67 is larger than the value signal 63 or the calculated value 67 is smaller than the measured value signal 63 when the load is decreased, the phase of the calculated value is ahead of the measured value, and the previously assumed signal 66 is overestimated. Conclude and reduce this.

【0051】燃料比推定器43は、計算値67が実測値
信号63の関係が上述と逆であれば信号66を増加し、
最終的に該信号66を真値に収束させる。当該収束性
は、カルマンフィルタの手法により求めた最適な係数を
用いることにより、理論的に保証される。
The fuel ratio estimator 43 increases the signal 66 when the calculated value 67 has the relationship of the measured value signal 63 opposite to the above,
Finally, the signal 66 is converged to a true value. The convergence is theoretically guaranteed by using the optimum coefficient obtained by the Kalman filter method.

【0052】粉砕機最適微粉炭量算出器62は、各バー
ナの微粉炭供給量目標信号56,57により指令される
該粉砕機が担当する単数または特定のグループに属する
複数のバーナへ供給する微粉炭量70と計算値69の偏
差と、燃料比推定器43で得た信号66に基づき、これ
らに「重み係数」を乗じて加算して、当該粉砕機への給
炭量指令信号72、加圧力指令信号73を算出する。
The pulverizer optimum pulverized coal amount calculator 62 supplies the pulverized coal supplied to the singular or a plurality of burners belonging to a specific group instructed by the pulverized coal supply amount target signals 56 and 57 of each burner. Based on the deviation between the coal amount 70 and the calculated value 69, and the signal 66 obtained by the fuel ratio estimator 43, these are multiplied by a "weighting coefficient" and added, and the coal supply amount command signal 72 to the crusher is added. The pressure command signal 73 is calculated.

【0053】当該「重み係数」の最適値は、粉砕機のモ
デルに公知の最適レギュレータの方法を適用して求めら
れる。
The optimum value of the "weighting coefficient" is obtained by applying a known optimum regulator method to the model of the crusher.

【0054】該方法で当該「重み係数」を求めれば、公
知のLQG規範のもとで最適な制御特性が実現できる。
さらに、粉砕性指数推定器60、及び、粉砕機最適微粉
炭量算出器62は、それぞれ、ファジィ演算器やPI調
節器を適用することもできる。
By obtaining the "weighting coefficient" by this method, the optimum control characteristic can be realized under the known LQG standard.
Further, a fuzzy calculator or a PI controller can be applied to the crushability index estimator 60 and the crusher optimum pulverized coal amount calculator 62, respectively.

【0055】また、本実施例では、当該粉砕機への石炭
供給量信号65、加圧力信号64として、これらの駆動
系(給炭機フィーダー、粉砕機構の加圧器)の追従遅れ
は、指令に対し無視できる程度であるとみなして、簡単
にそれぞれの指令値信号72,73をそのまま用いてい
る。しかし、当該値を実測できる場合は、これを用いれ
ば、より正確である。
Further, in this embodiment, as the coal supply amount signal 65 and the pressing force signal 64 to the crusher, the follow-up delay of these drive systems (coal feeder and pressurizer of the crushing mechanism) is commanded. On the other hand, the respective command value signals 72 and 73 are simply used as they are, assuming that they are negligible. However, if the value can be measured, it is more accurate if used.

【0056】4)PIパラメータ調節器81は、手段の
4)項を実施し、信号48による燃料比、火炉の汚れの
検出値と、信号66による粉砕性指数、粉砕機構の磨耗
の検出値を総合して、給炭量−蒸気圧力応答の遅れ時定
数を評価し、当該値が増加した場合、PID要素35の
感度を低下、積分時間を延長する。当該値が減少した際
は、PID要素35に逆の調節を行う。該調節は、公知
のジーグラー=ニコラス法を用いれば理論的に最適性が
保証されるし、ファジィ推論を用いることもできる。
4) The PI parameter controller 81 carries out the procedure 4) of the means, and detects the fuel ratio by the signal 48, the detected value of the dirt of the furnace, the crushability index by the signal 66, and the detected value of the wear of the crushing mechanism. Overall, the delay time constant of the coal supply amount-steam pressure response is evaluated, and if the value increases, the sensitivity of the PID element 35 is reduced and the integration time is extended. When the value decreases, the PID element 35 is adjusted in the opposite way. The adjustment is theoretically guaranteed to be optimal by using the known Ziegler-Nicholas method, and fuzzy inference can be used.

【0057】本実施例は、粉砕性指数、粉砕機構の磨耗
の検出値として、簡単のため、特定の粉砕機について信
号66で代表しているが、これは、全粉砕機についての
信号66の平均値とすれば正確である。
In the present embodiment, the signal 66 for a specific crusher is represented by the signal 66 for all crushers for the sake of simplicity as the crushability index and the detected value of wear of the crushing mechanism. The average value is accurate.

【0058】なお、37は給水ポンプ、41,42は信
号減算器、50は伝熱面出口ガス温度算出偏差信号、5
2は火炉出口燃焼ガス温度指令信号、59,61は信号
減算器、71はバーナ入口微粉炭量制御偏差信号、76
は火炉出口燃焼ガス基本設定信号、77は信号設定器、
78は伝熱面出口ガス温度設定器、79は加圧力調節
器、80はミル差圧調節器、82はPIパラメータ補正
信号である。
37 is a water supply pump, 41 and 42 are signal subtractors, 50 is a heat transfer surface outlet gas temperature calculation deviation signal, and 5 is a signal.
2 is a furnace outlet combustion gas temperature command signal, 59 and 61 are signal subtractors, 71 is a burner inlet pulverized coal amount control deviation signal, 76
Is a furnace outlet combustion gas basic setting signal, 77 is a signal setting device,
Reference numeral 78 is a heat transfer surface outlet gas temperature setting device, 79 is a pressurizing force controller, 80 is a mill differential pressure controller, and 82 is a PI parameter correction signal.

【0059】[0059]

【発明の効果】本発明は以下の効果がある。The present invention has the following effects.

【0060】1)ボイラからの抜き出し蒸気量変化時等
に発生する、過熱器と火炉水壁の過渡的な熱吸収量のア
ンバランスによるボイラ出口蒸気温度と該蒸気圧力の変
動を低減できる。
1) It is possible to reduce fluctuations in the boiler outlet steam temperature and the steam pressure due to the transient imbalance of the heat absorption amount between the superheater and the water wall of the furnace, which occurs when the amount of steam extracted from the boiler changes.

【0061】2)燃料比の変化、火炉の汚れの進行によ
り、火炉水壁と過熱器の熱吸収配分が変化し、注水弁の
開度が全開または全閉近傍で常時運用する事態を防止で
きる。従って、蒸気温度変動への制御余地の低下が防げ
る。
2) It is possible to prevent the situation where the heat absorption distribution of the furnace water wall and the superheater changes due to the change of the fuel ratio and the progress of the fouling of the furnace, and the operation of the water injection valve is normally opened or fully closed. . Therefore, it is possible to prevent a decrease in control room due to the steam temperature fluctuation.

【0062】3)石炭の粉砕性指数、または、粉砕機構
の磨耗が変化した場合、粉砕能力の適切な確保により、
磨耗進行の抑制、振動の低減と、粉砕機出炭量応答性向
上によるボイラ出口蒸気温度と該蒸気圧力の変動改善を
両立できる。
3) When the crushability index of coal or the wear of the crushing mechanism is changed, by appropriately securing the crushing ability,
It is possible to both suppress the progress of wear, reduce vibration, and improve fluctuations in boiler outlet steam temperature and steam pressure by improving crusher coal output responsiveness.

【0063】4)石炭の粉砕性指数、燃料比の変化、粉
砕機構の磨耗、火炉の汚れ度の変動に際しても、プラン
トの制御性が低下した場合でもハンチングを防ぎ、該制
御性が良好な場合は最大限に運転特性を向上できる。
4) When the controllability of coal is good even when the controllability of the plant is deteriorated even when the controllability of the coal is changed, the abrasion of the fuel ratio is changed, the abrasion of the crushing mechanism is changed, and the degree of fouling of the furnace is changed. Can maximize the driving characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る制御装置のブロッ
ク図である。
FIG. 1 is a block diagram of a control device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係る制御装置のブロッ
ク図である。
FIG. 2 is a block diagram of a control device according to a second embodiment of the present invention.

【図3】本発明の実施例に係るボイラ装置全体の系統図
である。
FIG. 3 is a system diagram of the entire boiler apparatus according to the embodiment of the present invention.

【図4】従来例に係るボイラ装置全体の系統図である。FIG. 4 is a system diagram of an entire boiler device according to a conventional example.

【図5】運転特性変動要因の説明図である。FIG. 5 is an explanatory diagram of driving characteristic variation factors.

【符号の説明】[Explanation of symbols]

38 火炉出口ガス温度制御装置 39 粉砕機出炭量制御装置 40 伝熱動特性モデル 41,42 信号減算器 43 燃料比推定器 44 微粉炭流量算出器 58 粉砕機動特性モデル 59,61 信号減算器 60 粉砕性推定器 62 粉砕機最適操作量算出器 38 Furnace outlet gas temperature control device 39 Crusher coal output control device 40 Heat transfer dynamic characteristic model 41, 42 Signal subtractor 43 Fuel ratio estimator 44 Pulverized coal flow rate calculator 58 Crusher dynamic characteristic model 59, 61 Signal subtractor 60 Crushability estimator 62 Crusher optimum operation amount calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川瀬 隆世 広島県呉市宝町6番9号 バブコツク日立 株式会社呉工場内 (72)発明者 下平 克己 広島県呉市宝町3番36号 バブコツク日立 株式会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takase Kawase 6-9 Takaracho, Kure-shi, Hiroshima Prefecture Babkotsu Hitachi Co., Ltd. Kure Factory (72) Katsumi Shimohira 3-36 Takaracho, Kure-shi, Hiroshima Prefecture Babkotsu Hitachi Stock Company Kure Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 火炉、該火炉を取り囲む水冷壁、該水冷
壁で発生した蒸気を前記火炉の排ガス流路中で過熱する
過熱器を有するボイラ装置において、 少なくとも、蒸気圧力、前記過熱器出口の蒸気温度の実
測値または推定値を入力して、前記火炉の出口の排ガス
温度の目標値を指令する演算部を備えたことを特徴とす
るボイラ制御装置。
1. A boiler apparatus having a furnace, a water-cooling wall surrounding the furnace, and a superheater for superheating steam generated on the water-cooling wall in an exhaust gas passage of the furnace, wherein at least steam pressure and outlet of the superheater are provided. A boiler control device comprising: a calculation unit for inputting a measured value or an estimated value of a steam temperature and instructing a target value of an exhaust gas temperature at the exit of the furnace.
【請求項2】 排ガスの出口からの距離の異なる複数の
位置に、個別またはグループ別の微粉炭流量の調節手段
を有する微粉炭バーナを備えた火炉、該火炉を取り囲む
水冷壁、前記火炉の排ガス流路中で該水冷壁で発生した
蒸気を過熱する過熱器を有するボイラ装置において、 少なくとも、蒸気圧力、前記過熱器出口の蒸気温度、各
バーナの微粉炭流量、及び、微粉炭の燃料比の実測値ま
たは推定値を入力して、当該時点の前記火炉の出口の排
ガス温度、排ガス流路中にあって、前記過熱器よりも後
流側の特定部位の排ガス温度を算出する伝熱動特性モデ
ルと、 少なくとも、当該特定部位の排ガス温度について該伝熱
動特性モデルによる算出値と実測値との偏差から現時点
で燃焼に供する微粉炭の燃料比を推定する燃料比推定器
と、 少なくとも、前記火炉の出口の排ガス温度について該伝
熱動特性モデルによる算出値と目標値との偏差、該時点
で当該ボイラに供給する燃料流量指令値、前記燃料比推
定値を入力して、各微粉炭バーナの燃料流量配分の目標
値を出力する燃料配分算出器と、 を備えたことを特徴とするボイラ制御装置。
2. A furnace equipped with a pulverized coal burner having means for adjusting the pulverized coal flow rate individually or in groups at a plurality of positions at different distances from the exhaust gas outlet, a water cooling wall surrounding the furnace, and exhaust gas from the furnace. In a boiler device having a superheater that superheats the steam generated on the water cooling wall in the flow path, at least the steam pressure, the steam temperature at the superheater outlet, the pulverized coal flow rate of each burner, and the fuel ratio of the pulverized coal Heat transfer kinematics that inputs the measured value or estimated value and calculates the exhaust gas temperature at the outlet of the furnace at that point in time, and the exhaust gas temperature in a specific part in the exhaust gas flow passage that is downstream of the superheater A model, and at least a fuel ratio estimator that estimates the fuel ratio of the pulverized coal currently used for combustion from the deviation between the measured value and the measured value of the heat transfer dynamics model for the exhaust gas temperature of the specific part. Also, with respect to the exhaust gas temperature at the outlet of the furnace, the deviation between the calculated value by the heat transfer dynamic characteristic model and the target value, the fuel flow rate command value to be supplied to the boiler at that time, and the estimated fuel ratio value are input. A boiler control device comprising: a fuel distribution calculator that outputs a target value of a fuel flow distribution of a pulverized coal burner.
【請求項3】 ボイラ装置のバーナに微粉炭を供給する
石炭粉砕機にあって、該粉砕機は、少なくとも、石炭保
有部、該保有部と隣接する粉砕機溝、被粉砕炭の搬送空
気の供給手段、搬送空気流路に沿って前記粉砕機構の前
流部と後流部の特定部位間の差圧の検出手段、粉砕機へ
の石炭供給量の操作手段、及び、前記粉砕機構の加圧力
の操作手段を有し、 少なくとも、現時点の粉砕機への石炭供給量、粉砕機構
の加圧力、及び、供給された石炭の粉砕性指数の実測値
または推定値を入力して、当該時点の粉砕機がバーナに
供給する微粉炭流量、前記特定部位間の差圧を算出させ
る粉砕機の動特性モデルと、 少なくとも、当該差圧について該粉砕機動特性モデルに
よる算出値と前記差圧検出手段による実測値との偏差に
より、現時点で粉砕中の石炭の粉砕性指数を推定する粉
砕性推定器と、 少なくとも、粉砕機がバーナに供給する微粉炭流量につ
いて該粉砕機動特性モデルによる算出値と目標値との偏
差、前記粉砕性推定器による粉砕性指数を入力して粉砕
機への石炭供給量、粉砕機構の加圧力を指令する粉砕機
操作量算出器と、 を備えたことを特徴とするボイラ制御装置。
3. A coal crusher for supplying pulverized coal to a burner of a boiler apparatus, wherein the crusher comprises at least a coal holding part, a grinder groove adjacent to the holding part, and a carrier air for crushed coal. Supply means, means for detecting the pressure difference between the specific parts of the upstream and downstream parts of the crushing mechanism along the conveying air flow path, means for operating the amount of coal supplied to the crusher, and addition of the crushing mechanism. It has a pressure operating means, and at least inputs the current coal supply amount to the crusher, the pressing force of the crushing mechanism, and the measured or estimated value of the crushability index of the supplied coal, and The pulverized coal flow rate supplied to the burner by the crusher, the dynamic characteristic model of the crusher for calculating the differential pressure between the specific parts, and at least the calculated value by the pulverizer dynamic characteristic model and the differential pressure detection means for the differential pressure. Due to the deviation from the measured value, A grindability estimator for estimating the grindability index of charcoal, and at least a deviation between the calculated value by the grinder dynamic characteristic model and the target value for the pulverized coal flow rate supplied to the burner by the grinder, and the grindability by the grindability estimator. A boiler control device comprising: a crusher operation amount calculator for inputting an index and instructing the amount of coal supplied to the crusher and the pressing force of the crushing mechanism.
【請求項4】 請求項2記載において、ボイラ装置の各
バーナに供給する燃料量の総量の指令値を該ボイラの特
定の部位の温度または圧力の目標値からの偏差に従い算
出し、該偏差に乗じる係数の調節手段を含む演算部をさ
らに備え、前記燃料比推定器の推定値に基づき、前記偏
差に乗じる係数を調節することを特徴とするボイラ制御
装置。
4. The method according to claim 2, wherein the command value of the total amount of fuel supplied to each burner of the boiler device is calculated according to the deviation from the target value of the temperature or pressure of a specific part of the boiler, and the deviation is calculated. The boiler control device further comprising a calculation unit including a coefficient adjusting means for multiplying, and adjusting a coefficient by which the deviation is multiplied based on an estimated value of the fuel ratio estimator.
【請求項5】 請求項3記載において、ボイラ装置の各
バーナに供給する燃料量の総量の指令値を該ボイラの特
定の部位の温度または圧力の目標値からの偏差に従い算
出し、該偏差に乗じる係数の調節手段を含む演算部をさ
らに備え、前記粉砕性推定器の推定値に基づき、前記偏
差に乗じる係数を調節することを特徴とするボイラ制御
装置。
5. The method according to claim 3, wherein the command value of the total amount of fuel supplied to each burner of the boiler device is calculated according to the deviation from the target value of the temperature or pressure of a specific part of the boiler, and the deviation is calculated. A boiler control apparatus further comprising a calculation unit including a coefficient adjusting means for multiplying, and adjusting a coefficient by which the deviation is multiplied based on an estimated value of the pulverizability estimator.
JP14773895A 1995-06-14 1995-06-14 Boiler controller Pending JPH08338602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14773895A JPH08338602A (en) 1995-06-14 1995-06-14 Boiler controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14773895A JPH08338602A (en) 1995-06-14 1995-06-14 Boiler controller

Publications (1)

Publication Number Publication Date
JPH08338602A true JPH08338602A (en) 1996-12-24

Family

ID=15437034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14773895A Pending JPH08338602A (en) 1995-06-14 1995-06-14 Boiler controller

Country Status (1)

Country Link
JP (1) JPH08338602A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337494A (en) * 1997-06-06 1998-12-22 Babcock Hitachi Kk Controller adaptable to mill
WO2007061106A1 (en) * 2005-11-28 2007-05-31 Electric Power Development Co., Ltd. Combustion control method and device of oxygen combustion boiler
US7884587B2 (en) 2007-08-07 2011-02-08 Ricoh Company, Limited Power supply device and image forming apparatus
KR101139669B1 (en) * 2010-09-24 2012-05-14 한국전력공사 Dual Boiler for Controlling Amount of Gas Recirculation and Method for Controlling Amount of Gas Recirculation
JP2015175570A (en) * 2014-03-17 2015-10-05 三浦工業株式会社 boiler system
CN108224772A (en) * 2018-02-06 2018-06-29 湖南三创富泰环保材料股份有限公司 A kind of dual-purpose boiling type hot-blast stove of novel bottle coal and control method
JP2018105592A (en) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 Rotational frequency controller of mill classifier and fuel ratio calculation device suitable for the same
CN108278597A (en) * 2018-01-31 2018-07-13 武汉工程大学 A kind of Coal Feeding in Circulating Fluidized Bed Furnace control system and its fuzzy control method
CN112082142A (en) * 2020-08-19 2020-12-15 江苏未来智慧信息科技有限公司 Boiler intelligent coordination system and method for coal-fired unit of power plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337494A (en) * 1997-06-06 1998-12-22 Babcock Hitachi Kk Controller adaptable to mill
US8584604B2 (en) 2005-11-28 2013-11-19 Electric Power Development Co., Ltd. Method and apparatus for controlling combustion in oxygen fired boiler
WO2007061106A1 (en) * 2005-11-28 2007-05-31 Electric Power Development Co., Ltd. Combustion control method and device of oxygen combustion boiler
AU2006316951B2 (en) * 2005-11-28 2010-04-29 Electric Power Development Co., Ltd. Combustion control method and device of oxygen combustion boiler
AU2006316951C1 (en) * 2005-11-28 2010-09-09 Electric Power Development Co., Ltd. Combustion control method and device of oxygen combustion boiler
KR101007513B1 (en) * 2005-11-28 2011-01-19 가부시키가이샤 아이에이치아이 Combustion control method and device of oxygen combustion boiler
US7884587B2 (en) 2007-08-07 2011-02-08 Ricoh Company, Limited Power supply device and image forming apparatus
KR101139669B1 (en) * 2010-09-24 2012-05-14 한국전력공사 Dual Boiler for Controlling Amount of Gas Recirculation and Method for Controlling Amount of Gas Recirculation
JP2015175570A (en) * 2014-03-17 2015-10-05 三浦工業株式会社 boiler system
JP2018105592A (en) * 2016-12-28 2018-07-05 三菱日立パワーシステムズ株式会社 Rotational frequency controller of mill classifier and fuel ratio calculation device suitable for the same
CN108278597A (en) * 2018-01-31 2018-07-13 武汉工程大学 A kind of Coal Feeding in Circulating Fluidized Bed Furnace control system and its fuzzy control method
CN108224772A (en) * 2018-02-06 2018-06-29 湖南三创富泰环保材料股份有限公司 A kind of dual-purpose boiling type hot-blast stove of novel bottle coal and control method
CN112082142A (en) * 2020-08-19 2020-12-15 江苏未来智慧信息科技有限公司 Boiler intelligent coordination system and method for coal-fired unit of power plant

Similar Documents

Publication Publication Date Title
JP4855518B2 (en) Pulverized coal fired boiler
US8146850B2 (en) Inferential pulverized fuel flow sensing and manipulation within a coal mill
US8515582B2 (en) Control system for operation of a fossil fuel power generating unit
JPS5836632B2 (en) Power plant pulverizer control device
CN107262261A (en) A kind of coal pulverizer air quantity control method for adapting to fired power generating unit Ultra-low load operation
JPH08338602A (en) Boiler controller
JP2014114994A (en) Device and method for temperature control of crushing plant, and computer program
CN102639937B (en) System and associated method for monitoring and controlling a power plant
JP7362253B2 (en) Solid fuel pulverizer, power plant equipped with the same, and method for controlling the solid fuel pulverizer
JP2018105592A (en) Rotational frequency controller of mill classifier and fuel ratio calculation device suitable for the same
EP3755947B1 (en) Method for operating a combustion chamber
CN209876975U (en) Load-variable air-coal matching control device for boiler of coal-fired power plant
CN101769530A (en) Automatic control method and system thereof for dual-outrigger circulating fluidized bed unit
JPH08338603A (en) Boiler controller
JPH09126436A (en) Combustion controller of dust coal combustion boiler
US4915306A (en) On-line pulverizer coordination adjustment for multiple coals
CN113154430A (en) Supercritical unit fan mill control system and method
JPH09248482A (en) Coal production control apparatus of coal pulverizer
US3467036A (en) Steam generator and coal pulverizing apparatus
JPS58205019A (en) Combustion controller for coal
CN214664549U (en) Supercritical unit fan mill control system
JP3707063B2 (en) Control method of vertical mill during main steam pressure control
JPS5816123A (en) Combustion control system for coal burning boiler
JP6702109B2 (en) Process control method in grinding plant, process control device in grinding plant, and program
CN116700182A (en) Delay calculation and wind-coal ratio optimization control method for pulverizing system based on data driving

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Effective date: 20050725

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516