JPH0897516A - Wavelength stabilized external resonator type ld light source - Google Patents

Wavelength stabilized external resonator type ld light source

Info

Publication number
JPH0897516A
JPH0897516A JP25485494A JP25485494A JPH0897516A JP H0897516 A JPH0897516 A JP H0897516A JP 25485494 A JP25485494 A JP 25485494A JP 25485494 A JP25485494 A JP 25485494A JP H0897516 A JPH0897516 A JP H0897516A
Authority
JP
Japan
Prior art keywords
temperature
light source
optical system
system base
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25485494A
Other languages
Japanese (ja)
Inventor
Minoru Maeda
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP25485494A priority Critical patent/JPH0897516A/en
Publication of JPH0897516A publication Critical patent/JPH0897516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To obtain an external resonator type LD light source, which stabilizes promptly its oscillation wavelength in an arbitrary wavelength, by a method wherein a temperature change of an optical system base table is detected and a parallel moving mechanism is driven by a piezo-element to absorb a change of a resonator length. CONSTITUTION: A temperature detection element 7B is fixed on an optical system base table 5 and detects the temperature of the base table 5 to output the detection temperature to a temperature detection signal processing circuit 9. Whereupon the circuit 9 carries out a comparison operation of a temperature detection value at the reference temperature of the base table 5 and a temperature detection value based on a temperature change to output the result of the comparison operation. A piezo- element use voltage control circuit 10 uses the output of the circuit 9 as the input and inputs a voltage in a piezo-element 8 to micromove and control a parallel moving mechanism 6 in a resonator direction. Thereby, as the position of a diffraction grating 4 is adjusted by a correction control of the element 8 at the amount of change of a resonator length to correspond to the amount, which is thermally expanded and changed by a temperature change, of the base table 5, a change of the resonator length is absorbed and the oscillation wavelength of an LD light source is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光コヒーレント通信
・光計測技術分野で使用する外部共振器型LD光源につ
いてのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external resonator type LD light source used in the field of optical coherent communication / optical measurement technology.

【0002】[0002]

【従来の技術】光コヒーレント通信・光計測技術で使用
するためには、波長可変ができ、狭スペクトル線幅かつ
波長安定度のよい単一モード発振LD光源が必要であ
る。単一モード発振LD光源の構造は、LD素子内部の
導波路に回折格子を形成したモノリシック型LD構造
と、LD素子の外部に回折格子等の反射鏡を配置した外
部共振器型LD構造の2構造に大別できる。
2. Description of the Related Art In order to use it in optical coherent communication and optical measurement technology, a single mode oscillation LD light source capable of wavelength tunability, narrow spectral line width and good wavelength stability is required. The structure of the single mode oscillation LD light source includes a monolithic LD structure in which a diffraction grating is formed in the waveguide inside the LD element and an external resonator type LD structure in which a reflecting mirror such as a diffraction grating is arranged outside the LD element. It can be roughly divided into structures.

【0003】つぎに、回折格子を使用した外部共振器型
LD光源におけるLD光源の発振波長動作を、図6を参
照して簡単に説明する。図6の1はレーザダイオード
(以下、LD光源という。)、1Aは無反射膜、2はレ
ンズ、3は光アイソレータ、4は回折格子、20はLD
駆動回路である。図6で、LD駆動回路20により駆動
されるLD光源1は例えばファブリペロ型半導体レーザ
を使用し、一方の端面に無反射膜1Aを施し、無反射膜
1Aが施された端面から出射された出射光は、レンズ2
で平行光に変換されて、回折格子4に入射する。この
時、回折格子4とLD光源1の無反射膜1Aが施されて
いない他の一方の端面とで、共振器長Lの外部共振器が
形成され、LD光源1は単一モードで発振し、他の一方
の端面から出射光を出力する。
Next, the oscillation wavelength operation of the LD light source in the external resonator type LD light source using the diffraction grating will be briefly described with reference to FIG. In FIG. 6, 1 is a laser diode (hereinafter referred to as LD light source), 1A is a non-reflective film, 2 is a lens, 3 is an optical isolator, 4 is a diffraction grating, and 20 is an LD.
It is a drive circuit. In FIG. 6, the LD light source 1 driven by the LD drive circuit 20 uses, for example, a Fabry-Perot type semiconductor laser, one end face of which is provided with a non-reflection film 1A, and the light emitted from the end face provided with the non-reflection film 1A is emitted. The incident light is the lens 2
Is converted into parallel light by and is incident on the diffraction grating 4. At this time, an external resonator having a resonator length L is formed by the diffraction grating 4 and the other end surface of the LD light source 1 where the non-reflection film 1A is not applied, and the LD light source 1 oscillates in a single mode. , The output light is output from the other end face.

【0004】LD光源1の発振波長は、下記の式に示す
関係で与えられ、回折格子4のブラッグ波長λb 近傍で
ミラー損失が小さく、かつ光共振器による位相条件のあ
った波長で発振する。 λM =2×n×L/M 位相条件(共振波長)………(1) λb =2×d×sin(θ) /m ブラッグ波長 ………(2)
The oscillation wavelength of the LD light source 1 is given by the relationship shown in the following formula, and the oscillation wavelength is such that the mirror loss is small in the vicinity of the Bragg wavelength λ b of the diffraction grating 4 and there is a phase condition due to the optical resonator. . λ M = 2 × n × L / M Phase condition (resonance wavelength) ………… (1) λ b = 2 × d × sin (θ) / m Bragg wavelength ………… (2)

【0005】なお、式1・2で、λM は外部共振器内の
共振波長、Mは外部共振器内の縦モード数(整数)、L
は外部共振器長、nは外部共振器の屈折率、λb はブラ
ッグ波長、dは回折格子の溝間隔、θは回折格子への入
射角(リトロー配置)、mは回折格子の反射光次数(通
常m=1)である。
In the equations 1 and 2, λ M is the resonance wavelength in the external resonator, M is the number of longitudinal modes (integer) in the external resonator, and L
The external cavity length, n is the refractive index of the external cavity, lambda b is the Bragg wavelength, d is the groove spacing of the diffraction grating, theta is the angle of incidence (Littrow configuration) of the diffraction grating, m is the reflected light orders of diffraction grating (Usually m = 1).

【0006】式1・式2の関係から、回折格子4を使用
した外部共振器型LD光源は、回折格子4の角度を変化
させ、回折格子4への入射角θを変化させることによ
り、LD光源1の発振波長を可変することができる。し
かし、外部共振器型LD光源の波長安定性は、式1の屈
折率nと共振器長Lの変化による共振波長の安定性で左
右され、屈折率変化と共振器長変化をいかに抑えるかに
よってLD光源の波長安定度が決まる。なお、モノリシ
ックLDのブラッグ波長λb は、回折格子4への入射角
sin(θ) の代わりに、共振器の屈折率nが代入される式
となる。
From the relationship of Equation 1 and Equation 2, the external resonator type LD light source using the diffraction grating 4 changes the angle of the diffraction grating 4 and the incident angle θ to the diffraction grating 4 to change the LD. The oscillation wavelength of the light source 1 can be changed. However, the wavelength stability of the external resonator type LD light source depends on the stability of the resonance wavelength due to the change of the refractive index n and the resonator length L of the formula 1, and depends on how to suppress the change of the refractive index and the change of the resonator length. The wavelength stability of the LD light source is determined. The Bragg wavelength λb of the monolithic LD is determined by the angle of incidence on the diffraction grating 4.
Instead of sin (θ), the refractive index n of the resonator is substituted.

【0007】LD光源の波長安定化には、光源共振器部
全体を高精度に温度制御する方法と、光源の外部に波長
基準になる光学素子(ファブリペロエタロンや吸収線セ
ル)を備え、その光学素子の基準波長に光源の波長をロ
ックする方法がある。
In order to stabilize the wavelength of the LD light source, a method of controlling the temperature of the entire light source resonator with high accuracy and an optical element (Fabry-Perot etalon or absorption line cell) serving as a wavelength reference are provided outside the light source. There is a method of locking the wavelength of the light source to the reference wavelength of the optical element.

【0008】つぎに、温度制御による外部共振器型半導
体レーザの波長安定化回路の構成を図6に示す。図6の
1はLD光源、2はレンズ、1Aは無反射膜、3は光ア
イソレータ、4は回折格子、5は光学系ベース台、7A
・7Bは温度検出素子、11は温度制御回路、12A・
12Bはペルチェ素子、20はLD駆動回路である。図
6で、LD1とレンズ2と回折格子4は外部共振器型L
D光源を構成し、光学系ベース台5上に構成されてい
る。
Next, FIG. 6 shows the configuration of a wavelength stabilization circuit for an external resonator type semiconductor laser by temperature control. 6, 1 is an LD light source, 2 is a lens, 1A is a non-reflective film, 3 is an optical isolator, 4 is a diffraction grating, 5 is an optical system base, and 7A.
7B is a temperature detecting element, 11 is a temperature control circuit, 12A
12B is a Peltier element, and 20 is an LD drive circuit. In FIG. 6, LD 1, lens 2 and diffraction grating 4 are external resonator type L
It constitutes a D light source and is configured on the optical system base 5.

【0009】図6で、温度検出素子7AはLD1の近傍
に配置され、LD1の温度変化を検出する。温度制御回
路11は温度検出素子7Aの出力を入力とし、LD1の
近傍に配置されたペルチェ素子12Aを制御して、LD
1が一定の温度になるようにする。同様に、温度検出素
子7Bは光学系ベース台5上の外部共振器側に配置さ
れ、光学系ベース台5の温度変化を検出する。温度制御
回路11は温度検出素子7Bの出力を入力とし、光学系
ベース台5に配置されたペルチェ素子12Bを制御し
て、光学系ベース台5が一定の温度になるようにする。
In FIG. 6, a temperature detecting element 7A is arranged in the vicinity of LD1 and detects a temperature change of LD1. The temperature control circuit 11 receives the output of the temperature detection element 7A as an input and controls the Peltier element 12A arranged in the vicinity of the LD1 so that the LD
1 is a constant temperature. Similarly, the temperature detecting element 7B is arranged on the optical system base table 5 on the external resonator side, and detects a temperature change of the optical system base table 5. The temperature control circuit 11 receives the output of the temperature detecting element 7B as an input and controls the Peltier element 12B arranged on the optical system base 5 to keep the optical system base 5 at a constant temperature.

【0010】以上の動作により、光源共振器部の共振器
長変化の温度依存性を抑えて波長安定化をはかる。図6
に示す回折格子4を使用した従来技術の外部共振器型L
D光源は、IEICE TRANS. COMMUN., VOL.E75-B, NO.6 JU
NE 1992 P521-523にも記載されている。
By the above operation, the temperature dependence of the cavity length change of the light source cavity is suppressed to stabilize the wavelength. Figure 6
Prior art external resonator type L using the diffraction grating 4 shown in FIG.
D light source is IEICE TRANS. COMMUN., VOL.E75-B, NO.6 JU
It is also described in NE 1992 P521-523.

【0011】つぎに、基準波長による外部共振器型半導
体レーザの波長安定化回路の構成を図7に示す。図7の
6は平行移動機構、8はピエゾ素子、10はピエゾ素子
用電圧制御回路、12Cはペルチェ素子、17はファブ
リペロエタロン、18A・18Bは光検出器、19は光
信号処理回路、22A・22Bはビームスプリッタであ
る。
Next, FIG. 7 shows the configuration of a wavelength stabilization circuit for an external cavity type semiconductor laser using a reference wavelength. 7, 6 is a parallel movement mechanism, 8 is a piezo element, 10 is a voltage control circuit for the piezo element, 12C is a Peltier element, 17 is a Fabry-Perot etalon, 18A and 18B are photodetectors, 19 is an optical signal processing circuit, 22A 22B is a beam splitter.

【0012】図6は波長を安定化するために、LD1の
温度を安定させるとともに、光学系ベース台5の熱膨張
による共振器長の変化を、温度検出素子7Bにより温度
変化を検出し、温度制御回路11によりペルチェ素子1
2Bを制御して温度変化を抑えることにより達成してい
たが、図7は、光学系ベース台5の熱膨張による共振器
長の変化をピエゾ素子8により吸収して、波長を安定化
するものである。
In FIG. 6, in order to stabilize the wavelength, the temperature of the LD 1 is stabilized, and the change in the resonator length due to the thermal expansion of the optical system base 5 is detected by the temperature detecting element 7B. Peltier device 1 by control circuit 11
This is achieved by controlling 2B to suppress the temperature change, but in FIG. 7, the change in the resonator length due to the thermal expansion of the optical system base 5 is absorbed by the piezo element 8 to stabilize the wavelength. Is.

【0013】図7で、LD1の温度制御は、図6と同様
である。回折格子4は平行移動機構6上に固定され、平
行移動機構6にはピエゾ素子8がLD1の光軸方向に固
定されている。ビームスプリッタ22Aは光アイソレー
タ3の出力光の一部を分岐する。ビームスプリッタ22
Bはビームスプリッタ22Aの出力光を分岐し、一方を
光検出器18Bに入射し、他の一方をファブリペロエタ
ロン17を介して光検出器18Aに入射する。ファブリ
ペロエタロン17は、光源の外部に備える波長基準にな
る光学素子である。
In FIG. 7, the temperature control of the LD1 is the same as in FIG. The diffraction grating 4 is fixed on the parallel moving mechanism 6, and the piezo element 8 is fixed on the parallel moving mechanism 6 in the optical axis direction of the LD 1. The beam splitter 22A splits a part of the output light of the optical isolator 3. Beam splitter 22
B splits the output light of the beam splitter 22A, one of which is incident on the photodetector 18B and the other of which is incident on the photodetector 18A via the Fabry-Perot etalon 17. The Fabry-Perot etalon 17 is an optical element provided outside the light source and serving as a wavelength reference.

【0014】光信号処理回路19はファブリペロエタロ
ン17の共振ピーク波長付近の透過光強度の急激な変化
を検出した光検出器18Aの出力PT と光検出器18B
の出力Pm を入力とし、PT /Pm が一定になるように
ピエゾ素子用電圧制御回路10を制御し、ピエゾ素子8
に電圧を印加して平行移動機構6を平行移動させ、光学
系ベース台5の熱膨張による共振器長の変化を吸収す
る。図7に示すように、光学素子の基準波長に光源の波
長をロックする構成は、昭和63年電子情報通信学会春季
全国大会 C-396等にも記載されている。
The optical signal processing circuit 19 detects the abrupt change of the transmitted light intensity near the resonance peak wavelength of the Fabry-Perot etalon 17 and the output P T of the photodetector 18A and the photodetector 18B.
Of an input the output P m, to control the piezoelectric element voltage control circuit 10 so that P T / P m is constant, the piezo element 8
A voltage is applied to the parallel moving mechanism 6 to move the parallel moving mechanism 6 in parallel, and the change in the resonator length due to the thermal expansion of the optical system base 5 is absorbed. As shown in FIG. 7, the configuration in which the wavelength of the light source is locked to the reference wavelength of the optical element is also described in 1988 IEICE Spring National Convention C-396 and the like.

【0015】[0015]

【発明が解決しようとする課題】温度制御による波長安
定化方法は、光源共振器部の共振器長変化の温度依存性
を抑えて波長安定化をはかるものであり、DFB(Distr
ibuted Freedback) −LDやDBR(Distributed Bragg
Reflector) −LD等のモノリシックLD光源であれ
ば、LD素子自体が小さいため、0.01℃以下という
高精度の温度制御ができ波長安定化が行えるが、図6の
構成では、ベース台5上の光学系全体を正確に温度制御
するのは困難であり、波長安定度が悪くなる。
The wavelength stabilization method by temperature control is intended to stabilize the wavelength by suppressing the temperature dependence of the change in the resonator length of the light source resonator section, and the DFB (Distr
ibuted Freedback) -LD and DBR (Distributed Bragg)
In the case of a monolithic LD light source such as a Reflector) -LD, since the LD element itself is small, it is possible to perform highly accurate temperature control of 0.01 ° C. or less and wavelength stabilization, but in the configuration of FIG. It is difficult to accurately control the temperature of the entire optical system, and the wavelength stability deteriorates.

【0016】また、図7の構成では、ファブリペロエタ
ロン17はLD光源と同じく温度依存性があるため、温
度検出素子7Dによる温度検出と、ファブリペロエタロ
ン17の温度を一定にするためのペルチェ素子12Cに
よる高精度の温度制御を必要とし、また、LD光源の共
振波長と同じく、ファブリペロエタロン17の共振器長
で決まる共振ピーク波長間隔を持つため、ファブリペロ
エタロン17のピーク波長以外での波長安定化は行えな
い。制御温度を変化させれば、安定化できる波長はどこ
でも可能となるが、温度が安定するまで時間がかかり、
すぐに波長安定化ができないという問題がある。
Further, in the configuration of FIG. 7, since the Fabry-Perot etalon 17 has temperature dependency like the LD light source, the temperature detection by the temperature detection element 7D and the Peltier element for keeping the temperature of the Fabry-Perot etalon 17 constant. It requires high-precision temperature control by 12C, and has a resonance peak wavelength interval determined by the cavity length of the Fabry-Perot etalon 17 as well as the resonance wavelength of the LD light source, so wavelengths other than the peak wavelength of the Fabry-Perot etalon 17 It cannot be stabilized. By changing the control temperature, it is possible to stabilize wavelengths anywhere, but it takes time until the temperature stabilizes,
There is a problem that the wavelength cannot be stabilized immediately.

【0017】この発明は、光学系ベース台5全体を高精
度に温度制御することなく、また、ファブリペロエタロ
ン17のような光学素子を使用した時のように、ファブ
リペロエタロン17の共振器長で決まる共振ピーク波長
だけの波長安定化ではなく、簡単な構成で、任意の波長
で即座に安定化を行う外部共振器型LD光源を提供する
ことを目的とする。
According to the present invention, the cavity length of the Fabry-Perot etalon 17 does not have to be controlled with high accuracy in temperature control of the entire optical system base 5, and the resonator length of the Fabry-Perot etalon 17 is the same as when an optical element such as the Fabry-Perot etalon 17 is used. It is an object of the present invention to provide an external resonator type LD light source which is not only wavelength-stabilized only by the resonance peak wavelength determined by, but has a simple configuration and instantly stabilizes at an arbitrary wavelength.

【0018】[0018]

【課題を解決するための手段】この目的を達成するた
め、この発明は、一方の端面に無反射膜1Aを施し、L
D駆動回路20により駆動するLD光源1と、LD光源
1の出射光を平行光に変換するレンズ2と、無反射膜1
Aが施された端面から出射された出射光を入射する回折
格子4とを光学系ベース台5上に備え、回折格子4とL
D光源1の無反射膜1Aが施されていない他の一方の端
面とで外部共振器を形成し、LD光源1の近傍に設ける
温度検出素子7Aで温度を検出して温度制御回路11に
よりペルチェ素子12Aを制御してLD光源1の温度変
化を抑えて他の一方の端面から出射光を出力する外部共
振器型LD光源において、光学系ベース台5に固定し、
回折格子4を共振器方向に移動する平行移動機構6と、
光学系ベース台5上に設け、光学系ベース台5の温度を
検出する温度検出素子7Bと、温度検出素子7Bの出力
を入力とする温度検出信号処理回路9と、温度検出信号
処理回路9の出力を入力とし、ピエゾ素子8の電圧を制
御するピエゾ素子用電圧制御回路10と、ピエゾ素子用
電圧制御回路10の出力を入力とし、平行移動機構6を
共振器方向に駆動するピエゾ素子8を備え、光学系ベー
ス台5の温度変化を検出し、ピエゾ素子8により平行移
動機構6を駆動して共振器長の変化を吸収し、波長を安
定化する。
In order to achieve this object, the present invention provides a non-reflective film 1A on one end surface,
An LD light source 1 driven by a D drive circuit 20, a lens 2 for converting light emitted from the LD light source 1 into parallel light, and an antireflection film 1.
A diffraction grating 4 on which the emitted light emitted from the end face provided with A enters is provided on the optical system base 5, and the diffraction grating 4 and L
An external resonator is formed with the other end face of the D light source 1 on which the antireflection film 1A is not applied, and the temperature detecting circuit 7A provided near the LD light source 1 detects the temperature and the temperature control circuit 11 causes the Peltier device to detect the temperature. In the external resonator type LD light source that controls the element 12A to suppress the temperature change of the LD light source 1 and outputs the emitted light from the other end face, it is fixed to the optical system base 5.
A parallel moving mechanism 6 for moving the diffraction grating 4 in the resonator direction,
The temperature detection element 7B which is provided on the optical system base 5 and detects the temperature of the optical system base 5, the temperature detection signal processing circuit 9 which receives the output of the temperature detection element 7B as an input, and the temperature detection signal processing circuit 9 A piezo element voltage control circuit 10 for controlling the voltage of the piezo element 8 with the output as an input, and a piezo element 8 for driving the parallel movement mechanism 6 in the resonator direction with the output of the piezo element voltage control circuit 10 as the input. The temperature change of the optical system base 5 is detected, and the parallel movement mechanism 6 is driven by the piezo element 8 to absorb the change of the resonator length and stabilize the wavelength.

【0019】また、光学系ベース台5上に設け、光学系
ベース台5の温度を検出する温度検出素子7Bと、温度
検出素子7Bの出力を入力とする温度検出信号処理回路
9と、LD光源1と回折格子4の間に配置し、LD光源
1の出射光を透過する平行平面基板13と、温度検出信
号処理回路9の出力を入力とする角度調整駆動回路15
と、平行平面基板13を備えて光学系ベース台5上に固
定し、角度調整駆動回路15の出力を入力とする角度調
整機構14を備え、光学系ベース台5の温度変化を検出
し、角度調整機構14により平行平面基板13の角度を
制御して共振器長の変化を吸収し、波長を安定化する。
Further, a temperature detecting element 7B provided on the optical system base 5 for detecting the temperature of the optical system base 5, a temperature detection signal processing circuit 9 to which the output of the temperature detecting element 7B is input, and an LD light source. 1 and the diffraction grating 4 and a plane-parallel substrate 13 that transmits the light emitted from the LD light source 1, and an angle adjustment drive circuit 15 that receives the output of the temperature detection signal processing circuit 9 as an input.
And an angle adjusting mechanism 14 that is fixed on the optical system base 5 with a parallel plane substrate 13 and receives an output of the angle adjusting drive circuit 15 as an input, detects a temperature change of the optical system base 5, and detects the angle. The adjustment mechanism 14 controls the angle of the plane-parallel substrate 13 to absorb the change in the resonator length and stabilize the wavelength.

【0020】あるいは、一方の端面に無反射膜1Aを施
し、LD駆動回路20により駆動するLD光源1と、L
D光源1の出射光を平行光に変換するレンズ2と、無反
射膜1Aが施された端面から出射された出射光を入射す
るビームスプリッタ16と、ビームスプリッタ16の反
射光を反射する反射鏡21と、ビームスプリッタ16を
透過した反射鏡21の反射光を入射する回折格子4とを
光学系ベース台5上に備え、LD光源1の近傍に設ける
第1の温度検出素子7Aで温度を検出して温度制御回路
11によりペルチェ素子12Aを制御してLD光源1の
温度変化を抑えて他の一方の端面から出射光を出力する
外部共振器型LD光源において、光学系ベース台5に固
定し、反射鏡21を共振器方向に移動する平行移動機構
6と、光学系ベース台5の温度を検出する温度検出素子
7Bと、温度検出素子7Bの出力を入力とする温度検出
信号処理回路9と、温度検出信号処理回路9の出力を入
力とし、ピエゾ素子8の電圧を制御するピエゾ素子用電
圧制御回路10と、ピエゾ素子用電圧制御回路10の出
力を入力とし、平行移動機構6を共振器方向に駆動する
ピエゾ素子8を備え、光学系ベース台5の温度変化を検
出し、ピエゾ素子8により平行移動機構6を駆動して共
振器長の変化を吸収し、波長を安定化する。
Alternatively, an LD light source 1 which is provided with an anti-reflection film 1A on one end face and is driven by an LD drive circuit 20, and L
A lens 2 for converting the emitted light of the D light source 1 into parallel light, a beam splitter 16 for entering the emitted light emitted from the end face provided with the antireflection film 1A, and a reflecting mirror for reflecting the reflected light of the beam splitter 16 21 and a diffraction grating 4 that receives the reflected light of the reflecting mirror 21 that has passed through the beam splitter 16 are provided on the optical system base 5, and the temperature is detected by the first temperature detecting element 7A provided near the LD light source 1. Then, in the external resonator type LD light source that controls the Peltier element 12A by the temperature control circuit 11 to suppress the temperature change of the LD light source 1 and outputs the emitted light from the other end face, it is fixed to the optical system base 5. A parallel movement mechanism 6 for moving the reflecting mirror 21 in the resonator direction, a temperature detection element 7B for detecting the temperature of the optical system base 5, and a temperature detection signal processing circuit 9 for receiving the output of the temperature detection element 7B as an input. The output of the temperature detection signal processing circuit 9 is input, the output of the piezoelectric element voltage control circuit 10 for controlling the voltage of the piezoelectric element 8 and the output of the piezoelectric element voltage control circuit 10 are input, and the parallel movement mechanism 6 is set in the resonator direction. The piezo element 8 which is driven to detect the temperature change of the optical system base 5 is used to drive the parallel movement mechanism 6 by the piezo element 8 to absorb the change of the resonator length and stabilize the wavelength.

【0021】さらに、光学系ベース台5上に複数の温度
検出素子を設け、光学系ベース台5の温度を複数部分で
検出し、温度検出信号処理回路9は各温度検出素子の出
力を入力とし、平均値によりピエゾ素子8を制御し、光
学系ベース台5の共振器方向に発生している温度分布を
補正する。
Further, a plurality of temperature detecting elements are provided on the optical system base 5 to detect the temperature of the optical system base 5 at a plurality of portions, and the temperature detection signal processing circuit 9 receives the output of each temperature detecting element as an input. , The piezo element 8 is controlled by the average value to correct the temperature distribution generated in the resonator direction of the optical system base 5.

【0022】[0022]

【作用】つぎに、この発明による第1の実施例の構成図
を図1に示す。図1の1はLD光源、2はレンズ、3は
光アイソレータ、4は回折格子、5は光学系ベース台、
6は平行移動機構、7A・7Bは温度検出素子、8はピ
エゾ素子、9は温度検出信号処理回路、10はピエゾ素
子用電圧制御回路、11は温度制御回路、12Aはペル
チェ素子、20はLD駆動回路である。
1 is a block diagram of the first embodiment according to the present invention. 1, 1 is an LD light source, 2 is a lens, 3 is an optical isolator, 4 is a diffraction grating, 5 is an optical system base,
6 is a parallel movement mechanism, 7A and 7B are temperature detection elements, 8 is a piezo element, 9 is a temperature detection signal processing circuit, 10 is a piezo element voltage control circuit, 11 is a temperature control circuit, 12A is a Peltier element, and 20 is an LD. It is a drive circuit.

【0023】図1で、LD光源1は一方の端面に無反射
膜1Aを施され、無反射膜1A端面側からの出射光は、
レンズ2によって平行光に変換される。レンズ2は波面
収差が小さい非球面レンズや組み合わせレンズを使用す
ることが好ましい。LD光源1とレンズ2および光アイ
ソレータ3のLD部には、サーミスタや熱電対等の温度
検出素子7Aとペルチェ素子12Aが取り付けられ、温
度制御回路11で精度良く温度制御される。また無反射
膜1A側に回折格子4が備えられ、無反射膜1Aが施さ
れていないLD1の端面とで外部共振器が形成されてい
る。回折格子4は、リニアステージや平行板バネ機構等
により構成される平行移動機構6上に設置され、ピエゾ
素子8により共振器方向に微動する。
In FIG. 1, the LD light source 1 is provided with a non-reflective film 1A on one end face thereof, and light emitted from the end face side of the non-reflective film 1A is
It is converted into parallel light by the lens 2. As the lens 2, it is preferable to use an aspherical lens or a combination lens having a small wavefront aberration. A temperature detection element 7A such as a thermistor or a thermocouple and a Peltier element 12A are attached to the LD light source 1, the lens 2, and the LD portion of the optical isolator 3, and the temperature control circuit 11 accurately controls the temperature. Further, a diffraction grating 4 is provided on the non-reflection film 1A side, and an external resonator is formed with the end face of the LD 1 on which the non-reflection film 1A is not provided. The diffraction grating 4 is installed on a parallel moving mechanism 6 composed of a linear stage, a parallel leaf spring mechanism, etc., and finely moved in the resonator direction by a piezo element 8.

【0024】温度検出素子7Bは光学系ベース台5上に
固定し、光学系ベース台の温度を検出して、検出信号は
温度検出信号処理回路9に入力する。温度検出信号処理
回路9は、光学系ベース台5の基準温度での温度検出信
号の値と、温度変化による温度検出信号の値とを比較演
算して出力する。ピエゾ素子用電圧制御回路10は温度
検出信号処理回路9の出力を入力とし、ピエゾ素子8に
電圧を入力して平行移動機構6を共振器方向に微動制御
する。
The temperature detecting element 7B is fixed on the optical system base 5 to detect the temperature of the optical system base, and the detection signal is input to the temperature detection signal processing circuit 9. The temperature detection signal processing circuit 9 compares and outputs the value of the temperature detection signal at the reference temperature of the optical system base 5 and the value of the temperature detection signal due to the temperature change. The piezoelectric element voltage control circuit 10 receives the output of the temperature detection signal processing circuit 9 as an input and inputs a voltage to the piezoelectric element 8 to finely control the parallel movement mechanism 6 in the resonator direction.

【0025】これにより、温度変化で光学系ベース台5
が熱膨張変化した分の共振器長変化量を、ピエゾ素子8
の補正制御によって回折格子4を位置調整するので、共
振器長変化は吸収され、LD光源1の発振波長は安定化
される。なお、回折格子6に図示を省略した角度調整機
構を備え、回折格子6の角度調整を行うことにより、波
長可変LD光源とすることができる。
As a result, the optical system base 5 can be changed by the temperature change.
The amount of change in resonator length corresponding to the change in thermal expansion of
Since the position of the diffraction grating 4 is adjusted by the correction control of 1, the change in the resonator length is absorbed and the oscillation wavelength of the LD light source 1 is stabilized. The diffraction grating 6 is provided with an angle adjusting mechanism (not shown), and the wavelength of the tunable LD light source can be obtained by adjusting the angle of the diffraction grating 6.

【0026】つぎに、この発明の他の実施例の構成を図
2に示す。図2は、図1のピエゾ素子8とピエゾ素子用
電圧制御回路10のかわりに、回折格子4とレンズ2と
の間の共振器上に両面無反射膜が施された平行平面基板
13を角度を持って挿入したものである。平行平面基板
13は角度調整機構14により角度が調整される構成と
している。図2で、光学系ベース台5には温度検出素子
7Bが備えられ、温度検出素子7Bの信号は温度検出信
号処理回路9で処理され、角度調整駆動回路15で角度
調整機構14を駆動する。角度調整機構14は角度調整
駆動回路15からの制御信号で平行平面基板13の角度
を調整する。
Next, the configuration of another embodiment of the present invention is shown in FIG. In FIG. 2, instead of the piezo element 8 and the piezo element voltage control circuit 10 of FIG. 1, a parallel plane substrate 13 provided with a double-sided anti-reflection film on the resonator between the diffraction grating 4 and the lens 2 is angled. It was inserted with. The angle of the parallel plane substrate 13 is adjusted by the angle adjusting mechanism 14. In FIG. 2, a temperature detection element 7B is provided on the optical system base 5, a signal of the temperature detection element 7B is processed by the temperature detection signal processing circuit 9, and an angle adjustment drive circuit 15 drives the angle adjustment mechanism 14. The angle adjusting mechanism 14 adjusts the angle of the plane-parallel substrate 13 by a control signal from the angle adjusting drive circuit 15.

【0027】平行平面基板13は、例えばガラス板のよ
うな光を透過するものであり、厚さをL1 、屈折率をn
とすると、平行平面基板13を透過する光学的距離L=
nL1 となるので、平行平面基板13を傾けることによ
り、光が透過する物理的距離を変化させ、温度変化で光
学系ベース台5が熱膨張変化した分の共振器長変化量
を、平行平面基板13の角度変化により補正し、LD光
源1の発振波長の安定化を行う。
The plane-parallel substrate 13 is a glass plate that transmits light, and has a thickness of L 1 and a refractive index of n.
Then, the optical distance L = transmitted through the plane-parallel substrate 13 =
nL 1 , the parallel plane substrate 13 is tilted to change the physical distance through which light is transmitted, and the resonator length change amount corresponding to the thermal expansion change of the optical system base 5 due to the temperature change is calculated. The oscillation wavelength of the LD light source 1 is stabilized by making a correction by changing the angle of the substrate 13.

【0028】つぎに、この発明による他の実施例の構成
を図3に示す。図3は、回折格子4とビームスプリッタ
16と反射鏡21とで外部共振反射器を形成し、無反射
膜1A側の外部鏡として配置している。無反射膜1A側
からの平行光は、ビームスプリッタ21で外部共振反射
器で共振され、再度ビームスプリッタでLD光源1に帰
還し、LD光源1のスペクトル線幅を狭線幅化する。
Next, the configuration of another embodiment according to the present invention is shown in FIG. In FIG. 3, an external resonance reflector is formed by the diffraction grating 4, the beam splitter 16, and the reflecting mirror 21, and is arranged as an external mirror on the non-reflection film 1A side. The parallel light from the non-reflective film 1A side is resonated by the external resonance reflector by the beam splitter 21, and is returned to the LD light source 1 by the beam splitter again to narrow the spectral line width of the LD light source 1.

【0029】反射鏡21は平行移動機構6上に配置さ
れ、共振器方向にピエゾ素子8で微動できるようになっ
おり、温度検出素子7Bで光学系ベース台5の温度を検
出し、温度検出信号処理回路9とピエゾ素子用電圧制御
回路10を介してピエゾ素子を制御し、平行移動機構6
を共振器方向に微動制御する。そのため、温度変化によ
り光学系ベース台5が熱膨張変化した分の共振器長変化
量を、ピエゾ素子8を制御して反射鏡21の位置を調整
することにより、LD光源1の発振波長を安定化し、狭
スペクトル線幅を得る。
The reflecting mirror 21 is arranged on the parallel moving mechanism 6 so that it can be finely moved in the resonator direction by the piezo element 8. The temperature detecting element 7B detects the temperature of the optical system base 5 to detect the temperature detection signal. The piezo element is controlled through the processing circuit 9 and the piezo element voltage control circuit 10, and the parallel movement mechanism 6
Is finely controlled in the resonator direction. Therefore, the oscillation wavelength of the LD light source 1 is stabilized by controlling the piezo element 8 and adjusting the position of the reflecting mirror 21 by the amount of change in the resonator length corresponding to the thermal expansion change of the optical system base 5 due to the temperature change. To obtain a narrow spectral linewidth.

【0030】図4は、図1の構成において光学系ベース
台5に複数の温度検出素子を設けた例を示したもので、
光学系ベース台5に温度分布があり、均一に温度変化し
ない場合に有効である。図4では、光学系ベース台5の
回折格子4の近傍に温度検出素子7Cを設けて測定点1
とし、LD光源1の近傍に温度検出素子7Bを設けて測
定点2として温度検出している。
FIG. 4 shows an example in which a plurality of temperature detecting elements are provided on the optical system base 5 in the configuration of FIG.
This is effective when the optical system base 5 has a temperature distribution and the temperature does not change uniformly. In FIG. 4, a temperature detecting element 7C is provided in the vicinity of the diffraction grating 4 of the optical system base 5 to measure the measurement point 1
The temperature detection element 7B is provided near the LD light source 1 to detect the temperature as the measurement point 2.

【0031】図5は図4の構成により得られる測定点ご
との温度特性図である。図5で、各測定点の特性を温度
検出信号処理回路9の処理で平均値を求め、平均値での
温度変化による共振器長変化として共振器長補正を行っ
ている。
FIG. 5 is a temperature characteristic diagram for each measurement point obtained by the configuration of FIG. In FIG. 5, the characteristic of each measurement point is averaged by the processing of the temperature detection signal processing circuit 9, and the resonator length is corrected as a change in the resonator length due to the temperature change at the average value.

【0032】[0032]

【実施例】つぎに、この発明による具体的な実施例を図
1を参照して説明する。図1で、光学系ベース台5に線
膨張係数α=約1.2×10-5/℃の鉄系材を使用し、発振
波長1550nm付近、外部共振器長30mmの場合と
すると、温度1℃当たりの共振器長変化量ΔLと波長変
化量Δλは、ΔL=360nm、Δλ=18.6pm
(光周波数ではΔf=2.32GHz)となる。また、光学系ベ
ース台5の温度変化を0.1℃に制御できた場合では、
ΔL=36nm、Δλ=1.86pm(Δf=232MHz)が
得られる。さらに、光学系ベース台5に線膨張係数のよ
り小さいインバー材(α=約0.2×10ー5/℃)を使用し
て、0.1℃の温度制御ができた場合は、ΔL=6n
m、Δλ=0.31pm(Δf=38.7MHz)となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a specific embodiment according to the present invention will be described with reference to FIG. In Fig. 1, if an iron-based material with a linear expansion coefficient α of about 1.2 × 10 -5 / ° C is used for the optical system base 5 and the oscillation wavelength is around 1550 nm and the external cavity length is 30 mm, the temperature is 1 ° C. The cavity length variation ΔL and the wavelength variation Δλ are ΔL = 360 nm, Δλ = 18.6 pm
(At optical frequency, Δf = 2.32GHz). If the temperature change of the optical system base 5 can be controlled to 0.1 ° C.,
ΔL = 36 nm and Δλ = 1.86 pm (Δf = 232 MHz) are obtained. Furthermore, if the optical system base 5 uses an Invar material having a smaller linear expansion coefficient (α = about 0.2 × 10 −5 / ° C.) and the temperature can be controlled at 0.1 ° C., ΔL = 6n
m, Δλ = 0.31 pm (Δf = 38.7 MHz).

【0033】光学系ベース台5の温度変化を検出する温
度検出素子7Bは、0.01℃以下の測定温度分解能を
持ち、また平行移動機構6を微動するピエゾ素子8は、
5μm〜百数十μmの変位量とnm単位の位置決め分解
能を持つので、LD光源1の共振器変化量はnm単位で
補正が可能であり、波長変化量としてΔλ<0.1pm
が得られる。
The temperature detecting element 7B for detecting the temperature change of the optical system base 5 has a measurement temperature resolution of 0.01 ° C. or less, and the piezo element 8 for finely moving the parallel moving mechanism 6 is
Since it has a displacement amount of 5 μm to hundreds of tens of μm and a positioning resolution of nm unit, the resonator change amount of the LD light source 1 can be corrected in nm unit, and the wavelength change amount is Δλ <0.1 pm.
Is obtained.

【0034】[0034]

【発明の効果】この発明によれば、外部共振器が構成さ
れている光学系ベース台の温度変化による熱膨張分の共
振器長変化を、高精度の温度制御回路を使用せずに補正
するので、光学系ベース台全体を精度良く温度制御する
必要がなく、LD光源の発振波長の安定化する構成を簡
単にすることができる。また、波長可変できるLD光源
の場合でも、外部共振器が構成されている光学系ベース
台の温度変化による熱膨張分の共振器長変化を、波長基
準になる光学素子使用せずに補正するので、共振ピーク
波長のみでの波長安定化ではなく、可変できる波長帯の
任意の波長で即座に波長を安定化することができる。
According to the present invention, the resonator length change due to the thermal expansion due to the temperature change of the optical system base on which the external resonator is constructed is corrected without using a highly accurate temperature control circuit. Therefore, it is not necessary to control the temperature of the entire optical system base with high accuracy, and the structure for stabilizing the oscillation wavelength of the LD light source can be simplified. Even in the case of a tunable LD light source, the resonator length change due to the thermal expansion due to the temperature change of the optical system base table in which the external resonator is configured is corrected without using the wavelength reference optical element. The wavelength can be stabilized immediately not only by the resonance peak wavelength but also by an arbitrary wavelength in the variable wavelength band.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】この発明の第2の実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】この発明の他の実施例の構成図である。FIG. 3 is a configuration diagram of another embodiment of the present invention.

【図4】図1の複数の温度検出素子を設けた例を示す図
である。
FIG. 4 is a diagram showing an example in which a plurality of temperature detection elements of FIG. 1 are provided.

【図5】図4の構成により得られる測定点ごとの温度特
性図である。
5 is a temperature characteristic diagram for each measurement point obtained by the configuration of FIG.

【図6】回折格子を使用した外部共振器型LD光源にお
けるLD光源の発振波長動作の説明図である。
FIG. 6 is an explanatory diagram of an oscillation wavelength operation of an LD light source in an external resonator type LD light source using a diffraction grating.

【図7】基準波長による波長安定化外部共振器型LD光
源の構成図である。
FIG. 7 is a configuration diagram of a wavelength-stabilized external resonator type LD light source using a reference wavelength.

【符号の説明】[Explanation of symbols]

1 LD光源 1A 無反射膜 2 レンズ 3 光アイソレータ 4 回折格子 5 光学系ベース台 6 平行移動機構 7A〜7C 温度検出素子 8 ピエゾ素子 9 温度検出信号処理回路 10 ピエゾ素子用電圧制御回路 11 温度制御回路 12 ペルチェ素子 13 平行平面基板 14 角度調整機構 15 角度調整駆動回路 16 ビームスプリッタ 17 ファブリペロエタロン 18A・18B 光検出器 19 光信号処理回路 20 LD駆動回路 21 反射鏡 22A・22B ビームスプリッタ DESCRIPTION OF SYMBOLS 1 LD light source 1A Non-reflective film 2 Lens 3 Optical isolator 4 Diffraction grating 5 Optical system base 6 Translation mechanism 7A-7C Temperature detection element 8 Piezo element 9 Temperature detection signal processing circuit 10 Piezo element voltage control circuit 11 Temperature control circuit 12 Peltier element 13 Parallel plane substrate 14 Angle adjustment mechanism 15 Angle adjustment drive circuit 16 Beam splitter 17 Fabry-Perot etalon 18A ・ 18B Photodetector 19 Optical signal processing circuit 20 LD drive circuit 21 Reflector 22A ・ 22B Beam splitter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一方の端面に無反射膜(1A)を施し、LD
駆動回路(20)により駆動するLD光源(1) と、LD光源
(1) の出射光を平行光に変換するレンズ(2)と、無反射
膜(1A)が施された端面から出射された出射光を入射する
回折格子(4)とを光学系ベース台(5) 上に備え、回折格
子(4) とLD光源(1) の無反射膜(1A)が施されていない
他の一方の端面とで外部共振器を形成し、LD光源(1)
の近傍に設ける第1の温度検出素子(7A)で温度を検出し
て温度制御回路(11)によりペルチェ素子(12A) を制御し
てLD光源(1) の温度変化を抑えて他の一方の端面から
出射光を出力する外部共振器型LD光源において、 光学系ベース台(5) に固定し、回折格子(4) を共振器方
向に移動する平行移動機構(6) と、 光学系ベース台(5) 上に設け、光学系ベース台(5) の温
度を検出する第2の温度検出素子(7B)と、 第2の温度検出素子(7B)の出力を入力とする温度検出信
号処理回路(9) と、 温度検出信号処理回路(9) の出力を入力とし、ピエゾ素
子(8) の電圧を制御するピエゾ素子用電圧制御回路(10)
と、 ピエゾ素子用電圧制御回路(10)の出力を入力とし、平行
移動機構(6) を共振器方向に駆動するピエゾ素子(8) を
備え、 光学系ベース台(5) の温度変化を検出し、ピエゾ素子
(8) により平行移動機構(6) を駆動して共振器長の変化
を吸収し、波長を安定化することを特徴とする波長安定
化外部共振器型LD光源。
1. A non-reflective film (1A) is applied to one end surface of the LD.
LD light source (1) driven by drive circuit (20) and LD light source
A lens (2) for converting the emitted light of (1) into parallel light and a diffraction grating (4) for entering the emitted light emitted from the end face provided with the antireflection film (1A) are provided on an optical system base ( 5) An external resonator is formed by the diffraction grating (4) and the other end face of the LD light source (1) on which the non-reflective film (1A) is not provided, and the LD light source (1) is provided.
The temperature control circuit (11) controls the Peltier element (12A) to detect the temperature with the first temperature detection element (7A) provided near the In the external resonator type LD light source that outputs the emitted light from the end face, the parallel movement mechanism (6) that moves the diffraction grating (4) toward the resonator is fixed to the optical system base stand (5), and the optical system base stand. (5) A second temperature detecting element (7B) provided on the optical system base (5) for detecting the temperature, and a temperature detection signal processing circuit to which the output of the second temperature detecting element (7B) is input Piezo element voltage control circuit (10) that controls the voltage of the piezo element (8) by using (9) and the output of the temperature detection signal processing circuit (9) as input
And the piezo element (8) that drives the parallel movement mechanism (6) toward the resonator by using the output of the piezo element voltage control circuit (10) as input, and detects the temperature change of the optical system base (5). Piezo element
(8) A wavelength stabilizing external resonator type LD light source, characterized in that the parallel moving mechanism (6) is driven by (8) to absorb a change in resonator length and stabilize the wavelength.
【請求項2】 一方の端面に無反射膜(1A)を施し、LD
駆動回路(20)により駆動するLD光源(1) と、LD光源
(1) の出射光を平行光に変換するレンズ(2)と、無反射
膜(1A)が施された端面から出射された出射光を入射する
回折格子(4)とを光学系ベース台(5) 上に備え、回折格
子(4) とLD光源(1) の無反射膜(1A)が施されていない
他の一方の端面とで外部共振器を形成し、LD光源(1)
の近傍に設ける第1の温度検出素子(7A)で温度を検出し
て温度制御回路(11)によりペルチェ素子(12A) を制御し
てLD光源(1) の温度変化を抑えて他の一方の端面から
出射光を出力する外部共振器型LD光源において、 光学系ベース台(5) 上に設け、光学系ベース台(5) の温
度を検出する第2の温度検出素子(7B)と、 第2の温度検出素子(7B)の出力を入力とする温度検出信
号処理回路(9) と、 LD光源(1) と回折格子(4) の間に配置し、LD光源
(1) の出射光を透過する平行平面基板(13)と、 温度検出信号処理回路(9) の出力を入力とする角度調整
駆動回路(15)と、 平行平面基板(13)を備えて光学系ベース台(5) 上に固定
し、角度調整駆動回路(15)の出力を入力とする角度調整
機構(14)を備え、 光学系ベース台(5) の温度変化を検出し、角度調整機構
(14)により平行平面基板(13)の角度を制御して共振器長
の変化を吸収し、波長を安定化することを特徴とする波
長安定化外部共振器型LD光源。
2. A non-reflective film (1A) is applied to one end surface of the LD
LD light source (1) driven by drive circuit (20) and LD light source
A lens (2) for converting the emitted light of (1) into parallel light and a diffraction grating (4) for entering the emitted light emitted from the end face provided with the antireflection film (1A) are provided on an optical system base ( 5) An external resonator is formed by the diffraction grating (4) and the other end face of the LD light source (1) on which the non-reflective film (1A) is not provided, and the LD light source (1) is provided.
The temperature control circuit (11) controls the Peltier element (12A) to detect the temperature with the first temperature detection element (7A) provided near the In the external resonator type LD light source which outputs the emitted light from the end face, the second temperature detecting element (7B) provided on the optical system base table (5) for detecting the temperature of the optical system base table (5), It is arranged between the LD light source (1) and the diffraction grating (4) and the temperature detection signal processing circuit (9) that receives the output of the temperature detection element (7B) of No. 2 as the input.
It is equipped with a parallel plane substrate (13) that transmits the emitted light of (1), an angle adjustment drive circuit (15) that receives the output of the temperature detection signal processing circuit (9), and a parallel plane substrate (13). It is fixed on the system base base (5) and equipped with an angle adjustment mechanism (14) that receives the output of the angle adjustment drive circuit (15) as an input. It detects the temperature change of the optical system base base (5) and detects the angle adjustment mechanism.
A wavelength-stabilized external resonator type LD light source, characterized in that the angle of the plane-parallel substrate (13) is controlled by (14) to absorb changes in the resonator length and stabilize the wavelength.
【請求項3】 一方の端面に無反射膜(1A)を施し、LD
駆動回路(20)により駆動するLD光源(1) と、LD光源
(1) の出射光を平行光に変換するレンズ(2)と、無反射
膜(1A)が施された端面から出射された出射光を入射する
ビームスプリッタ(16)と、ビームスプリッタ(16)の反射
光を反射する反射鏡(21)と、ビームスプリッタ(16)を透
過した反射鏡(21)の反射光を入射する回折格子(4) とを
光学系ベース台(5) 上に備え、LD光源(1) の近傍に設
ける第1の温度検出素子(7A)で温度を検出して温度制御
回路(11)によりペルチェ素子(12A) を制御してLD光源
(1) の温度変化を抑えて他の一方の端面から出射光を出
力する外部共振器型LD光源において、 光学系ベース台(5) に固定し、反射鏡(21)を共振器方向
に移動する平行移動機構(6) と、 光学系ベース台(5) の温度を検出する第2の温度検出素
子(7B)と、 第2の温度検出素子(7B)の出力を入力とする温度検出信
号処理回路(9) と、 温度検出信号処理回路(9) の出力を入力とし、ピエゾ素
子(8) の電圧を制御するピエゾ素子用電圧制御回路(10)
と、 ピエゾ素子用電圧制御回路(10)の出力を入力とし、平行
移動機構(6) を共振器方向に駆動するピエゾ素子(8) を
備え、 光学系ベース台(5) の温度変化を検出し、ピエゾ素子
(8) により平行移動機構(6) を駆動して共振器長の変化
を吸収し、波長を安定化することを特徴とする波長安定
化外部共振器型LD光源。
3. A non-reflective film (1A) is applied to one end surface of the LD
LD light source (1) driven by drive circuit (20) and LD light source
A lens (2) for converting the emitted light of (1) into parallel light, a beam splitter (16) for entering the emitted light emitted from the end face provided with the antireflection film (1A), and a beam splitter (16) A reflecting mirror (21) for reflecting the reflected light of and a diffraction grating (4) for entering the reflected light of the reflecting mirror (21) that has passed through the beam splitter (16) are provided on the optical system base (5), An LD light source in which a Peltier element (12A) is controlled by a temperature control circuit (11) by detecting temperature with a first temperature detection element (7A) provided in the vicinity of the LD light source (1)
In the external resonator type LD light source that suppresses the temperature change of (1) and outputs the emitted light from the other end face, fix it to the optical system base (5) and move the reflecting mirror (21) toward the resonator. The parallel movement mechanism (6), the second temperature detection element (7B) that detects the temperature of the optical system base (5), and the temperature detection signal that receives the output of the second temperature detection element (7B) Piezo element voltage control circuit (10) that receives the output of the processing circuit (9) and the temperature detection signal processing circuit (9) and controls the voltage of the piezo element (8).
And a piezo element (8) that drives the parallel movement mechanism (6) toward the resonator by using the output of the piezo element voltage control circuit (10) as input, and detects the temperature change of the optical system base (5). Piezo element
(8) A wavelength stabilizing external resonator type LD light source, characterized in that the parallel moving mechanism (6) is driven by (8) to absorb a change in resonator length and stabilize the wavelength.
【請求項4】 光学系ベース台(5) 上に複数の温度検出
素子を設け、光学系ベース台(5) の温度を複数部分で検
出し、温度検出信号処理回路(9) は各温度検出素子の出
力を入力とし、平均値によりピエゾ素子(8) を制御し、
光学系ベース台(5) の共振器方向に発生している温度分
布を補正する請求項1〜3に記載の波長安定化外部共振
器型LD光源。
4. A plurality of temperature detecting elements are provided on the optical system base (5) to detect the temperature of the optical system base (5) at a plurality of parts, and the temperature detection signal processing circuit (9) detects each temperature. Input the output of the element, control the piezo element (8) by the average value,
The wavelength stabilized external resonator type LD light source according to claim 1, wherein the temperature distribution generated in the resonator direction of the optical system base (5) is corrected.
JP25485494A 1994-09-22 1994-09-22 Wavelength stabilized external resonator type ld light source Pending JPH0897516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25485494A JPH0897516A (en) 1994-09-22 1994-09-22 Wavelength stabilized external resonator type ld light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25485494A JPH0897516A (en) 1994-09-22 1994-09-22 Wavelength stabilized external resonator type ld light source

Publications (1)

Publication Number Publication Date
JPH0897516A true JPH0897516A (en) 1996-04-12

Family

ID=17270774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25485494A Pending JPH0897516A (en) 1994-09-22 1994-09-22 Wavelength stabilized external resonator type ld light source

Country Status (1)

Country Link
JP (1) JPH0897516A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174368A (en) * 1998-12-04 2000-06-23 Photonetics Sa Multiple wavelength laser source
JP2000353856A (en) * 1999-06-11 2000-12-19 Nec Corp Semiconductor laser module
US6252897B1 (en) 1997-12-18 2001-06-26 Nec Corporation External mirror type wavelength tunable laser
EP1158631A2 (en) * 2000-05-16 2001-11-28 The Furukawa Electric Co., Ltd. Semiconductor laser apparatus
EP1231684A1 (en) * 2001-09-07 2002-08-14 Agilent Technologies, Inc. (a Delaware corporation) Tuning a laser
JP2005136202A (en) * 2003-10-30 2005-05-26 Fujitsu Ltd Variable wavelength laser and its control method
JP2006216860A (en) * 2005-02-04 2006-08-17 Eudyna Devices Inc Laser module, controlling apparatus and controlling method therefor, control data thereof, and light communication equipment
JP2008504701A (en) * 2004-06-30 2008-02-14 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Thermally tunable external cavity laser
WO2016152404A1 (en) * 2015-03-25 2016-09-29 株式会社アマダホールディングス Semiconductor laser oscillator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252897B1 (en) 1997-12-18 2001-06-26 Nec Corporation External mirror type wavelength tunable laser
JP2000174368A (en) * 1998-12-04 2000-06-23 Photonetics Sa Multiple wavelength laser source
JP4521793B2 (en) * 1998-12-04 2010-08-11 イェニスタ オプティクス Multiple wavelength laser source
JP2000353856A (en) * 1999-06-11 2000-12-19 Nec Corp Semiconductor laser module
EP1158631A2 (en) * 2000-05-16 2001-11-28 The Furukawa Electric Co., Ltd. Semiconductor laser apparatus
EP1158631A3 (en) * 2000-05-16 2003-01-08 The Furukawa Electric Co., Ltd. Semiconductor laser apparatus
US6763044B2 (en) 2001-09-07 2004-07-13 Agilent Technologies, Inc. Tuning a laser
EP1231684A1 (en) * 2001-09-07 2002-08-14 Agilent Technologies, Inc. (a Delaware corporation) Tuning a laser
JP2005136202A (en) * 2003-10-30 2005-05-26 Fujitsu Ltd Variable wavelength laser and its control method
JP2008504701A (en) * 2004-06-30 2008-02-14 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Thermally tunable external cavity laser
JP2006216860A (en) * 2005-02-04 2006-08-17 Eudyna Devices Inc Laser module, controlling apparatus and controlling method therefor, control data thereof, and light communication equipment
WO2016152404A1 (en) * 2015-03-25 2016-09-29 株式会社アマダホールディングス Semiconductor laser oscillator
CN107431330A (en) * 2015-03-25 2017-12-01 株式会社天田控股集团 Semiconductor laser oscillator
US10283934B2 (en) 2015-03-25 2019-05-07 Amada Holdings Co., Ltd. Semiconductor laser oscillator

Similar Documents

Publication Publication Date Title
US6804278B2 (en) Evaluation and adjustment of laser losses according to voltage across gain medium
JP4992073B2 (en) Phase control of an external cavity tunable laser.
US4998256A (en) Semiconductor laser apparatus
US6611546B1 (en) Optical transmitter comprising a stepwise tunable laser
JP2546388B2 (en) Oscillation frequency stabilizing device for semiconductor laser device
US20050078717A1 (en) Laser apparatus with active thermal tuning of external cavity
US20040165641A1 (en) Optical transmitter comprising a stepwise tunable laser
US6594022B1 (en) Wavelength reference device
CN111786255B (en) Frequency-stabilizing and light-stabilizing intensity double-piezoelectric ceramic tuning external cavity semiconductor laser
JP2001284711A (en) Optical transmission device and optical system using it
JP3218999B2 (en) External cavity type tunable semiconductor laser light source
US20100150184A1 (en) Alignment and Wavelength Selection In External Cavity Lasers
US5668826A (en) Electro-optical device comprising a controlled laser diode
US20070127539A1 (en) Narrow band laser with wavelength stability
JPH0897516A (en) Wavelength stabilized external resonator type ld light source
US20050276303A1 (en) External Cavity Laser
US8831054B2 (en) Wavelength locking of a laser device
CN212517883U (en) Frequency-stabilizing and light-intensity-stabilizing double piezoelectric ceramic tuning external cavity semiconductor laser
GB2570440A (en) Optical source and method of assembling an optical source
EP1364432A2 (en) Optical transmitter comprising a stepwise tunable laser
JPH09260792A (en) External resonator-type wavelength-variable ld light source
Omori et al. Tunable light source with GaN-based violet laser diode
JP2835068B2 (en) Semiconductor laser module
JP2004253782A (en) External resonator type laser module
JP2000353854A (en) External-resonator type variable-wavelength light source