JPH08279406A - R-tm-b permanent magnet and manufacture thereof - Google Patents

R-tm-b permanent magnet and manufacture thereof

Info

Publication number
JPH08279406A
JPH08279406A JP7080968A JP8096895A JPH08279406A JP H08279406 A JPH08279406 A JP H08279406A JP 7080968 A JP7080968 A JP 7080968A JP 8096895 A JP8096895 A JP 8096895A JP H08279406 A JPH08279406 A JP H08279406A
Authority
JP
Japan
Prior art keywords
permanent magnet
heat treatment
less
grain size
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080968A
Other languages
Japanese (ja)
Inventor
Mikio Shindo
幹夫 新藤
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7080968A priority Critical patent/JPH08279406A/en
Publication of JPH08279406A publication Critical patent/JPH08279406A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To provide a practical T-TM-B permanent magnet having high (BH)max and iHc of 13kOe or more. CONSTITUTION: An R-TM-B permanent magnet contains 12.0 to 16.0at% of R (where R is one or more types of range of rare earth elements including Y), 5.5 to 8.0at% of B, and the residue TM (where TM is that Fe or the part of the Fe is replaced by less than 20at% of Co), and has R2TM14B phase as a main phase, the mean crystalline grain size of the main phase is 3 to 8μm and its standard deviation is 2.5μm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼結型のR−TM−B
系永久磁石およびその製造方法に関し、(BH)max、
Br、iHcが高く優れた磁気特性を有する永久磁石お
よびそ製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a sintered type R-TM-B.
System permanent magnet and its manufacturing method, (BH) max,
The present invention relates to a permanent magnet having high Br and iHc and excellent magnetic properties, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】R−TM−B系永久磁石の粉末冶金法に
よる製造工程は、溶解、粉砕、磁場中成形、焼結、熱処
理等の順で行われる。出発原料は、主相であるR2Fe1
4B(Rは希土類元素)よりRとBの多い組成を有する
インゴットが用いられる。インゴットの粉砕は、ボール
ミル、ジェットミル等が用いられ、磁場中成形は金型を
用いて原料粉末を磁場で配向させながら圧縮させて行わ
れる。焼結は、1000〜1150℃の温度範囲で真空
中あるいは不活性ガス中で行われ、更に適当な温度で熱
処理するのが一般的である。
2. Description of the Related Art A manufacturing process of an R-TM-B type permanent magnet by a powder metallurgy method is carried out in the order of melting, pulverizing, forming in a magnetic field, sintering, heat treatment and the like. The starting material is R2Fe1 which is the main phase
An ingot having a composition in which R and B are larger than 4B (R is a rare earth element) is used. A ball mill, a jet mill, or the like is used for crushing the ingot, and molding in a magnetic field is performed by using a mold to compress the raw material powder while orienting it in the magnetic field. Sintering is performed in a temperature range of 1000 to 1150 ° C. in vacuum or in an inert gas, and heat treatment is generally performed at an appropriate temperature.

【0003】このR−TM−B系永久磁石の(BH)m
axとBrを向上させるには、組成を主相であるR2F
e14Bにできるだけ近づけて主相の体積比を増加させる
ことが必要である。主相の体積比を増加させるために
は、iHcの発現に寄与するNdリッチ相およびBリッ
チ相を最低限必要な量は確保しつつ、Rリッチ相、Bリ
ッチ相、酸化物相を最少量に抑える必要がある。このう
ちRリッチ相は酸素に対して大変活性であるので、焼結
までの過程で混入した酸素量に比例して、Ndリッチ相
が酸化物相に変化する。従って、R量を非常に低減した
組成では、酸素の混入を最小限に抑える必要がある。
(BH) m of this R-TM-B system permanent magnet
In order to improve ax and Br, the composition is the main phase R2F
It is necessary to increase the volume ratio of the main phase as close as possible to e14B. In order to increase the volume ratio of the main phase, the minimum necessary amount of Nd-rich phase and B-rich phase that contribute to the expression of iHc is secured, while the minimum amount of R-rich phase, B-rich phase, and oxide phase is minimized. Need to be kept to. Of these, the R-rich phase is very active with respect to oxygen, so that the Nd-rich phase changes to an oxide phase in proportion to the amount of oxygen mixed in during the process of sintering. Therefore, in a composition in which the amount of R is extremely reduced, it is necessary to minimize the inclusion of oxygen.

【0004】(BH)maxとBrを増加させる別の手法
としては、配向性を向上させることが挙げられる。配向
性の向上には、成形時の印加磁場(成形磁場)を強くす
る方法や、原料微粉の磁気凝集を解く方法が知られてい
る。一方、iHcは組成、焼結体の結晶粒径分布、熱処
理の三つの要因に大きく左右される。iHcを向上させ
る方法として、NdをDyなどの磁気異方性の大きい元
素で置換したり、添加元素を加える方法がよく用いられ
る。iHcを向上させる別の方法として焼結体の結晶粒
径を細かく且つ均一にする方法がある。Nd−Fe−B
焼結磁石は、焼結体の結晶粒径がNd2Fe14Bの単磁
区粒子径(約0.3μm)に近いほどiHcが向上す
る。更に焼結体を適当な条件下で熱処理する方法があ
る。熱処理パターンは、温度を一から二段階にするのが
一般的である。
Another method for increasing (BH) max and Br is to improve the orientation. In order to improve the orientation, a method of strengthening an applied magnetic field (molding magnetic field) at the time of molding and a method of releasing magnetic agglomeration of raw material fine powder are known. On the other hand, iHc is greatly influenced by the composition, the crystal grain size distribution of the sintered body, and three factors of heat treatment. As a method for improving iHc, a method of substituting Nd with an element having large magnetic anisotropy such as Dy or adding an additional element is often used. Another method for improving iHc is to make the crystal grain size of the sintered body fine and uniform. Nd-Fe-B
The iHc of the sintered magnet is improved as the crystal grain size of the sintered body is closer to the single domain particle size of Nd2Fe14B (about 0.3 μm). Further, there is a method of heat-treating the sintered body under appropriate conditions. The heat treatment pattern generally has a temperature in one or two stages.

【0005】[0005]

【発明が解決しようとする課題】(BH)maxを高め
たR−TM−B系永久磁石に関する提案としては、特公
平5−61345号、特開昭63−93841号、特開
昭63−197305号、特開平6−13219号など
がある。しかしながら、いずれの場合もiHcは高々1
0kOe程度であり、iHcが低く実用的ではない。i
Hcが低いと熱減磁が大きくなり、熱を帯びる機器に使
用すると磁力が低下するので、工業上用いるためには
(BH)maxが高く、iHc13kOe以上を有する
ものが求められている。したがって、本発明は高(B
H)maxを有し、かつ13kOe以上のiHcを有する
実用的なR−TM−B系永久磁石およびその製造方法を
提供することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Proposals for an R-TM-B system permanent magnet having an increased (BH) max are disclosed in JP-B-5-61345, JP-A-63-93841, and JP-A-63-197305. And JP-A-6-13219. However, iHc is at most 1 in both cases.
It is about 0 kOe, iHc is low and not practical. i
When Hc is low, thermal demagnetization is large, and when used in a device that is heated, the magnetic force is reduced. Therefore, for industrial use, (BH) max is high, and iHc of 13 kOe or more is required. Therefore, the present invention has a high (B
It is an object of the present invention to provide a practical R-TM-B based permanent magnet having H) max and an iHc of 13 kOe or more, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意検討の結果、R2TM14B相の平均
結晶粒径を3〜8μmかつその標準偏差を2.5μm以下
と制御することにより、高(BH)maxでかつ高iHc
のR−TM−B系永久磁石が得られることを見いだし
た。すなわち、本発明は、12.0〜16.0at%の
R(RはYを含む希土類元素の1種または2種以上)、
5.5〜8.0at%のB、残部TM(TMはFeまた
はFeの一部を20at%未満のCoで置換したもの)
からなり、R2TM14B相を主相とするR−TM−B系
永久磁石であって、主相の平均結晶粒径が3〜8μmで
その標準偏差が2.5μm以下であるR−TM−B系永
久磁石である。また、本発明R−TM−B系永久磁石
は、4at%以下のM(MはNb、Al、Ga、Zn、
Cuの少なくとも一種)を添加することにより、iHc
をさらに向上させることができる。
Means for Solving the Problems As a result of intensive studies for achieving the above object, the inventors of the present invention have determined that the average crystal grain size of the R2TM14B phase is 3 to 8 μm and its standard deviation is 2.5 μm or less. Results in high (BH) max and high iHc
It was found that the R-TM-B type permanent magnet of That is, the present invention is 12.0 to 16.0 at% R (R is one or more rare earth elements including Y),
5.5-8.0 at% B, balance TM (TM is Fe or a part of Fe replaced by less than 20 at% Co)
A R-TM-B system permanent magnet having an R2TM14B phase as a main phase, wherein the main phase has an average crystal grain size of 3 to 8 μm and a standard deviation of 2.5 μm or less. It is a permanent magnet. Further, the R-TM-B system permanent magnet of the present invention has M of 4 at% or less (M is Nb, Al, Ga, Zn,
By adding at least one of Cu), iHc
Can be further improved.

【0007】[0007]

【作用】本発明R−TM−B系永久磁石は、R2TM14
B相の平均結晶粒径を3〜8μmかつその標準偏差を
2.5μm以下と制御することにより、高(BH)maxで
かつ高iHcのR−TM−B系永久磁石が得られる。焼
結体の結晶粒径分布は原料粉の粒度分布を反映するの
で、R2TM14B相の平均結晶粒径を3〜8μmかつその
標準偏差を2.5μm以下とするためには原料粉を細か
く且つ粒度分布をシャープにする必要がある。焼結時の
結晶成長を考慮すると、焼結体の平均結晶粒径を3μm
未満にするには、3μm未満の平均粒径を有する原料粉
が必要であるが、原料粉の粒径が小さくなるほど表面積
の増加により酸化しやすくなり、有効なR量が不足して
液相焼結できなくなるので、焼結体の平均結晶粒径は3
μm以上とする。焼結体のR2TM14B相の平均結晶粒
径が8μmを越えると、保磁力が低下し減磁曲線の角型
性も低下する。また、焼結体の結晶粒径の標準偏差が
2.5μmを越えるとiHcが低下し、且つ減磁曲線の
角型性が低下する。なお、本発明において、平均結晶粒
径とその標準偏差は焼結体の結晶粒径の粒度分布に基づ
くものであり、焼結体の結晶粒径の粒径分布は、磁化の
配向方向に垂直な面の1000倍の光学顕微鏡写真を用
いて、73×95mm視野内全ての結晶粒子について、
個々の結晶粒子の長径と短径の平均値の分布をとったも
のである。
The R-TM-B system permanent magnet of the present invention is R2TM14
By controlling the average crystal grain size of the B phase to 3 to 8 μm and the standard deviation thereof to 2.5 μm or less, an R-TM-B system permanent magnet having a high (BH) max and a high iHc can be obtained. Since the crystal grain size distribution of the sintered body reflects the grain size distribution of the raw material powder, in order to make the average crystal grain size of the R2TM14B phase 3 to 8 μm and its standard deviation 2.5 μm or less, the raw material powder must be fine and the grain size is small. The distribution needs to be sharp. Considering the crystal growth during sintering, the average crystal grain size of the sintered body is 3 μm.
In order to reduce the amount to less than 3 μm, a raw material powder having an average particle size of less than 3 μm is required. Therefore, the average crystal grain size of the sintered body is 3
At least μm. When the average crystal grain size of the R2TM14B phase of the sintered body exceeds 8 μm, the coercive force decreases and the squareness of the demagnetization curve also decreases. Further, if the standard deviation of the crystal grain size of the sintered body exceeds 2.5 μm, iHc is lowered and the squareness of the demagnetization curve is lowered. In the present invention, the average crystal grain size and its standard deviation are based on the grain size distribution of the crystal grain size of the sintered body, and the grain size distribution of the crystal grain size of the sintered body is perpendicular to the magnetization orientation direction. Using an optical microscope photograph of 1000 times of the plane, for all the crystal grains in the 73 × 95 mm field of view,
This is a distribution of average values of the major axis and the minor axis of individual crystal grains.

【0008】以下に組成の限定理由を述べる。Rは、1
2.0at%未満では液相焼結に必要なR量が不足し焼
結が困難となり、16.0at%を越えると主相の体積
率が低下しBrが減少するので、12.0〜16.0a
t%とする。Rとしては、Ndおよび/またはPrが好
ましく、その一部を3at%以下のDyで置換すること
がさらに好ましい。Bは、5.5at%以下ではiHc
が低下し、8.0at%以上ではBrが低下するので、
5.5〜8.0at%とする。TMは、FeまたはFe
の一部を20at%未満のCoで置換したものである。
Feを20at%を越えてCoで置換するとiHcが低
下する。Mは、Nb、Al、Ga、Zn、Cuの少なく
とも一種の元素であって、4at%以下の添加でiHc
を向上させる効果を有する。4at%を越えてNb、A
l、Ga、Zn、Cuの少なくとも一種の元素を添加す
るとBrが低下する。
The reasons for limiting the composition will be described below. R is 1
If it is less than 2.0 at%, the amount of R necessary for liquid phase sintering is insufficient and it becomes difficult to sinter, and if it exceeds 16.0 at%, the volume ratio of the main phase is decreased and Br is decreased. .0a
t%. As R, Nd and / or Pr is preferable, and it is more preferable to partially replace it with 3 at% or less of Dy. B is iHc at 5.5 at% or less
Decreases, and Br decreases at 8.0 at% or more.
It is set to 5.5 to 8.0 at%. TM is Fe or Fe
Is partially replaced with Co of less than 20 at%.
When Fe is replaced by Co in an amount of more than 20 at%, iHc is lowered. M is at least one element of Nb, Al, Ga, Zn and Cu, and iHc is obtained by adding 4 at% or less.
Has the effect of improving. Nb, A exceeding 4 at%
Br decreases when at least one element selected from the group consisting of 1, Ga, Zn, and Cu is added.

【0009】本発明R−TM−B系永久磁石は、12.
0〜16.0at%のR(RはYを含む希土類元素の1
種または2種以上)、5.5〜8.0at%のB、残部
TM(TMはFeまたはFeの一部を20at%未満の
Coで置換したもの)からなる合金を、平均粒径3〜5
μmに粉砕し、磁場中成形、焼結、特定温度範囲で三段
熱処理することにより得られる。粉砕により平均粒径3
〜5μmの粉砕粉を得るが、このような粉砕粉はジェッ
トミルを用いることにより微細かつ粉度分布の均一な粉
砕粉を得ることができる。また、成形時に10kOe以
上の高磁場を印可することによって配向性を高めると、
(BH)maxおよびBrをほとんど低下させずにiHc
を高めることができる。焼結体の熱処理は、温度を三段
階にした熱処理を施すことによりiHcと減磁曲線の角
型性を著しく向上できる。この三段階の熱処理パターン
は、800〜1000℃の温度で第一次熱処理し、第二
次熱処理を560〜760℃、更に460〜660℃で
第三次熱処理することが望ましい。第一次熱処理により
焼結後の冷却に伴う歪を緩和し、第二次熱処理により粒
界を滑らかにすることによりiHcが向上し、第3時熱
処理によりiHcが向上するとともにiHcのばらつき
が低減する。三段階熱処理の各熱処理温度を上記のよう
に限定したのは、この温度範囲以外で熱処理を行っても
iHcが十分に上昇しないためである。
The R-TM-B system permanent magnet of the present invention is
0 to 16.0 at% R (R is 1 of rare earth elements including Y)
Alloy of B to 5.5 to 8.0 at%, and the balance TM (TM is Fe or a part of Fe replaced with Co of less than 20 at%) with an average grain size of 3 to 5
It is obtained by pulverizing to a size of μm, molding in a magnetic field, sintering, and three-step heat treatment in a specific temperature range. Average particle size of 3 by crushing
A pulverized powder having a particle size of up to 5 μm is obtained. By using a jet mill, such a pulverized powder can be obtained as a fine pulverized powder having a uniform fineness distribution. In addition, when the orientation is enhanced by applying a high magnetic field of 10 kOe or more during molding,
IHc with almost no decrease in (BH) max and Br
Can be increased. As for the heat treatment of the sintered body, the squareness of the iHc and the demagnetization curve can be remarkably improved by performing the heat treatment at three stages of temperature. In this three-step heat treatment pattern, it is preferable that the first heat treatment is performed at a temperature of 800 to 1000 ° C., the second heat treatment is performed at 560 to 760 ° C., and further the third heat treatment is performed at 460 to 660 ° C. IHc is improved by relaxing the strain due to cooling after sintering by the primary heat treatment, and iHc is improved by smoothing the grain boundaries by the secondary heat treatment, and iHc is improved and variation of iHc is reduced by the third heat treatment. To do. The reason why the respective heat treatment temperatures of the three-step heat treatment are limited as described above is that iHc does not sufficiently rise even if the heat treatment is performed outside the temperature range.

【0010】[0010]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 (実施例1)純度99%以上の原料を用いて組成が Nd14.1Dy0.4FebalB6.2Nb0.3Al0.2Ga0.1Cu0.1(at%) となるようにアーク溶解して得られたインゴットをジェ
ットミルで平均粒径3〜5μmとなるように微粉砕し四
種類の原料粉末を準備した。得られた原料粉末を磁場中
にて0.6ton/cm2で成形した。成形磁場強度
は、1.59MA/m(20kOe)で成形した。得ら
れた成形体を1353K(1080℃)で2時間真空焼
結して冷却後、1173K(900℃)で2時間第一次
熱処理して冷却し、893K(620℃)で1時間第二
次熱処理を行い冷却し、更に793K(520℃)で1
時間第三次熱処理して冷却した。ここで各冷却は室温ま
で行い、熱処理雰囲気はArガス雰囲気とした。磁気測
定は、297K(24℃)でB−Hトレーサーを用い
た。得られた永久磁石の平均結晶粒径は3.3μm、
4.0μm、5.2μm、8.0μmで標準偏差はそれ
ぞれ0.9μm、1.3μm、1.6μm、2.8μm
であった。図1に得られた永久磁石の保磁力の焼結体結
晶粒径依存性を示す。図2に得られた永久磁石の(B
H)maxの焼結体結晶粒径依存性を示す。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 A jet mill was used to ingot an ingot obtained by arc melting so that the composition was Nd14.1Dy0.4FebalB6.2Nb0.3Al0.2Ga0.1Cu0.1 (at%) using a raw material having a purity of 99% or more. Then, four kinds of raw material powders were prepared by finely pulverizing so as to have an average particle size of 3 to 5 μm. The obtained raw material powder was molded in a magnetic field at 0.6 ton / cm 2. The molding magnetic field strength was 1.59 MA / m (20 kOe). The obtained molded body was vacuum-sintered at 1353K (1080 ° C) for 2 hours and cooled, then subjected to a first heat treatment at 1173K (900 ° C) for 2 hours and cooled, and then at 893K (620 ° C) for 1 hour secondary. Heat treated and cooled, then 1 at 793K (520 ° C)
The third heat treatment was performed for a period of time and cooled. Here, each cooling was performed up to room temperature, and the heat treatment atmosphere was an Ar gas atmosphere. A BH tracer was used for magnetic measurement at 297K (24 ° C). The average crystal grain size of the obtained permanent magnet was 3.3 μm,
The standard deviations are 4.0 μm, 5.2 μm, and 8.0 μm, and the standard deviations are 0.9 μm, 1.3 μm, 1.6 μm, and 2.8 μm, respectively.
Met. FIG. 1 shows the dependency of the coercive force of the obtained permanent magnet on the crystal grain size of the sintered body. (B of the permanent magnet obtained in FIG.
The dependency of H) max on the crystal grain size of the sintered body is shown.

【0011】(比較例1)熱処理を1173K(900
℃)で2時間の第一次熱処理して冷却し、793K(5
20℃)で1時間第二次熱処理して冷却しする二段熱処
理とした以外、実施例1と同様の方法で永久磁石を作成
した。図1に得られた永久磁石の保磁力の焼結体結晶粒
径依存性を示す。図1より、結晶粒径とその標準偏差が
小さいほどiHcは大きくなり、二段階熱処理(比較例
1)よりも三段階熱処理の方が結晶粒径が小さいほどi
Hcの向上に有効であることがわかる。
(Comparative Example 1) Heat treatment was performed at 1173K (900
The first heat treatment at ℃) for 2 hours and cooled, 793K (5
A permanent magnet was produced in the same manner as in Example 1 except that a two-step heat treatment was performed in which the secondary heat treatment was performed at 20 ° C. for 1 hour and then cooling. FIG. 1 shows the dependency of the coercive force of the obtained permanent magnet on the crystal grain size of the sintered body. From FIG. 1, iHc increases as the crystal grain size and its standard deviation decrease, and iHc increases as the crystal grain size decreases in the three-step heat treatment than in the two-step heat treatment (Comparative Example 1).
It can be seen that it is effective in improving Hc.

【0012】(従来例1)次のような従来の製造方法に
よりR−TM−B系永久磁石を作成した。純度99%以
上の原料を用いて組成が Nd14.1Dy0.4FebalB6.2Al0.2Ga0.1Cu0.1(at%) となるようにアーク溶解して得られたインゴットをジェ
ットミルで平均粒径5.1μmとなるように微粉砕し、
磁場中にて1.6ton/cm2で成形した。成形磁場
強度は、8kOeで成形した。得られた成形体を135
3K(1080℃)で2時間真空焼結して冷却後、11
73K(900℃)×2時間の第一次熱処理をして冷却
し、793K(520℃)×1時間の第二次熱処理を施
した。得られた永久磁石は、平均結晶粒径が10.2μ
mでその標準偏差は3.6であった。また磁気特性を評
価したところ、(BH)max=42.9MGOe、iHc=
11.9kOeであった。
(Conventional Example 1) An R-TM-B system permanent magnet was prepared by the following conventional manufacturing method. An ingot obtained by arc melting using a raw material having a purity of 99% or more so as to have a composition of Nd14.1Dy0.4FebalB6.2Al0.2Ga0.1Cu0.1 (at%) has a mean particle diameter of 5.1 μm with a jet mill. Pulverize so that
It was molded at 1.6 ton / cm 2 in a magnetic field. The molding magnetic field strength was 8 kOe. The obtained molded body is 135
After vacuum sintering at 3K (1080 ° C) for 2 hours and cooling, 11
A first heat treatment of 73 K (900 ° C.) × 2 hours was performed, followed by cooling, and a second heat treatment of 793 K (520 ° C.) × 1 hour was performed. The obtained permanent magnet has an average crystal grain size of 10.2μ.
The standard deviation in m was 3.6. Further, when the magnetic characteristics were evaluated, (BH) max = 42.9MGOe, iHc =
It was 11.9 kOe.

【0013】(実施例2)成形磁場強度を0.95MA
/m(12kOe)とした以外実施例1と同様の方法で
R−TM−B系永久磁石を作成した。図2に得られた永
久磁石の(BH)maxの焼結体結晶粒径依存性を示す。
得られた焼結体の平均結晶粒径は3.3μm、4.0μ
m、5.2μm、8.0μmで標準偏差はそれぞれ0.
9μm、1.3μm、1.6μm、2.8μmであっ
た。
Example 2 A molding magnetic field strength of 0.95 MA
/ M (12 kOe), the R-TM-B system permanent magnet was produced in the same manner as in Example 1. FIG. 2 shows the dependency of (BH) max of the obtained permanent magnet on the crystal grain size of the sintered body.
The average crystal grain size of the obtained sintered body is 3.3 μm, 4.0 μm
m, 5.2 μm, and 8.0 μm, and the standard deviations are 0.
It was 9 μm, 1.3 μm, 1.6 μm and 2.8 μm.

【0014】(実施例3)成形磁場強度を0.24MA
/m(3kOe)とした以外実施例1と同様の方法でR
−TM−B系永久磁石を作成した。図2に得られた永久
磁石の(BH)maxの焼結体結晶粒径依存性を示す。得
られた焼結体の平均結晶粒径は3.3μm、4.0μ
m、5.2μm、8.0μmで標準偏差はそれぞれ0.
9μm、1.3μm、1.6μm、2.8μmであっ
た。
(Embodiment 3) The forming magnetic field strength is 0.24 MA.
/ M (3 kOe), the same method as in Example 1
A TM-B based permanent magnet was created. FIG. 2 shows the dependency of (BH) max of the obtained permanent magnet on the crystal grain size of the sintered body. The average crystal grain size of the obtained sintered body is 3.3 μm, 4.0 μm
m, 5.2 μm, and 8.0 μm, and the standard deviations are 0.
It was 9 μm, 1.3 μm, 1.6 μm and 2.8 μm.

【0015】図2より、成形磁場が小さいときは結晶粒
径が小さくなるに従って、最大エネルギー積(BH)m
axは減少するが、少なくとも10kOe以上の成形磁
場を印加すれば結晶粒径に対して(BH)maxはほと
んど変化しないことがわかる。 実施例1〜3および比
較例1、従来例からわかるように、焼結体の結晶粒径が
3〜8μm(望ましくは3〜5μm)でその標準偏差が
2.5μm以下(望ましくは2.0μm以下)になるよ
うに制御し、10kOe以上の成形磁場を印加すること
によって、(BH)maxをほとんど変化させずにiH
cを向上させることができる。また、焼結後の熱処理を
三段階にすることによって更にiHcを増加させること
ができる。
From FIG. 2, when the forming magnetic field is small, the maximum energy product (BH) m increases as the crystal grain size decreases.
Although ax decreases, it can be seen that (BH) max hardly changes with respect to the crystal grain size when a molding magnetic field of at least 10 kOe or more is applied. As can be seen from Examples 1 to 3 and Comparative Example 1 and the conventional example, the crystal grain size of the sintered body is 3 to 8 μm (desirably 3 to 5 μm) and the standard deviation thereof is 2.5 μm or less (desirably 2.0 μm). The following control) is applied, and a forming magnetic field of 10 kOe or more is applied, so that (BH) max is hardly changed and iH
c can be improved. Further, iHc can be further increased by performing the heat treatment after sintering in three stages.

【0016】(実施例4)純度99%以上の原料を用い
て組成が Nd13.0Dy0.3FebalB6.2Nb0.3Al0.2Ga0.1Cu0.1(at%) となるようにアーク溶解して得られたインゴットを酸素
の混入を十分抑えてジェットミルで平均粒径3.7μm
に微粉砕し、22kOeの磁場中で0.3ton/cm
2で成形して、平均結晶粒径が3〜5μmで、かつ標準
偏差が2.0μm以下になるように試料を作成した。第
一次熱処理は1173K(900℃)で2時間、第二次
熱処理は893K(620℃)で1時間、第三次熱処理
は793K(520℃)で1時間行った。得られた焼結
体の平均結晶粒径は4.0μm、標準偏差は1.3μm
である。この焼結磁石の磁気特性は、(BH)max=
406kJ/m3(51.0MGOe)、iHc=1.
07MA/m(13.4kOe)、Br=14.44k
Gであった。また、密度は7.53g/cm3であり、
酸素量2020ppm、窒素量500ppm、水素量5ppmで
あった。本発明によればiHcが13kOe以上で且つ
50MGOe以上の高(BH)maxを有する実用的な
焼結磁石を得ることができる。
(Example 4) An ingot obtained by arc melting using a raw material having a purity of 99% or more so that the composition is Nd13.0Dy0.3FebalB6.2Nb0.3Al0.2Ga0.1Cu0.1 (at%). The average particle diameter is 3.7 μm with a jet mill while suppressing the mixture of oxygen.
Finely pulverized to 0.3 ton / cm in a magnetic field of 22 kOe
The sample was prepared by molding in step 2 so that the average crystal grain size was 3 to 5 μm and the standard deviation was 2.0 μm or less. The first heat treatment was performed at 1173K (900 ° C) for 2 hours, the second heat treatment was performed at 893K (620 ° C) for 1 hour, and the third heat treatment was performed at 793K (520 ° C) for 1 hour. The average grain size of the obtained sintered body was 4.0 μm, and the standard deviation was 1.3 μm.
Is. The magnetic characteristics of this sintered magnet are (BH) max =
406 kJ / m3 (51.0 MGOe), iHc = 1.
07MA / m (13.4kOe), Br = 14.44k
It was G. The density is 7.53 g / cm3,
The amount of oxygen was 2020 ppm, the amount of nitrogen was 500 ppm, and the amount of hydrogen was 5 ppm. According to the present invention, a practical sintered magnet having iHc of 13 kOe or more and a high (BH) max of 50 MGOe or more can be obtained.

【0017】[0017]

【発明の効果】焼結体の結晶粒径とその標準偏差を規定
し、熱処理方法を改善して、更に成形時の印加磁場を規
定することにより、優れた磁気特性を有するNd−Fe
−B系焼結磁石を得ることができる。また本発明の手法
により、iHcが13kOe以上の実用的な高エネルギ
ー積磁石を得ることができる。
The crystal grain size of the sintered body and its standard deviation are regulated, the heat treatment method is improved, and the applied magnetic field at the time of molding is regulated.
A B-type sintered magnet can be obtained. Further, according to the method of the present invention, a practical high energy product magnet having an iHc of 13 kOe or more can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結体の平均結晶粒径とiHcの関係を示す図
である。
FIG. 1 is a diagram showing a relationship between an average crystal grain size of a sintered body and iHc.

【図2】焼結体の平均結晶粒径と(BH)maxの関係を
示す図である。
FIG. 2 is a diagram showing a relationship between an average crystal grain size of a sintered body and (BH) max.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 B22F 3/02 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01F 41/02 B22F 3/02 H

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 12.0〜16.0at%のR(RはY
を含む希土類元素の1種または2種以上)、5.5〜
8.0at%のB、残部TM(TMはFeまたはFeの
一部を20at%未満のCoで置換したもの)からな
り、R2TM14B相を主相とするR−TM−B系永久磁
石であって、主相の平均結晶粒径が3〜8μmでその標
準偏差が2.5μm以下であることを特徴とするR−T
M−B系永久磁石。
1. 12.0 to 16.0 at% R (R is Y
One or more rare earth elements including)), 5.5 to
An R-TM-B-based permanent magnet having 8.0 at% B and the balance TM (TM is Fe or a part of Fe replaced by less than 20 at% Co) and having an R 2 TM 14 B phase as a main phase. , The main phase has an average crystal grain size of 3 to 8 μm and a standard deviation of 2.5 μm or less.
MB permanent magnet.
【請求項2】 4at%以下のM(MはNb、Al、G
a、Zn、Cuの少なくとも一種)を含有する請求項1
に記載のR−TM−B系永久磁石。
2. M of 4 at% or less (M is Nb, Al, G
at least one of a, Zn and Cu).
The R-TM-B system permanent magnet according to 1.
【請求項3】 (BH)max≧50MGOeかつiHc
≧13kOeである請求項1または2に記載の永久磁
石。
3. (BH) max ≧ 50 MGOe and iHc
The permanent magnet according to claim 1, wherein ≧ 13 kOe.
【請求項4】 12.0〜16.0at%のR(RはY
を含む希土類元素の1種または2種以上、或いは更にそ
の一部を3at%以下のDyで置換したもの)、5.5
〜8.0at%のB、残部TM(TMはFeまたはFe
の一部を20at%未満のCoで置換したもの)からな
る合金を、粉砕、磁場中成形、焼結、熱処理するR−T
M−B系永久磁石の製造方法であって、前記粉砕による
合金粉末の平均粒径が3〜5μmであり、前記熱処理が
800〜1000℃で第一次熱処理、560〜760℃
で第二次熱処理、更に460〜660℃で第三次熱処理
からなる三段熱処理であることを特徴とするR−TM−
B系永久磁石の製造方法。
4. 12.0 to 16.0 at% R (R is Y
1 or 2 or more kinds of rare earth elements including, or a part of which is replaced with 3 at% or less of Dy), 5.5
~ 8.0 at% B, balance TM (TM is Fe or Fe
Alloy obtained by substituting a part of Co with less than 20 at%) for crushing, forming in a magnetic field, sintering, and heat treatment.
A method of manufacturing an MB permanent magnet, wherein the pulverized alloy powder has an average particle size of 3 to 5 μm, the heat treatment is 800 to 1000 ° C., and the primary heat treatment is 560 to 760 ° C.
R-TM-, which is a three-stage heat treatment consisting of a second heat treatment and a third heat treatment at 460 to 660 ° C.
Method for manufacturing B-based permanent magnet.
【請求項5】 4at%以下のM(MはNb、Al、G
a、Zn、Cuの少なくとも一種)を含有する請求項4
に記載のR−TM−B系永久磁石の製造方法。
5. M of 4 at% or less (M is Nb, Al, G
at least one of a, Zn, and Cu).
The method for producing an R-TM-B system permanent magnet according to item 1.
【請求項6】 磁場中成形時に10kOe以上の高磁界
を印加する請求項4または5に記載のR−TM−B系永
久磁石の製造方法。
6. The method for producing an R-TM-B system permanent magnet according to claim 4, wherein a high magnetic field of 10 kOe or more is applied during molding in a magnetic field.
JP7080968A 1995-04-06 1995-04-06 R-tm-b permanent magnet and manufacture thereof Pending JPH08279406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080968A JPH08279406A (en) 1995-04-06 1995-04-06 R-tm-b permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080968A JPH08279406A (en) 1995-04-06 1995-04-06 R-tm-b permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08279406A true JPH08279406A (en) 1996-10-22

Family

ID=13733320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080968A Pending JPH08279406A (en) 1995-04-06 1995-04-06 R-tm-b permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08279406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
JP5328369B2 (en) * 2006-12-21 2013-10-30 株式会社アルバック Permanent magnet and method for manufacturing permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
KR100829986B1 (en) * 2000-09-19 2008-05-16 히타치 긴조쿠 가부시키가이샤 Rare earth magnet and method for manufacturing the same
JP5328369B2 (en) * 2006-12-21 2013-10-30 株式会社アルバック Permanent magnet and method for manufacturing permanent magnet

Similar Documents

Publication Publication Date Title
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
JPH0216368B2 (en)
EP0626703A2 (en) Magnetically anisotropic spherical powder
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JPS62198103A (en) Rare earth-iron permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
US5076861A (en) Permanent magnet and method of production
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPH07176418A (en) High-performance hot-pressed magnet
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPH0845718A (en) Magnetic material and its manufacture
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JPH0142338B2 (en)
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH04143221A (en) Production of permanent magnet
JPH06112019A (en) Nitride magnetic material
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet