JPH04143221A - Production of permanent magnet - Google Patents

Production of permanent magnet

Info

Publication number
JPH04143221A
JPH04143221A JP2265638A JP26563890A JPH04143221A JP H04143221 A JPH04143221 A JP H04143221A JP 2265638 A JP2265638 A JP 2265638A JP 26563890 A JP26563890 A JP 26563890A JP H04143221 A JPH04143221 A JP H04143221A
Authority
JP
Japan
Prior art keywords
temp
heat treatment
alloy
temperature
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2265638A
Other languages
Japanese (ja)
Inventor
Seiji Ihara
清二 伊原
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2265638A priority Critical patent/JPH04143221A/en
Publication of JPH04143221A publication Critical patent/JPH04143221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To uniformize and refine the structure of grain boundary phase and to obtain a magnet improved in uniform properties by performing heat treatment under specific conditions in a method for producing an R-Fe-B type permanent magnet by applying hot working to a cast ingot of alloy and making it anisotropic. CONSTITUTION:An alloy containing R (one or more elements among rare earths including Y), Fe, and B as essential components is melted and cast, and the resulting cast ingot is hot-worked at >=500 deg.C. This alloy is heat-treated at 750-1100 deg.C, held, as a second-stage heat treatment, at 250-750 deg.C, and cooled from the temp. right above the eutectic point of the alloy to the temp. right above the Curie temp. at >=5 deg.C/min cooling rate. The heat treatment temp. in the first stage is regulated to >=750 deg.C for the purpose of the early diffusion of primary- crystal Fe, and the grain of an R2Fe14B phase is rapidly grown and coercive force is lost when the above temp. is >=1100 deg.C. The heat treatment temp. in the second stage is regulated to a temp. not higher than the vicinity of the melting point (750 deg.C) of the R-enriched phase in the grain boundaries, and it takes time too much to attain this heat treatment when the temp. is below 250 deg.C. The range of temp. specifying the cooling rate is limited to the above range in order to prevent the occurrence of cracks, etc., and further, the structure of the grain boundary phase is coarsened when the cooling rate is lower than 5 deg.C/min, and, as a result, the properties of the magnet are deteriorated.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法、特にR(ただしRはYを含む希土類元素
のうち少なくとも1種)+Fe+Bを原料基本成分とす
る永久磁石の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, in particular R (where R is at least one rare earth element including Y). )+Fe+B as the basic raw material components.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コン−ビ
ューターの周辺端末機器まで、幅広い分野で使用されて
いる重要な電気・電子材料の一つであり、最近の電気製
品の小型化、高効率化の要求にともない、永久磁石も益
々高性能化が求められている。
[Prior Art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers. With the demand for smaller size and higher efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特に希土類−遷移金属系磁石であるR−
Co系永久磁石やR−Fe−B系永久磁石は、極めて高
い保磁力とエネルギー積を持つ永久磁石として、従来か
ら多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, especially rare earth-transition metal magnets.
Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−B系の高性能異方性永久磁石の
製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R-Fe-B-based high-performance anisotropic permanent magnets.

(1)まず、特開昭59−46008号公報や )1.
sagaWa。
(1) First, see Japanese Patent Application Laid-Open No. 59-46008 and )1.
sagaWa.

S、Fujimura、N、Togawa、H,Yam
amoto and Y、Matsu−ura;−J、
Appl、Phys、Vol、55(8)、15  M
arch  ヱ984 、p20a3等には、原子百分
比で8〜30%のR(ただしRはYを含む希土類元素の
少なくとも1種)、2〜28%のB及び残部Feかうな
る磁気異方性焼結体であることを特徴とする永久磁石が
粉末冶金法に基づく焼結によって製造されることが開示
されている。
S, Fujimura, N, Togawa, H, Yam.
amoto and Y, Matsu-ura;-J,
Appl, Phys, Vol, 55(8), 15 M
Arch E984, P20A3, etc. are magnetically anisotropic sintered with an atomic percentage of 8 to 30% R (however, R is at least one rare earth element including Y), 2 to 28% B, and the balance Fe. It is disclosed that a permanent magnet is produced by sintering based on powder metallurgy.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で1100℃前後の温度1時間焼結され、その後室温
まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature.

焼結後、600℃前後の温度で熱処理する事により永久
磁石はさらに保磁力を向上させる。
After sintering, the permanent magnet is heat-treated at a temperature of around 600°C to further improve its coercive force.

また、この焼結磁石の熱処理に関しては特開昭61−2
17540号公報、特開昭62−165305号公報等
に、多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-2
The effects of multi-stage heat treatment are disclosed in Japanese Patent Laid-Open No. 17540, Japanese Patent Application Laid-open No. 165305/1983, and the like.

(2)特開昭59−211549号公報やR,W、Le
e;  Appl。
(2) JP-A-59-211549, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p790には、非常に微細な結晶
性の磁性相を持つ、メルトスビニンーグされた合金リボ
ンの微細片が樹脂によって接着されたR−Fe−B磁石
が開示されている。
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. P790 discloses an R-Fe-B magnet in which fine pieces of melt-spinned alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.

この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e; Appl。
(3) JP-A-60-100402, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p?90には、前記(2)の方法
で使用した急冷薄片を、真空中あるいは不活性雰囲気中
で2段階ホットプレス法と呼ばれる方法で緻密で異方性
を有するR−Fe−B磁石を得ることが開示されている
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. p? In step 90, the quenched flakes used in the method (2) above are subjected to a method called a two-step hot pressing method in a vacuum or an inert atmosphere to obtain a dense and anisotropic R-Fe-B magnet. is disclosed.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30原子%、B2〜28原子%、Co50原子%以下、
A115原子%以下、及び残部が鉄及びその他の製造上
不可避な不純物からなる合金を溶解・鋳造後、該鋳造イ
ンゴットを500℃以上の温度で熱間加工することによ
り結晶粒を微細化しまたその結晶軸を特定の方向に配向
せしめて、該鋳造合金を磁−気的に異方性化することを
特徴とする希土類−鉄系永久磁石が開示されている。
(4) Japanese Patent Application Laid-Open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30 atom%, B2 to 28 atom%, Co50 atom% or less,
After melting and casting an alloy consisting of 115 at. A rare earth-iron permanent magnet is disclosed in which the cast alloy is made magnetically anisotropic by orienting its axis in a specific direction.

[発明が解決しようとする課題] 叙上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problems to be Solved by the Invention] The conventional methods for manufacturing R-Fe-B permanent magnets described in (1) to (4) above have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に対して活性を有するので、粉末化すると余計
酸化が樽しくなり、焼結体中の酸素温度はどうしても高
くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but since R-Fe-B alloys are highly active against oxygen, making them into powder will cause additional oxidation. This results in a barrel-like appearance, and the oxygen temperature in the sintered body inevitably increases.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、成形助剤中の数刻
は、磁石体の中に炭素の形で残ってしまい、この炭素は
著しくR−Fe−B磁石の磁気性能を低下させ好ましく
ない。
Also, when compacting the powder, a compacting aid such as zinc stearate must be used, which is removed beforehand during the sintering process. This carbon remains in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点で−ある。
Therefore, a major drawback is that it takes a considerable amount of time to arrange them neatly in the sintering furnace.

これらの欠点があるので、一般的に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、その製造方法は生産効率が悪く、結局磁石の
製造コストが高くなってしまう。従って、比較的原料費
の安いR−Fe−B系磁石の長所を活かすことが出来な
い。
Because of these drawbacks, generally speaking, R-Fe-B
Not only does the production of sintered magnets of this type require expensive equipment, but the production method has poor production efficiency, resulting in an increase in the production cost of the magnets. Therefore, it is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に (2)並びに(3)の永久磁石の製造方法は、真
空メルトスピニング装置を使用するが、この装置は、現
在では大変生産性が悪くしかも高価である。
Next, the permanent magnet manufacturing methods (2) and (3) use a vacuum melt spinning device, but this device currently has very poor productivity and is expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶−
粒の粗大化が著しく、それによって保磁力iHcが極端
に低下し、実用的な永久磁石にはならない。
Furthermore, in this method, crystals -
The coarsening of the grains is significant, and the coercive force iHc is thereby extremely reduced, so that it cannot be used as a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化され量産コストの低減が図れる製造法であるが、
磁気特性が焼結法に比べるとやや低いという問題があっ
た。特に、熱処理後の冷却にともなう割れや欠けの発生
を避けるためには冷却速度を抑えなければならず、それ
による磁気特性の低下や生産性の悪化が起こるという問
題があった。
The method (4) for manufacturing permanent magnets does not involve a powder process and only requires one step of hot pressing, so it is the manufacturing method that can simplify the manufacturing process and reduce mass production costs the most.
There was a problem that the magnetic properties were slightly lower than those of the sintering method. In particular, in order to avoid the occurrence of cracks and chips during cooling after heat treatment, the cooling rate must be suppressed, resulting in problems such as deterioration of magnetic properties and deterioration of productivity.

本発明は、以上の従来技術の欠点特に(4)の永久磁石
の性能面での欠点と割れの問題を解決するものであり、
その目的とするところは、高性能かつ低コストの永久磁
石の製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, particularly (4) the problem of the performance drawback and cracking of permanent magnets,
The purpose is to provide a high-performance, low-cost method of manufacturing permanent magnets.

[課題を解決するための手段] 本発明の永久磁石の製造方法は、R(ただしRはYを含
む希土類元素のうち少なくとも1種)。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention uses R (where R is at least one rare earth element including Y).

Fe7Eを原料基本成分とし、該基本成分とする合金を
溶解して鋳造し、次いで鋳造インゴットを500°C以
上の温度にて熱間加工し、次に750〜1100°Cに
おいて一段目の熱処理を行なった後に、二段目の熱処理
として250〜750°Cの温度に保持した後該磁石合
金の共晶点直上の温度からキュリー温度直上の温度まで
の範囲を冷却速度5℃/分以上で冷却する事を特徴とす
る。
Fe7E is used as the basic raw material component, the alloy as the basic component is melted and cast, then the cast ingot is hot worked at a temperature of 500°C or higher, and then the first heat treatment is performed at 750 to 1100°C. After that, as a second heat treatment, the temperature is maintained at 250 to 750°C, and then the magnetic alloy is cooled at a cooling rate of 5°C/min or more from a temperature just above the eutectic point to a temperature just above the Curie temperature. It is characterized by

磁石合金の結晶粒の保磁力は、その結晶粒が接している
粒界相の性質に大きく依存している。粒界相は共晶組織
になっているが、その組織が粗大であると、粒界相の均
一性がなくなり、そのために同一の磁石の中で保磁力の
分布が一様でなくなり、磁石の性能を悪化させる。本発
明では、粒界相の共晶点直上の温度からキュリー温度直
上の温度までの温度範囲を5°C/分以上の冷却速度で
冷却することにより、粒界相の組織を均一で微細なもの
とし、均一な保磁力の分布が得られ、磁石の性能が向上
することを見いだした。また、熱処理後の冷却にともな
う割れや欠けも、本発明の方法を用い−れば、インゴッ
トの重量が10kg以内ならば避けられることも見いだ
された。
The coercive force of the crystal grains of a magnetic alloy largely depends on the nature of the grain boundary phase with which the crystal grains are in contact. The grain boundary phase has a eutectic structure, but if the structure is coarse, the grain boundary phase becomes non-uniform, which causes the distribution of coercive force to become uneven within the same magnet, and the magnet's worsen performance. In the present invention, the structure of the grain boundary phase is made uniform and fine by cooling the temperature range from just above the eutectic point of the grain boundary phase to just above the Curie temperature at a cooling rate of 5°C/min or more. It was discovered that a uniform coercive force distribution could be obtained and the performance of the magnet would be improved. It has also been found that cracks and chips caused by cooling after heat treatment can be avoided by using the method of the present invention if the weight of the ingot is within 10 kg.

以下、本発明における永久磁石の好ましい組成範囲につ
いて説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce+  Pr、
  Nd。
Rare earths include Y, La, Ce+Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうちの1種あるいは2種以上を組み合
わせて用いる。最も高い磁気性能はBrで得られるので
、実用的には Pr、Pr−Nd合金、Ce−Pr−N
d合金等が用いられる。少量の重希土元素、例えばDV
、Tb等は保磁力の向上に有効である。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination. The highest magnetic performance is obtained with Br, so Pr, Pr-Nd alloy, Ce-Pr-N are practically used.
d alloy etc. are used. Small amounts of heavy rare earth elements, e.g. DV
, Tb, etc. are effective in improving coercive force.

R−Fe−B系磁石の主相はR2FezB である。従
ってRが8w子%未満では、もはや上記化合物を形成せ
ず高磁気特性は得られない、一方Rが30原子%を越え
ると非磁性のRリッチ相が多くなり磁気特性は著しく低
下する。よってRの範囲は8〜30原子%が適当である
。しかし高い残留磁束密度のためには、好ましくはR8
〜25W子%が適当である。
The main phase of the R-Fe-B magnet is R2FezB. Therefore, when R is less than 8w%, the above-mentioned compound is no longer formed and high magnetic properties cannot be obtained.On the other hand, when R exceeds 30 atomic%, the nonmagnetic R-rich phase increases and the magnetic properties are significantly deteriorated. Therefore, the appropriate range of R is 8 to 30 atomic %. However, for high residual magnetic flux density, preferably R8
~25W% is appropriate.

B−は、R2Fe+4B 相を形成するための必須元素
であり、2原子%未満では菱面体のR−Fe系になるた
めに高保磁力は望めない、また28原子%を越えるとB
に富む非磁性相が多くなり、残留磁束密度は著しく低下
してくる。しかじ高保磁力を得るためには、好ましくは
B88原子以下がよく、それ以上では微細なR2Fe+
4B 相を得ることが困難で、保磁力は小さい。
B- is an essential element for forming the R2Fe+4B phase, and if it is less than 2 atom%, it becomes a rhombohedral R-Fe system, so high coercive force cannot be expected, and if it exceeds 28 atom%, B-
The amount of non-magnetic phase rich in ions increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, it is preferable to use B88 atoms or less, and if it is more than that, fine R2Fe+
It is difficult to obtain the 4B phase and the coercive force is small.

COは本系磁石のキュ1↓−点を埒加させるのに有効な
元素であるが、保磁力を小さくするので50原子%以下
がよい。
CO is an effective element for increasing the cu1↓- point of the present magnet, but since it reduces the coercive force, it is preferably 50 atomic % or less.

Cu、Ag、Au、Pd、Ga等のRリッチ相とともに
存在し、その相の融点を低下させる元素は、保磁力の増
大効果を有する。しかし、これらの元素は非磁性元素で
あるため、その量を増すと残留磁束密度が減少するので
、6原子%以下が好ましい。
Elements such as Cu, Ag, Au, Pd, and Ga that exist together with the R-rich phase and lower the melting point of the phase have the effect of increasing coercive force. However, since these elements are non-magnetic elements, increasing the amount will reduce the residual magnetic flux density, so it is preferably 6 at % or less.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

モーして、熱処理温度は粒界の清浄化及び初晶のFeを
拡散するために250℃以上が好ましく、R2Fe+J
B 相が1100℃以上では急激に粒成長して保磁力を
失うのでそれ以下の温度が好ましい。
The heat treatment temperature is preferably 250°C or higher in order to clean grain boundaries and diffuse primary Fe, and R2Fe+J
If the B phase exceeds 1100°C, grains will grow rapidly and lose coercive force, so a temperature lower than this is preferred.

また、2段階以上の熱処理を施す場合の温度は、1綾目
は初晶のFeが早く拡散するように750℃以上が好ま
しく、2段目は粒界のRリッチ相の融点付近以下の温度
、すなわち750℃以下が好ましく、250℃以下では
熱処理の効果に時間が掛かりすぎるのでそれ以上がよい
In addition, when performing heat treatment in two or more stages, the temperature in the first stage is preferably 750°C or higher so that primary Fe crystals can diffuse quickly, and the temperature in the second stage is preferably around the melting point of the R-rich phase at the grain boundaries or below. That is, the temperature is preferably 750°C or lower, and the temperature higher than 250°C is preferable because it takes too much time for the effect of heat treatment to occur.

冷却速度を規定する温度範囲の理由は、粒界相を微細で
均一な共晶組繊にするためには共晶点直上の温度からが
よく、主相のキュリー温度付近を速い冷却速度で冷却す
ると主相のキュリー温度通過にともなう歪のために割れ
等の欠陥が生じてしまう、従って、5℃/分以上の冷却
速度で冷却する温度範囲は、磁石合金の共晶点直上の温
度からキュリー温度直上の温度までの範囲が望ましい。
The reason for the temperature range that determines the cooling rate is that in order to make the grain boundary phase into a fine and uniform eutectic structure, it is best to start at a temperature just above the eutectic point, and to cool around the Curie temperature of the main phase at a fast cooling rate. In this case, defects such as cracks will occur due to the strain that occurs as the main phase passes the Curie temperature. Therefore, the temperature range for cooling at a cooling rate of 5°C/min or more is from the temperature just above the eutectic point of the magnetic alloy to the Curie temperature. A range up to just above temperature is desirable.

冷却速度については、5℃1分より遅いと粒界相の組−
織が粗大化し、磁石の高性能化に対し好ましくない、従
って、5℃/分以上が望ましい。
Regarding the cooling rate, if it is slower than 5°C for 1 minute, the grain boundary phase group -
The weave becomes coarse, which is unfavorable for improving the performance of the magnet. Therefore, it is desirable that the speed be 5° C./min or more.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] [実施例1] 本発明による製造法の工程図を第1図に示す。[Example] [Example 1] A process diagram of the manufacturing method according to the present invention is shown in FIG.

この工程に従い、アルゴン雰囲気中で誘導加熱炉を用い
て、P r +vF e va、5Bsc u +、b
なる組成の合金を溶解し、鋳造した。7この時、希土類
、鉄及び銅の原料としては99.9%の純度のものを用
い、ボロンはフェロボロンを用いた。
According to this process, using an induction heating furnace in an argon atmosphere, P r +vF e va, 5Bsc u +, b
An alloy with the following composition was melted and cast. 7 At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used, and boron was ferroboron.

こうして得られた鋳造インゴットを鉄製のカプセルに入
れ、脱気し、密封した。これに、 950℃で加工度3
0%の熱間圧延を空気中で4回行い、最終的な加工度が
76%になるようにした。
The cast ingot thus obtained was placed in an iron capsule, degassed, and sealed. To this, processing degree 3 at 950℃
0% hot rolling was performed in air four times to give a final working degree of 76%.

またこの熱間加工時においては、合金の押される方向に
平行になるように結晶の磁化容易軸は配向した。
Further, during this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed.

この後、1000℃において24時間の熱処理を施し、
次に475℃において2時間保持した後、475℃〜3
OO=C−の温度範囲を様々な冷却速度で冷却した。 
300℃〜の冷却速度は、約3℃1分とした。
After that, heat treatment was performed at 1000°C for 24 hours,
Next, after holding at 475℃ for 2 hours, 475℃~3
The temperature range of OO=C- was cooled at various cooling rates.
The cooling rate from 300°C was about 3°C for 1 minute.

これらの磁石の磁気特性を第1表に示す、また、減磁曲
線!!I(4πX−Hカーブ)を第2図に、保磁力の分
布曲線を第3図に示す。
The magnetic properties of these magnets are shown in Table 1, as well as the demagnetization curves! ! I (4πX-H curve) is shown in FIG. 2, and the coercive force distribution curve is shown in FIG. 3.

第  1  表 なお、磁気特性はすべて最大印加磁界25kOeでB−
Hトレーサーを用いて測定した。
Table 1 All magnetic properties are B- at the maximum applied magnetic field of 25 kOe.
It was measured using an H tracer.

第2図及び第3図に示すごとく、熱処理後の冷却速−度
の速い条件のほうが、保磁力の均一性が高く、減磁曲線
の角形性も向上していることが解る。
As shown in FIGS. 2 and 3, it can be seen that under conditions where the cooling rate after heat treatment is faster, the coercive force is more uniform and the squareness of the demagnetization curve is also improved.

このために、第1表に示すごとく、冷却速度による保磁
力の大きな差はないが、最大エネルギー積には差が生じ
てくる事が解る。
For this reason, as shown in Table 1, although there is no large difference in coercive force depending on the cooling rate, there is a difference in maximum energy product.

また、いずれの冷却速度の場合においても熱処理後の冷
却にともなう割れや欠けは生じていなかった。
In addition, no cracks or chips occurred due to cooling after heat treatment at any cooling rate.

[実施例2] 実施例1と同様に、第1図に示す製造工程に従い、アル
ゴン雰囲気中で誘導加熱炉を用いて、第2表に示す組成
の合金を溶解し、鋳造した。この時用いた原料も同様の
純度のものを用いた。
[Example 2] Similarly to Example 1, an alloy having the composition shown in Table 2 was melted and cast using an induction heating furnace in an argon atmosphere according to the manufacturing process shown in FIG. The raw materials used at this time were also of similar purity.

こうして得られた鋳造インゴットを鉄製のカプセルに入
れ、脱気し、密封した。これに、1000℃で4バスの
熱間圧延を空気中において行い、最終的な加工度が75
%になるようにした。
The cast ingot thus obtained was placed in an iron capsule, degassed, and sealed. This was then hot-rolled in air for 4 baths at 1000°C, resulting in a final working degree of 75.
%.

この後、1000℃において24時間保持した後、室温
まで空冷し、次いで第2表に示すところのT2において
2時間保持した後、次のような条件で冷却を行−い、切
断・研磨して磁気特性を測定した。
After this, after holding at 1000°C for 24 hours, air cooling to room temperature, then holding at T2 shown in Table 2 for 2 hours, cooling under the following conditions, cutting and polishing. The magnetic properties were measured.

条件1:熱処理炉から取り出した後、空冷。この時の冷
却速度はT2〜各々の合金のキュリー温度までの温度範
囲をおよそ25℃/分となっている。
Condition 1: Air cooling after taking out from the heat treatment furnace. The cooling rate at this time is approximately 25° C./min in the temperature range from T2 to the Curie temperature of each alloy.

キュリー温度以下の温度範囲は、冷却速度3°C/分と
なるように制御空冷した。
In the temperature range below the Curie temperature, controlled air cooling was performed at a cooling rate of 3°C/min.

条件2: T2の温度に保持後、T2〜各々の合金のキ
ュリー温度まで90分で直線的に温度が下がるように制
御空冷(約2.2°C/、e)して、その後、冷却速度
3°C/分となるように制御空冷した。
Condition 2: After maintaining the temperature at T2, controlled air cooling (approximately 2.2°C/, e) was performed so that the temperature decreased linearly from T2 to the Curie temperature of each alloy in 90 minutes, and then the cooling rate was Controlled air cooling was performed at a rate of 3°C/min.

これらの磁石の磁気特性を第3表に示す。The magnetic properties of these magnets are shown in Table 3.

第 表 第 表 以上の実施例から、R(ただしRはYを含む希土類元素
のうち少なくとも1種)+  Fe、Bを原料基本成分
とする永久磁石は、500°C以上で熱間加工さ−れれ
ば異方性化され、250〜750°Cの熱処理により高
保磁力を示し、最高の(BH)maxは308GOeを
越えており、また、熱処理後、磁石合金の共晶点直上の
温度からキュリー温度直上の温度までを5°C/分以上
の冷却速度で冷却することにより、その磁気特性が大幅
に向上し、また割れや欠けの無い磁石が得られることは
明らかである。
From the examples above in Table 1, it is clear that a permanent magnet whose basic raw material components are R (where R is at least one rare earth element including Y) + Fe and B can be hot worked at 500°C or higher. If it is, it becomes anisotropic and exhibits a high coercive force by heat treatment at 250 to 750°C, the highest (BH)max exceeds 308 GOe, and after heat treatment, the Curie It is clear that by cooling to just above the temperature at a cooling rate of 5°C/min or more, the magnetic properties are significantly improved and a magnet without cracks or chips can be obtained.

[発明の効果コ 以上のごとく本発明の永久磁石の製造方法は、次のごと
き効果を持つ。
[Effects of the Invention As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

(1)c軸配向率を高めることができ、残留磁束密度B
rを著しく高めることができ、結晶粒を微細化する事に
より保磁力iHcを高めることができ、最大エネルギー
積(BH)maxを格段に向上させることが出来た。
(1) The c-axis orientation rate can be increased, and the residual magnetic flux density B
It was possible to significantly increase r, and by making the crystal grains finer, it was possible to increase coercive force iHc, and the maximum energy product (BH) max was able to be significantly improved.

(2)製造プロセスが簡単であり、コストが安い。(2) The manufacturing process is simple and the cost is low.

(3)従来の焼結法と比較して、加工工数及び生産投資
額を著しく低減させることが出来る。
(3) Compared to conventional sintering methods, processing man-hours and production investment can be significantly reduced.

(4)従来のメルトスピニング法による磁石の製造方法
と比較して、高性能でしがも但コストの磁石を作ること
が出来る。
(4) Compared to the conventional method of producing magnets using melt spinning, it is possible to produce magnets with high performance but at low cost.

(5)従来の熱間加工法による磁石の製造方法と比較し
て、磁気特性、特に減磁曲線の角形性を向上させること
が出来る。
(5) Compared to the conventional method of manufacturing magnets using hot working methods, the magnetic properties, particularly the squareness of the demagnetization curve, can be improved.

(6)従来の熱間加工法による磁石の製造方法と比較し
て、熱処理後の冷却により生じる割れや欠けの無い磁石
を作ることができる。
(6) Compared to conventional magnet manufacturing methods using hot working methods, magnets can be manufactured without cracks or chips caused by cooling after heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のR−Fe−B系磁石の製造工程図であ
る。 第27は、Pr+7Fe7s、5BsCu+、s組成の
磁石の減磁曲線を示すグラ、。 1・・冷却速度20°C/分 2・・冷却速度 3°C/分 第3図はP r 17F ete、5Bsc u +、
s組成の磁石における保磁力の分布曲線を示すグラフ。 1・・冷却速度20°C/分 冷却速度 3℃/分 以上 出願−人 セイコーエプソン株式会社
FIG. 1 is a manufacturing process diagram of the R-Fe-B magnet of the present invention. The 27th graph shows the demagnetization curves of magnets with compositions of Pr+7Fe7s, 5BsCu+, and s. 1... Cooling rate 20°C/min 2... Cooling rate 3°C/min Figure 3 shows P r 17F ete, 5Bsc u +,
3 is a graph showing a distribution curve of coercive force in a magnet having an s composition. 1. Cooling rate of 20°C/min Application for cooling rate of 3°C/min or more - Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種),Fe,Bを原料基本成分とし、該基本成分
とする合金を溶解・鋳造し、次いで鋳造インゴットを5
00℃以上の温度にて熱間加工し、次に750〜110
0℃の温度において一段目の熱処理を行なった後、二段
目の熱処理として、250〜750℃の温度に保持した
後該磁石合金の共晶点直上の温度からキュリー温度直上
の温度までの範囲を冷却速度5℃/分以上で冷却する事
を特徴とする永久磁石の製造方法。
(1) R (where R is at least one rare earth element including Y), Fe, and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot working at a temperature of 00℃ or higher, then 750~110℃
After performing the first heat treatment at a temperature of 0°C, as the second heat treatment, after holding at a temperature of 250 to 750°C, the range is from a temperature just above the eutectic point of the magnetic alloy to a temperature just above the Curie temperature. A method for producing a permanent magnet, characterized by cooling at a cooling rate of 5° C./min or more.
JP2265638A 1990-10-03 1990-10-03 Production of permanent magnet Pending JPH04143221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2265638A JPH04143221A (en) 1990-10-03 1990-10-03 Production of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265638A JPH04143221A (en) 1990-10-03 1990-10-03 Production of permanent magnet

Publications (1)

Publication Number Publication Date
JPH04143221A true JPH04143221A (en) 1992-05-18

Family

ID=17419919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265638A Pending JPH04143221A (en) 1990-10-03 1990-10-03 Production of permanent magnet

Country Status (1)

Country Link
JP (1) JPH04143221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760453B1 (en) * 2002-11-14 2007-09-20 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B Sintered Magnet
US20130181039A1 (en) * 2010-09-30 2013-07-18 Hitachi Metals, Ltd. Method for producing r-t-b sintered magnet
US20140329007A1 (en) * 2012-03-30 2014-11-06 Hitachi Metals, Ltd. Process for producing sintered r-t-b magnet
JP2018082040A (en) * 2015-11-18 2018-05-24 信越化学工業株式会社 Rare earth-(iron, cobalt)-boron based sintered magnet, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760453B1 (en) * 2002-11-14 2007-09-20 신에쓰 가가꾸 고교 가부시끼가이샤 R-Fe-B Sintered Magnet
US20130181039A1 (en) * 2010-09-30 2013-07-18 Hitachi Metals, Ltd. Method for producing r-t-b sintered magnet
US9721724B2 (en) * 2010-09-30 2017-08-01 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
US20140329007A1 (en) * 2012-03-30 2014-11-06 Hitachi Metals, Ltd. Process for producing sintered r-t-b magnet
JP2018082040A (en) * 2015-11-18 2018-05-24 信越化学工業株式会社 Rare earth-(iron, cobalt)-boron based sintered magnet, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH01219143A (en) Sintered permanent magnet material and its production
JPS62198103A (en) Rare earth-iron permanent magnet
JPH04143221A (en) Production of permanent magnet
EP0288637A2 (en) Permanent magnet and method of making the same
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04187722A (en) Production of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH0422103A (en) Method of manufacturing permanent magnet
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH04324907A (en) Manufacture of permanent magnet
JPH04324904A (en) Manufacture of permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH04324906A (en) Manufacture of permanent magnet
JPH04136131A (en) Manufacture of permanent magnet
JPH06151219A (en) Manufacture of permanent magnet
JPH04134805A (en) Manufacture of permanent magnet