JPH0422105A - Method of manufacturing permanent magnet - Google Patents

Method of manufacturing permanent magnet

Info

Publication number
JPH0422105A
JPH0422105A JP2127415A JP12741590A JPH0422105A JP H0422105 A JPH0422105 A JP H0422105A JP 2127415 A JP2127415 A JP 2127415A JP 12741590 A JP12741590 A JP 12741590A JP H0422105 A JPH0422105 A JP H0422105A
Authority
JP
Japan
Prior art keywords
temperature
permanent magnet
alloy
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127415A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Toshiaki Yamagami
利昭 山上
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2127415A priority Critical patent/JPH0422105A/en
Publication of JPH0422105A publication Critical patent/JPH0422105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet having a high coercive force by a method wherein an alloy comprising principal components such as R (R is a rare-earth element containing Y), Fe, and B is melted and cast, an ingot is heat-processed at more than a specific temperature, next it is heat-treated at a specific temperature, and thereafter it is cooled at a specific cooling speed in specific range of temperature. CONSTITUTION:In a manufacturing method of a permanent magnet, R (R is at least 1 kind of rare-earth element containing Y), Fe, and B are raw material principal components, an alloy comprising the principal components is melted and cast, next a cast ingot is heat-processed at a temperature of higher than 500 deg.C, next it is heat-treated in a temperature range of 250 to 1100 deg.C, and thereafter it is cooled at a cooling speed less than 10 deg.C/min. in a range of 200 to 800 deg.C. The rare-earth is employed by combining one or more kinds of Y, La, Ce, Pr, Nd, etc., with each other. A temperature for heat-processing is desired to be higher than a re-crystallized temperature and preferably higher than 500 deg.C in the R-Fe-B system alloy of the present invention.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法、特にR(ただしRはYを含む希土類元素
のうち少なくとも1種)、Fe。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, and in particular R (where R is at least one rare earth element including Y). ), Fe.

Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
This invention relates to a method for producing a permanent magnet using B as a basic raw material component.

[従来の技術] 永久磁石は、一般家庭の各種電気製品がら大型コンピュ
ーターの周辺端末機器まで、幅広い分野で使用されてい
る重要な電気・電子材料の−っであり、最近の電気製品
の小型化、高効率化の要求にともない、永久磁石も益々
高性能化が求められている。
[Prior art] Permanent magnets are important electrical and electronic materials that are used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers. With the demand for higher efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特に希土類−遷移金属系磁石であるR−
Co系永久磁石やR−Fe−B系永久磁石は、極めて高
い保磁力とエネルギー積を持つ永久磁石として、従来が
ら多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, especially rare earth-transition metal magnets.
Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−B系の高性能異方性永久磁石の
製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R-Fe-B-based high-performance anisotropic permanent magnets.

(1)まず−特開昭F+!1l−dRnnR妥ハ帽め 
   M(うσうり。
(1) First - Tokukai Sho F+! 1l-dRnnR compromise
M(UσUri.

S、Fujimura、N、Togawa、H,Yam
amoto and  Y、Matsu−ura;J、
Appl、Phys、Vol、55(6)、15  M
arch  1984.p2083等には、原子百分比
で8〜30%のR(ただしRはYを含む希土類元素の少
なくとも1種)、2〜28%のB及び残部Feからなる
磁気異方性焼結体であることを特徴とする永久磁石が粉
末冶金法に基づく焼結によって製造されることが開示さ
れている。
S, Fujimura, N, Togawa, H, Yam.
amoto and Y, Matsu-ura; J,
Appl, Phys, Vol, 55(6), 15 M
arch 1984. p2083 etc. must be a magnetically anisotropic sintered body consisting of 8 to 30% R (at least one rare earth element including Y) in atomic percentage, 2 to 28% B, and the balance Fe. It is disclosed that a permanent magnet characterized by the following is manufactured by sintering based on a powder metallurgy method.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で1100℃前後の温度1時間焼結され、その後室温
まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature.

焼結後、600°C前後の温度で熱処理する事により永
久磁石はさらに保磁力を向上させる。
After sintering, permanent magnets are heat-treated at a temperature of around 600°C to further improve their coercive force.

また、この焼結磁石の熱処理に関しては特開昭61−2
17540号公報、特開昭62−165305号公報等
に、多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-2
The effects of multi-stage heat treatment are disclosed in Japanese Patent Laid-Open No. 17540, Japanese Patent Application Laid-open No. 165305/1983, and the like.

(2)特開昭59−211549号公報やR,W、Le
e;  Appl。
(2) JP-A-59-211549, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15  A
pril  1985.p790には、非常に微細な結
晶性の磁性相を持つ、メルトスピニングされた合金リボ
ンの微細片が樹脂によって接着されたR−Fe−B磁石
が開示されている。
Phys, Lett, Vol, 46(8), 15 A
pril 1985. P790 discloses an R-Fe-B magnet in which fine pieces of melt-spun alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.

この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e; Appl。
(3) JP-A-60-100402, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15  A
pril  1985.p790には、前記(2)の方
法で使用した急冷薄片を、真空中あるいは不活性雰囲気
中で2段階ホットプレス法と呼ばれる方法で緻密で異方
性を有するR−Fe−B磁石を得ることが開示されてい
る。
Phys, Lett, Vol, 46(8), 15 A
pril 1985. For p790, obtain a dense and anisotropic R-Fe-B magnet by using the quenched flakes used in the method (2) above in a vacuum or in an inert atmosphere by a method called a two-step hot pressing method. is disclosed.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30i子%、B2〜28原子%+  Co 5o原子%
以下、Aユ 15原子%以下、及び残部が鉄及びその他
の製造上不可避な不純物からなる合金を溶解・鋳造後、
該鋳造インゴットを500°C以上の温度で熱間加工す
ることにより結晶粒を微細化しまたその結晶軸を特定の
方向に配向せしめて、該鋳造合金を磁気的に異方性化す
ることを特徴とする希土類−鉄系永久磁石が開示されて
いる。
(4) Japanese Patent Application Laid-Open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30i atomic%, B2~28 atomic% + Co 5o atomic%
Hereinafter, after melting and casting an alloy consisting of 15 atomic percent or less of A-yu, and the balance consisting of iron and other impurities unavoidable in manufacturing,
The cast alloy is made magnetically anisotropic by hot working the cast ingot at a temperature of 500°C or higher to refine the crystal grains and orient the crystal axes in a specific direction. A rare earth-iron permanent magnet is disclosed.

[発明が解決しようとする課題] 斜上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problems to be Solved by the Invention] The conventional methods for manufacturing R-Fe-B permanent magnets (1) to (4) above have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に対して活性を有するので、粉末化すると余計
酸化が激しくなり、焼結体中の酸素濃度はどうしても高
くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but since R-Fe-B alloys are highly active against oxygen, making them into powder will cause additional oxidation. The oxygen concentration in the sintered body inevitably increases.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、成形助剤中の散開
は、磁石体の中に炭素の形で残ってしまい、この炭素は
著しくR−Fe−B磁石の磁気性能を低下させ好ましく
ない。
Also, when compacting the powder, a compacting aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, and the dispersion in the compacting aid is limited to the size of the magnet. This carbon remains in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが離しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、一般的に言ってRFe−B系
の焼結磁石の製造には、高価な設備が必要になるばかり
でなく、その製造方法は生産効率が悪く、結局磁石の製
造コストが高くなってしまう。従って、比較的原料費の
安いR−Fe−B系磁石の長所を活かすことが出来ない
Because of these drawbacks, generally speaking, manufacturing RFe-B sintered magnets not only requires expensive equipment, but also the manufacturing method has poor production efficiency, which ultimately increases the manufacturing cost of the magnet. becomes high. Therefore, it is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に (2)並びに(3)の永久磁石の製造方法は、真
空メルトスピニング装置を使用するが、この装置は、現
在では大変生産性が悪くしかも高価である。
Next, the permanent magnet manufacturing methods (2) and (3) use a vacuum melt spinning device, but this device currently has very poor productivity and is expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば800°C以上では結晶
粒の粗大化が著しく、それによって保磁力iHcが極端
に低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化され、量産コストの低減が図れる製造法であるが
、磁気特性が焼結法に比べやや低く、熱処理後に磁石の
割れ欠けが発生するという問題があった。
The method of manufacturing permanent magnets in (4) does not involve a powder process and requires only one step of hot pressing, so it is the manufacturing method that simplifies the manufacturing process and can reduce mass production costs. There was a problem that the magnet was slightly lower than that of the sintering method, and cracks and chips occurred in the magnet after heat treatment.

本発明は、以上の従来技術の欠点特に(4)の永久磁石
の性能面での欠点と割れの問題を解決するものであり、
その目的とするところは、高性能かつ低コストの永久磁
石の製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, particularly (4) the problem of the performance drawback and cracking of permanent magnets,
The purpose is to provide a high-performance, low-cost method of manufacturing permanent magnets.

[課題を解決するための手段] 本発明の永久磁石の製造方法は、R(ただしRはYを含
む希土類元素のうち少なくとも1種)。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention uses R (where R is at least one rare earth element including Y).

Fe、Bを原料基本成分とし、該基本成分とする合金を
溶解・鋳造し、次いで鋳造インゴットを500℃以上の
温度において熱間加工し、次に250〜1100℃の温
度において熱処理して、その熱処理後、200°C〜8
00℃の範囲を冷却速度10°C/分以下で冷却する事
を特徴とする。
Fe and B are the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is hot worked at a temperature of 500°C or higher, and then heat treated at a temperature of 250 to 1100°C. After heat treatment, 200°C ~ 8
It is characterized by cooling the range of 00°C at a cooling rate of 10°C/min or less.

即ち、磁石の割れ欠は等の欠陥は主に粒界相の凝固収縮
時に起き、熱処理後の800°C〜200°Cの温度範
囲を徐冷をすることにより、欠陥を回避できることを見
いだした。
In other words, it was found that defects such as cracks and chips in magnets mainly occur during solidification and shrinkage of the grain boundary phase, and that defects can be avoided by slow cooling in the temperature range of 800°C to 200°C after heat treatment. .

以下、本発明における永久磁石の好ましい組成範囲につ
いて説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce、  Pr、
  Nd。
Rare earths include Y, La, Ce, Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうちの1種あるいは2種以上を組み合
わせて用いる。最も高い磁気性能はPrで得られるので
、実用的には P r +  P r  N d合金、
Ce−PrNd合金等が用いられる。少量の重希土元素
、例えばDy、’rb等は保磁力の向上に有効である。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr, so in practice P r + P r N d alloy,
Ce-PrNd alloy or the like is used. A small amount of heavy rare earth elements such as Dy and 'rb are effective in improving coercive force.

R−Fe−B系磁石の主相はR2Fe+、B である。The main phase of the R-Fe-B magnet is R2Fe+,B.

従ってRが8原子%未満では、もはや上記化合物を形成
せず高磁気特性は得られない。一方Rが30原子%を越
えると非磁性のRリッチ相が多くなり磁気特性は著しく
低下する。よってRの範囲は8〜301子%が適当であ
る。しかし高い残留磁束密度のためには、好ましくはR
8〜25原子%が適当である。
Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range for R is 8 to 301%. However, for high residual magnetic flux density, preferably R
8 to 25 atom % is suitable.

Bは、R2Fe+aB 相を形成するための必須元素で
あり、2原子%未満では菱面体のR−Fe系になるため
に高保磁力は望めない。また28原子%を越えるとBに
富む非磁性相が多くなり、残留磁束密度は著しく低下し
てくる。しかじ高保磁力を得るためには、好ましくはB
88原子以下がよく、それ以上では微細なR2FezB
 相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R2Fe+aB phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be expected. Moreover, when it exceeds 28 at %, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, preferably B
It is better to have 88 atoms or less, and if it is more than 88 atoms, fine R2FezB
It is difficult to obtain a phase, and the coercive force is small.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

そして、熱処理温度は初晶のFeを拡散するために25
0°C以上が好ましく、R2Fe+aB 相が11nn
’l”  111 1− −た L+ @  逓々 l
−$6  m  jE  I  て l”l Ktt 
 +  7’−e−A  の 71それ以下の温度が好
ましい。
The heat treatment temperature was set at 25°C to diffuse the primary Fe.
The temperature is preferably 0°C or higher, and the R2Fe+aB phase is 11nn.
'l' 111 1- -ta L+ @ 铓田 l
-$6 m jE I te l”l Ktt
Temperatures below 71 of +7'-e-A are preferred.

徐冷の温度範囲の理白は、粒界相の融点以上から徐冷す
るためには800°Cからが良く、 200℃以前に徐
冷を中止すると、主相のキュリー温度通過に伴う歪のた
め割れ等の欠陥が生じてしまう。従って、徐冷する範囲
は800〜200°Cの範囲が望ましい。
The rationale for the temperature range for slow cooling is that 800°C is best in order to slowly cool from above the melting point of the grain boundary phase, and if slow cooling is stopped before 200°C, the strain caused by the main phase passing through the Curie temperature will increase. Defects such as cracks may occur. Therefore, the range for slow cooling is preferably 800 to 200°C.

冷却速度については、 10°C/分より速いと磁石に
大きな熱歪が生じ、このために磁石に割れ等の欠陥が発
生してしまう。従って、割れを防ぐためにはこれ以下の
冷却速度が望ましい。
As for the cooling rate, if it is faster than 10°C/min, large thermal distortion will occur in the magnet, which will cause defects such as cracks in the magnet. Therefore, in order to prevent cracking, a cooling rate lower than this is desirable.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] [実施例1] アルゴン雰囲気中で銹導加熱炉を用いて、Pry5Tb
+、aFessCO+sBa、eCu+2なる組成の合
金(7ンブルlaンとPr+ aNd7Fe7s 、 
5Bscu+ QGas、 sなる組成の合金(”1ン
フ6ルlbンとCe+、1INdz、5Dy2Fets
、sBs  3Cu+、i+A1e  7なる組成の合
金(フンプルlc)を溶解・鋳造し訪造インゴ・・t 
l−ル徂た− 、−の詩 え十頭 鋏 7バルト 猾及
びガリウムの原料としては、99.9%の純度のものを
用い、ボロンはフェロボロンを用いた。
[Example] [Example 1] Using a rust induction heating furnace in an argon atmosphere, Pry5Tb
+, aFessCO+sBa, eCu+2 alloy (7 Nblan and Pr+ aNd7Fe7s,
5Bscu+ QGas, alloy with composition s (1 6lb and Ce+, 1INdz, 5Dy2Fets
, sBs 3Cu+, i+A1e 7 An alloy (Humple LC) with a composition of
A poem of l-le-surva-,- Ejuzu Scissors 7 Barto As the raw materials for the scissors and gallium, those with a purity of 99.9% were used, and for the boron, ferroboron was used.

次ぎに、これらの鋳造インゴットを鉄製のカプセルに入
れ、密封した。これに975°Cで加工度15%の熱間
圧延を空気中で4回、つぎに加工度20%の熱間圧延を
空気中で3回行い、最終的に加工度が73%になるよう
にした。
These cast ingots were then placed in iron capsules and sealed. This was then hot rolled at 975°C with a working degree of 15% in air four times, and then hot rolled at a working degree of 20% in air three times, until the final working degree was 73%. I made it.

この後、これらの圧延磁石に対して次のような条件で熱
処理を施した。
Thereafter, these rolled magnets were subjected to heat treatment under the following conditions.

条件1:950°Cで4時間の熱処理後、熱処理炉から
取り出し空冷。この時の冷却速度は200°Cまでおよ
そ256C/分となっている。
Condition 1: After heat treatment at 950°C for 4 hours, it was taken out from the heat treatment furnace and cooled in air. The cooling rate at this time was approximately 256 C/min up to 200°C.

条件2二950℃で2時間の熱処理後、200°Cまで
140分で直線的に温度が下がるように制御冷却(5,
4°C/分)して熱処理炉から取り出し空冷。
Condition 2 After heat treatment at 950°C for 2 hours, controlled cooling so that the temperature decreased linearly to 200°C in 140 minutes (5,
4°C/min) and then removed from the heat treatment furnace and cooled in air.

この2種類の熱処理後の各サンプルの保磁力の値を第1
表に示す。
The coercive force value of each sample after these two types of heat treatment is
Shown in the table.

第1表 この第1表から熱処理後、800°Cから200°Cま
での範囲を 10°C/分以下の冷却速度で冷却するこ
とが保磁力の向上に有効であることがわかる。
Table 1 From Table 1, it can be seen that after heat treatment, cooling in the range from 800°C to 200°C at a cooling rate of 10°C/min or less is effective in improving the coercive force.

また磁石の熱処理時の割れ欠けは条件1のサンプルla
及びlbに見られ条件2のサンプルには見られなかった
。このことから熱処理後、s o o ’cから200
°Cまでの範囲を10°C/分以下の冷却速度で冷却す
ることが割れ欠けの防止にも有効なことが解る。
In addition, cracking and chipping during heat treatment of the magnet occurred in sample la under condition 1.
and lb, but not in the condition 2 sample. From this, after heat treatment, from so o'c to 200
It can be seen that cooling at a cooling rate of 10°C/min or less in the range up to 10°C is effective in preventing cracking and chipping.

[実施例2] Pr+5Dy2Fe7aBs2Cu+、sなる組成の合
金を実施例1と同様に溶解・鋳造し鋳造インゴットを得
た。
[Example 2] An alloy having the composition Pr+5Dy2Fe7aBs2Cu+,s was melted and cast in the same manner as in Example 1 to obtain a cast ingot.

次ぎに、これらの鋳造インゴットを鉄製のカプセルに入
れ、密封した。これに950℃で加工度10%の熱間圧
延を空気中で4回、つぎに加工度15%の熱間圧延を空
気中で4回行い、つぎに加工度2゜%の熱間圧延を空気
中で2回行い最終的に加工度が78%になるようにした
These cast ingots were then placed in iron capsules and sealed. This was then hot rolled at 950°C with a workability of 10% in air four times, then hot rolled at a workability of 15% in air four times, and then hot rolled at a workability of 2°%. The process was carried out twice in air to achieve a final processing degree of 78%.

そして、950 ’Cの熱処理を3時間施し続いて80
0°Cの熱処理を 1時間施した後に様々な条件で制御
冷却した。第2表に圧延磁石の各条件で熱処理後の冷却
を行なった時の、磁石の割れ、欠は等の欠陥の有無、保
磁力の結果を示す。
Then, heat treatment was performed at 950'C for 3 hours, followed by 80'C heat treatment for 3 hours.
After heat treatment at 0°C for 1 hour, controlled cooling was performed under various conditions. Table 2 shows the presence or absence of defects such as cracks and chips in the magnets and the coercive force results when the rolled magnets were cooled after heat treatment under various conditions.

この表から熱処理後、800℃から200℃までの範囲
を 10°C/分以下の冷却速度で冷却することが割れ
欠けの防止に有効なことが解る。
From this table, it can be seen that after heat treatment, cooling in the range from 800°C to 200°C at a cooling rate of 10°C/min or less is effective in preventing cracking and chipping.

以上の実施例から、R(ただしRはYを含む希土類元素
のうち少なくとも1種)、Fe、Bを原料基本成分とす
る永久磁石は、 500°C以上の熱間加工により異方
性化され、 250〜1100’Cにおける熱処理によ
り高保磁力を示し、その熱処理後、8QO°Cから20
0°Cまでの範囲を 10’C/分以下の冷却速度で冷
却することが割れ欠けの無い磁石が得られることは明ら
かである。
From the above examples, it can be seen that a permanent magnet whose basic raw materials are R (where R is at least one rare earth element including Y), Fe, and B can be made anisotropic by hot working at 500°C or higher. , It shows high coercive force by heat treatment at 250-1100'C, and after the heat treatment, it shows a high coercive force from 8QO °C to 20
It is clear that a magnet free from cracks and chips can be obtained by cooling down to 0°C at a cooling rate of 10'C/min or less.

[発明の効果] 以上のごとく本発明の永久磁石の製造方法は、次のごと
き効果を持つ。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

(1)c軸配向率を高めることができ、残留磁束密度B
rを著しく高めることができ、結晶粒を微細化すること
により保磁力iHcを高めることができ、最大エネルギ
ー積(BH)maxを格段に向上させることが出来た。
(1) The c-axis orientation rate can be increased, and the residual magnetic flux density B
By making the crystal grains finer, the coercive force iHc could be increased, and the maximum energy product (BH) max could be significantly improved.

(2)製造プロセスが簡単なのでコストが安い。(2) The cost is low because the manufacturing process is simple.

(3)従来の焼結法と比較して、加工工数及び生産投買
額を著しく低減させることが出来る。
(3) Compared to conventional sintering methods, processing man-hours and production investment costs can be significantly reduced.

(4”l従来のメルトスビニン)f注L′″十スKuT
小制功方法と比較して、高性能でしかも低コストの磁石
を作ることが出来る。
(4”l conventional meltsbinine) fNote L’”10s KuT
Compared to small-scale magnetization methods, it is possible to produce magnets with high performance and at low cost.

(5)従来の熱間加工磁石と比較して、磁気特性を向上
させることが出来る。
(5) Magnetic properties can be improved compared to conventional hot-processed magnets.

以上 出願人 セ・イコーエプソン株式会社that's all Applicant: SEIKO Epson Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種)、Fe、Bを原料基本成分とし、該基本成分
とする合金を溶解・鋳造し、次いで鋳造インゴットを5
00℃以上の温度において熱間加工し、次に250〜1
100℃の温度において熱処理して、その熱処理後、2
00℃〜800℃の範囲を冷却速度10℃/分以下で冷
却する事を特徴とする永久磁石の製造方法
(1) R (where R is at least one rare earth element including Y), Fe, and B are used as the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is
Hot working at a temperature of 00°C or higher, then 250~1
After heat treatment at a temperature of 100°C, 2
A method for manufacturing a permanent magnet characterized by cooling in the range of 00°C to 800°C at a cooling rate of 10°C/min or less
JP2127415A 1990-05-17 1990-05-17 Method of manufacturing permanent magnet Pending JPH0422105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127415A JPH0422105A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127415A JPH0422105A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Publications (1)

Publication Number Publication Date
JPH0422105A true JPH0422105A (en) 1992-01-27

Family

ID=14959400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127415A Pending JPH0422105A (en) 1990-05-17 1990-05-17 Method of manufacturing permanent magnet

Country Status (1)

Country Link
JP (1) JPH0422105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856277B1 (en) * 2002-06-07 2008-09-03 주식회사 포스코 A side guide device rotating with a forwarding of strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856277B1 (en) * 2002-06-07 2008-09-03 주식회사 포스코 A side guide device rotating with a forwarding of strip

Similar Documents

Publication Publication Date Title
JPS62198103A (en) Rare earth-iron permanent magnet
EP0288637A2 (en) Permanent magnet and method of making the same
JPH04143221A (en) Production of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH04187722A (en) Production of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH04134806A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH023210A (en) Permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH02252222A (en) Manufacture of permanent magnet
JPH04136131A (en) Manufacture of permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPH04324907A (en) Manufacture of permanent magnet
JPH04134805A (en) Manufacture of permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH0422102A (en) Method of manufacturing permanent magnet
JPS63286514A (en) Manufacture of permanent magnet