JPH08193536A - Fuel injection controller of cylinder injection type internal combustion engine - Google Patents

Fuel injection controller of cylinder injection type internal combustion engine

Info

Publication number
JPH08193536A
JPH08193536A JP7005725A JP572595A JPH08193536A JP H08193536 A JPH08193536 A JP H08193536A JP 7005725 A JP7005725 A JP 7005725A JP 572595 A JP572595 A JP 572595A JP H08193536 A JPH08193536 A JP H08193536A
Authority
JP
Japan
Prior art keywords
fuel
engine
fuel injection
cylinder
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7005725A
Other languages
Japanese (ja)
Inventor
Yoichi Sugiura
洋一 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7005725A priority Critical patent/JPH08193536A/en
Publication of JPH08193536A publication Critical patent/JPH08193536A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE: To enable it to start an engine with a modicum of fuel by spraying an amount of fuel more than a portion of energy so as to make a flame ignited by a spark plug so as to be propagable in a cylinder in an intake stroke in time of engine starting, and then injecting the minimal fuel capable of forming an ignitable air-fuel mixture in a compression stroke at the engine starting. CONSTITUTION: A fuel injection valve 5 is set up on the top of a cylinder chamber as pointing downward aslant, and also it is set up so as to spray fuel toward the vicinity of a spark plug 65. Then, at an electronic control unit 20, a fact of whether an engine is starting or not is judged, while a water temperature in the engine is read, and in time of starting the engine, a first fuel injection quantity capable of forming an air-fuel mixture of more than a portion of energy making the engine rotatable in a cylinder is calculated from a map of the water temperature, and simultaneously a second fuel injection quantity capable of forming the air-fuel mixture being ignitable in the vicinity of the spark plug 65 in a combustion chamber is calculated. In brief, a span of injection timing is controlled so as to spray the first fuel injection quantity at the time of an intake stroke, and the second fuel injection quantity at the time of a compression stroke, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は筒内噴射式内燃機関の燃
料噴射制御装置に関し、特に、機関始動時において吸気
行程と圧縮行程に要求燃料を分割噴射可能な筒内噴射式
内燃機関の燃料噴射制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a cylinder injection type internal combustion engine, and more particularly, to a fuel for a cylinder injection type internal combustion engine capable of separately injecting required fuel into an intake stroke and a compression stroke when the engine is started. The present invention relates to an injection control device.

【0002】[0002]

【従来の技術】特開平2−146239号公報には、機
関のシリンダヘッドの下端またはピストン頂部にシリン
ダ内に開口するように形成された凹状燃焼室に燃料噴射
する燃料噴射弁と、吸気通路の絞り度を調節する吸気絞
り装置とを備えた筒内直接噴射式火花点火機関におい
て、機関暖機運転時の吸気行程に燃料噴射弁から燃料噴
射すると共に吸気絞り装置の暖機中の絞り度を暖機完了
後の絞り度より大きくするように、且つ燃料噴射量が増
大するにつれて絞り度を減少するようにした機関が開示
されている。この機関によれば暖機中の吸気行程に燃料
噴射して燃料の蒸発霧化時間を長くとるようにしたので
燃焼室壁面に付着した燃料が蒸発され、且つ暖機運転時
に吸入空気量を制限したので燃焼に寄与しない過剰の吸
入空気への放熱が低減されるため燃料の蒸発霧化が促進
される。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 2-146239 discloses a fuel injection valve for injecting fuel into a concave combustion chamber which is formed at the lower end of a cylinder head of an engine or at the top of a piston so as to open into the cylinder, and an intake passage. In a cylinder direct injection spark ignition engine equipped with an intake throttle device that adjusts the throttle ratio, fuel is injected from a fuel injection valve during the intake stroke during engine warm-up operation, and the throttle ratio during warm-up of the intake throttle device is adjusted. An engine is disclosed in which the throttle ratio is made larger than that after completion of warm-up, and the throttle ratio is reduced as the fuel injection amount increases. According to this engine, fuel is injected into the intake stroke during warm-up to evaporate and atomize the fuel for a long time, so the fuel adhering to the wall of the combustion chamber is evaporated and the intake air amount is limited during warm-up operation. Therefore, the heat radiation to the excess intake air that does not contribute to the combustion is reduced, and the evaporation and atomization of the fuel is promoted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の筒
内直接噴射式火花点火機関は、機関始動時のクランキン
グ回転中は吸入空気量が充分とならず吸気行程において
燃料噴射しても燃料が気化しにくく燃焼室全体への混合
気の拡散が難しく点火プラグ近傍に良好な混合気を形成
することは難しい。これは機関の冷間時に特に発生す
る。さらに圧縮行程に燃料噴射したときは燃料量が多い
ため気化できずに燃焼室内に付着したり、噴射により跳
ね返って点火プラグに付着し、着火不良や失火を引き起
こすことがある。
However, in the above-described direct injection type spark ignition engine for a cylinder, the intake air amount is not sufficient during the cranking rotation at the time of engine start, and the fuel is not discharged even if the fuel is injected in the intake stroke. It is difficult to form and it is difficult to diffuse the air-fuel mixture into the entire combustion chamber, and it is difficult to form a good air-fuel mixture near the spark plug. This occurs especially when the engine is cold. Further, when the fuel is injected in the compression stroke, the amount of fuel is large, so that the fuel may not be vaporized and may adhere to the combustion chamber, or may bounce due to the injection and adhere to the ignition plug, resulting in ignition failure or misfire.

【0004】それゆえ本発明は前記問題を解決し、機関
始動時に良好な混合気を形成して始動不良を発生させな
い筒内噴射式内燃機関の燃料噴射制御装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and to provide a fuel injection control device for a cylinder injection type internal combustion engine which forms a favorable air-fuel mixture at the time of engine start and does not cause a start failure.

【0005】[0005]

【課題を解決するための手段】図1は本発明の基本ブロ
ック構成図である。前記目的を達成する第1の請求項に
かかる筒内噴射式内燃機関の燃料噴射制御装置は、機関
の気筒内に要求燃料を直接噴射できる燃料噴射弁を備え
た筒内噴射式内燃機関の燃料噴射制御装置において、機
関始動時に機関の燃焼室内に均質な混合気を形成するに
要する第一燃料噴射量を算出する第一噴射量算出手段
と、機関始動時に前記燃焼室内の点火プラグ近傍に着火
し得る混合気を形成するに要する第二燃料噴射量を算出
する第二噴射量算出手段と、前記第一燃料噴射量の燃料
を吸気行程時に噴射し、前記第二燃料噴射量の燃料を圧
縮行程時に噴射するように燃料噴射時期を制御する噴射
時期制御手段と、を備えたことを特徴とする。
FIG. 1 is a basic block diagram of the present invention. A fuel injection control device for a cylinder injection type internal combustion engine according to a first aspect for achieving the above object is a fuel for a cylinder injection type internal combustion engine comprising a fuel injection valve capable of directly injecting required fuel into a cylinder of the engine. In the injection control device, first injection amount calculation means for calculating a first fuel injection amount required to form a homogeneous air-fuel mixture in the combustion chamber of the engine when the engine is started, and ignition near a spark plug in the combustion chamber when the engine is started. A second injection amount calculation means for calculating a second fuel injection amount required to form a possible air-fuel mixture, and injecting the first fuel injection amount of fuel during an intake stroke to compress the second fuel injection amount of fuel. And an injection timing control means for controlling the fuel injection timing so that the fuel is injected during the stroke.

【0006】第2の請求項にかかる筒内噴射式内燃機関
の燃料噴射制御装置は、機関の回転数を検出する回転検
出手段と、前記回転検出手段により検出された機関の回
転数が高い程、前記圧縮行程時の燃料噴射時期を圧縮行
程の進角側に補正する噴射時期補正手段と、をさらに備
える。
According to a second aspect of the present invention, there is provided a fuel injection control device for a cylinder injection type internal combustion engine, wherein the rotation detection means for detecting the rotation speed of the engine and the higher the rotation speed of the engine detected by the rotation detection means. And an injection timing correction means for correcting the fuel injection timing during the compression stroke to the advance side of the compression stroke.

【0007】第3の請求項にかかる筒内噴射式内燃機関
の燃料噴射制御装置は、機関の気筒内に要求燃料を直接
噴射できる燃料噴射弁を備えた筒内噴射式内燃機関の燃
料噴射制御装置において、機関始動時に機関の燃焼室内
に均質な混合気を形成するに要する第一燃料噴射量を算
出する第一噴射量算出手段と、機関始動時に前記燃焼室
内の点火プラグ近傍に着火し得る混合気を形成するに要
する第二燃料噴射量を算出する第二噴射量算出手段と、
前記第一燃料噴射量の燃料を吸気行程時に噴射し、前記
第二燃料噴射量の燃料を圧縮行程時に噴射するように燃
料噴射時期を制御する噴射時期制御手段と、機関の回転
数を検出する回転検出手段と、前記回転検出手段により
検出された機関の回転数が高い程、前記第一燃料噴射量
を減量補正する第一燃料噴射量補正手段と、を備えたこ
とを特徴とする。
A fuel injection control device for a cylinder injection type internal combustion engine according to a third aspect of the invention is a fuel injection control for a cylinder injection type internal combustion engine having a fuel injection valve capable of directly injecting required fuel into a cylinder of the engine. In the device, a first injection amount calculation means for calculating a first fuel injection amount required to form a homogeneous air-fuel mixture in the combustion chamber of the engine when the engine is started, and ignition can be performed near the ignition plug in the combustion chamber when the engine is started. Second injection amount calculation means for calculating the second fuel injection amount required to form the air-fuel mixture,
Injection timing control means for controlling the fuel injection timing so as to inject the first fuel injection amount of fuel during the intake stroke and the second fuel injection amount of fuel during the compression stroke, and to detect the engine speed. It is characterized by further comprising rotation detecting means and first fuel injection amount correcting means for correcting the first fuel injection amount to decrease as the engine speed detected by the rotation detecting means increases.

【0008】第4の請求項にかかる筒内噴射式内燃機関
の燃料噴射制御装置は、機関始動開始から始動完了まで
の燃料噴射回数を計数する計数手段と、前記計数手段に
より計数された燃料噴射回数が大きくなる程、前記第一
燃料噴射量を減量補正する第二燃料噴射量補正手段と、
をさらに備える。
According to a fourth aspect of the present invention, there is provided a fuel injection control device for a cylinder injection type internal combustion engine, which comprises a counting means for counting the number of fuel injections from the start of engine start to the completion of start, and the fuel injection counted by the counting means. Second fuel injection amount correction means for correcting the first fuel injection amount to decrease as the number of times increases,
Is further provided.

【0009】[0009]

【作用】第1の請求項にかかる筒内噴射式内燃機関の燃
料噴射制御装置は、機関始動時の吸気行程において点火
プラグで点火された火炎が気筒内に伝播し得るように、
その点火に先立って気筒内に機関を回転開始させること
のできるエネルギー分以上の燃料を気化し拡散させるた
めの第一噴射燃料量を第一噴射量算出手段により算出
し、機関始動時の圧縮行程に着火可能な混合気を形成し
得る最小限の第二噴射燃料量を第二噴射量算出手段によ
り算出し、第一燃料噴射量を吸気行程時に噴射し第二燃
料噴射量を圧縮行程時に噴射するように噴射時期制御手
段により燃料噴射時期を制御するので、点火プラグ近傍
に良好な混合気が形成される。
A fuel injection control device for a cylinder injection type internal combustion engine according to a first aspect of the present invention enables a flame ignited by a spark plug to propagate into a cylinder during an intake stroke at engine startup.
Prior to the ignition, the first injection amount calculation means calculates the first injection fuel amount for vaporizing and diffusing the fuel in the amount equal to or more than the energy for starting the engine rotation in the cylinder, and the compression stroke at the engine start. The minimum amount of second injected fuel that can form an ignitable mixture is calculated by the second injection amount calculation means, and the first fuel injection amount is injected during the intake stroke and the second fuel injection amount is injected during the compression stroke. Since the fuel injection timing is controlled by the injection timing control means so that a favorable air-fuel mixture is formed in the vicinity of the spark plug.

【0010】第2の請求項にかかる筒内噴射式内燃機関
の燃料噴射制御装置は、回転検出手段により検出された
機関の回転数が高い程、噴射時期補正手段により圧縮行
程時の燃料噴射時期を進角側に補正するので、機関の始
動時の回転数にバラツキがあっても圧縮行程に噴射され
た燃料を気化するのに適切な時間が圧縮行程時の燃料噴
射時期から点火時期までに取れるように機関の回転数に
応じて制御され、着火時の点火プラグ近傍の混合気の状
態が最適となる。
In the fuel injection control device for a cylinder injection type internal combustion engine according to the second aspect, the higher the engine speed detected by the rotation detection means, the higher the engine speed of the engine detected by the injection timing correction means. Is corrected to the advance side, so even if there are variations in the number of revolutions at the start of the engine, an appropriate time to vaporize the fuel injected in the compression stroke is from the fuel injection timing to the ignition timing in the compression stroke. It is controlled according to the number of revolutions of the engine so that the optimum state of the air-fuel mixture near the ignition plug at the time of ignition is obtained.

【0011】第3の請求項にかかる筒内噴射式内燃機関
の燃料噴射制御装置は、回転検出手段により検出された
機関の回転数が高い程、第一燃料噴射量補正手段により
吸気行程の燃料噴射量を減量補正するので、機関の回転
数に応じた吸入空気量に対して吸気行程の噴射燃料量が
適量となり、気筒内の燃料の気化や拡散が適正となる。
In the fuel injection control device for a cylinder injection type internal combustion engine according to the third aspect of the present invention, the higher the engine speed detected by the rotation detecting means, the more the fuel in the intake stroke by the first fuel injection amount correcting means. Since the injection amount is reduced and corrected, the injection fuel amount in the intake stroke becomes appropriate with respect to the intake air amount according to the engine speed, and the vaporization and diffusion of the fuel in the cylinder becomes appropriate.

【0012】また第4の請求項にかかる筒内噴射式内燃
機関の燃料噴射制御装置は、機関始動開始から始動完了
までの燃料噴射回数を計数手段により計数して燃料噴射
回数が大きくなる程、第二燃料噴射量補正手段により吸
気行程の燃料噴射量を減量補正するので、噴射燃料の燃
焼室内の付着を防止し、ひいては付着した燃料が燃焼室
内に飛び散って点火プラグに付着することを防止する。
According to a fourth aspect of the present invention, there is provided a fuel injection control device for a cylinder injection type internal combustion engine, wherein the counting means counts the number of fuel injections from the start of engine start to the completion of start. Since the second fuel injection amount correcting means corrects the fuel injection amount in the intake stroke to be reduced, it is possible to prevent the injected fuel from adhering to the combustion chamber, and thus to prevent the adhered fuel from scattering into the combustion chamber and adhering to the ignition plug. .

【0013】[0013]

【実施例】図1は本発明の実施例に採用した4気筒ガソ
リン機関の構成図である。本図において1は機関本体、
2はサージタンク、3はエアクリーナ、4はサージタン
ク2とエアクリーナ3とを連結する吸気管、5は各気筒
内に燃料噴射する電歪式の高圧燃料噴射弁、6は高圧用
リザーバタンク、7は高圧導管8を介して高圧燃料をリ
ザーバタンク6に圧送するための吐出圧制御可能な高圧
燃料ポンプ、9は燃料タンク、10は導管11を介して
燃料タンク9から高圧燃料ポンプ7に燃料を供給する低
圧燃料ポンプ、65は点火プラグをそれぞれ示す。低圧
燃料ポンプ10の吐出側は各燃料噴射弁5のピエゾ圧電
素子を冷却するための圧電素子冷却用導入管12に接続
される。圧電素子冷却用返戻管13は燃料タンク9に連
結され、圧電素子冷却用返戻管13を介して圧電素子冷
却用導入管12を流れる燃料を燃料タンク9に回収す
る。各枝管14は各高圧燃料噴射弁5を高圧用リザーバ
タンク6に接続する。
1 is a block diagram of a four-cylinder gasoline engine adopted in an embodiment of the present invention. In the figure, 1 is the engine body,
2 is a surge tank, 3 is an air cleaner, 4 is an intake pipe connecting the surge tank 2 and the air cleaner 3, 5 is an electrostrictive high pressure fuel injection valve for injecting fuel into each cylinder, 6 is a high pressure reservoir tank, 7 Is a high-pressure fuel pump capable of controlling the discharge pressure for pumping high-pressure fuel to the reservoir tank 6 via the high-pressure conduit 8, 9 is a fuel tank, and 10 is fuel from the fuel tank 9 to the high-pressure fuel pump 7 via the conduit 11. The low-pressure fuel pump to be supplied and 65 are spark plugs, respectively. The discharge side of the low-pressure fuel pump 10 is connected to a piezoelectric element cooling introduction pipe 12 for cooling the piezoelectric element of each fuel injection valve 5. The piezoelectric element cooling return pipe 13 is connected to the fuel tank 9, and the fuel flowing through the piezoelectric element cooling introduction pipe 12 via the piezoelectric element cooling return pipe 13 is collected in the fuel tank 9. Each branch pipe 14 connects each high-pressure fuel injection valve 5 to the high-pressure reservoir tank 6.

【0014】電子制御ユニット20はデジタルコンピュ
ータからなり、双方向性バス21によって相互に接続さ
れたROM(リードオンリメモリ)22、RAM(ラン
ダムアクセスメモリ)、マイクロプロセッサによるCP
U(セントラルプロセッシングユニット)24、入力ポ
ート25および出力ポート26を備える。高圧用リザー
バタンク6に取り付けられた圧力センサ27は高圧用リ
ザーバタンク6内の圧力を検出し、その検出信号はA/
Dコンバータ28を介して入力ポート25に入力され
る。機関回転数NEに比例した出力パルスを発生するク
ランク角センサ29の出力パルスは入力ポート25に入
力される。アクセルペダル(図示せず)の開度θAに応
じた出力電圧を発生するアクセル開度センサ30の出力
電圧はA/Dコンバータ31を介して入力ポート25に
入力される。機関本体1に取り付けられた水温センサ3
2は機関冷却水温を検出し、その検出信号はA/Dコン
バータ33を介して入力ポート25に入力される。一
方、各燃料噴射弁5は各駆動回路34を介して出力ポー
ト26に接続される。また各点火プラグ65は各駆動回
路35を介して出力ポート26に接続される。また高圧
燃料ポンプ7は駆動回路36を介して出力ポート26に
接続される。本発明による機関の燃料噴射制御ルーチン
は電子制御ユニット20により実行される。
The electronic control unit 20 is composed of a digital computer, and has a ROM (Read Only Memory) 22, a RAM (Random Access Memory) and a CP by a microprocessor which are mutually connected by a bidirectional bus 21.
A U (Central Processing Unit) 24, an input port 25 and an output port 26 are provided. The pressure sensor 27 attached to the high pressure reservoir tank 6 detects the pressure in the high pressure reservoir tank 6, and the detection signal is A /
It is input to the input port 25 via the D converter 28. The output pulse of the crank angle sensor 29 that generates an output pulse proportional to the engine speed NE is input to the input port 25. An output voltage of an accelerator opening sensor 30 that generates an output voltage according to an opening θA of an accelerator pedal (not shown) is input to an input port 25 via an A / D converter 31. Water temperature sensor 3 attached to the engine body 1
2 detects the engine cooling water temperature, and the detection signal is input to the input port 25 via the A / D converter 33. On the other hand, each fuel injection valve 5 is connected to the output port 26 via each drive circuit 34. Further, each spark plug 65 is connected to the output port 26 via each drive circuit 35. Further, the high-pressure fuel pump 7 is connected to the output port 26 via the drive circuit 36. The engine fuel injection control routine according to the present invention is executed by the electronic control unit 20.

【0015】図2は燃料噴射弁5の側断面図である。本
図において40はノズル50内に挿入されたニードル、
41は加圧ロッド、42は可動プランジャ、43はバネ
収容室44内に配置されかつニードル40を下方に向け
て押圧する圧縮バネ、45は加圧ピストン、46はピエ
ゾ圧電素子、47は可動プランジャ42の頂部とピスト
ン45間に形成されかつ燃料で満たされた加圧室、48
はニードル加圧室をそれぞれ示す。ニードル加圧室48
は燃料通路49および枝管14を介して高圧用リザーバ
タンク6(図1)に連結され、従って高圧用リザーバタ
ンク6内の高圧燃料が枝管14および燃料通路49を介
してニードル加圧室48内に供給される。ピエゾ圧電素
子46に電荷が充電されるとピエゾ圧電素子46が伸長
し、それによって加圧室47内の燃料圧が高められる。
その結果、可動プランジャ42が下方に押圧され、ノズ
ル口53はニードル40によって閉弁状態に保持され
る。一方、ピエゾ圧電素子46に充電された電荷が放電
されるとピエゾ圧電素子46が収縮し、加圧室47内の
燃料圧が低下する。その結果、可動プランジャ42が上
昇するためにニードル40が上昇しノズル口53から燃
料が噴射される。
FIG. 2 is a side sectional view of the fuel injection valve 5. In this figure, 40 is a needle inserted in the nozzle 50,
Reference numeral 41 is a pressure rod, 42 is a movable plunger, 43 is a compression spring which is arranged in the spring accommodating chamber 44 and presses the needle 40 downward, 45 is a pressure piston, 46 is a piezoelectric element, and 47 is a movable plunger. A pressure chamber formed between the top of 42 and the piston 45 and filled with fuel, 48
Indicate needle pressurizing chambers, respectively. Needle pressure chamber 48
Is connected to the high-pressure reservoir tank 6 (FIG. 1) via the fuel passage 49 and the branch pipe 14, so that the high-pressure fuel in the high-pressure reservoir tank 6 passes through the branch pipe 14 and the fuel passage 49 to the needle pressurizing chamber 48. Supplied within. When the piezoelectric element 46 is charged with electric charge, the piezoelectric element 46 expands, thereby increasing the fuel pressure in the pressurizing chamber 47.
As a result, the movable plunger 42 is pressed downward, and the nozzle opening 53 is kept closed by the needle 40. On the other hand, when the electric charge charged in the piezoelectric element 46 is discharged, the piezoelectric element 46 contracts and the fuel pressure in the pressurizing chamber 47 decreases. As a result, the movable plunger 42 rises, the needle 40 rises, and the fuel is injected from the nozzle port 53.

【0016】図3は第一実施例の圧縮行程後期における
機関の縦断面図である。本図において60はシリンダブ
ロック、61はシリンダヘッド、62はピストン、63
はピストン62の頂面に形成された略円筒状凹部、64
はピストン62の頂面とシリンダヘッド61内壁面間に
形成されたシリンダ室をそれぞれ示す。点火プラグ65
はシリンダ室64に臨んでシリンダヘッド61の略中央
部に取り付けられる。図示しないがシリンダヘッド61
内には吸気ポートおよび排気ポートが形成され、これら
吸気ポートおよび排気ポートのシリンダ室64内への開
口部にはそれぞれ吸気弁66(図4の(a)参照)およ
び排気弁が配置される。燃料噴射弁5はスワール型の燃
料噴射弁であり、広がり角が大きく噴霧の分散が多い貫
徹力の弱い噴霧状の燃料を噴射する。燃料噴射弁5は斜
め下方を指向してシリンダ室64の頂部に配置され、点
火プラグ65近傍に向かって燃料噴射するように配置さ
れる。また燃料噴射弁5の燃料噴射方向および燃料噴射
時期は噴射燃料がピストン62の頂部に形成された凹部
63に指向するように決められている。
FIG. 3 is a longitudinal sectional view of the engine in the latter stage of the compression stroke of the first embodiment. In this figure, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, and 63.
Is a substantially cylindrical recess formed on the top surface of the piston 62, 64
Indicates a cylinder chamber formed between the top surface of the piston 62 and the inner wall surface of the cylinder head 61. Spark plug 65
Is attached to a substantially central portion of the cylinder head 61 so as to face the cylinder chamber 64. Although not shown, the cylinder head 61
An intake port and an exhaust port are formed inside, and an intake valve 66 (see (a) of FIG. 4) and an exhaust valve are arranged at openings of the intake port and the exhaust port into the cylinder chamber 64, respectively. The fuel injection valve 5 is a swirl type fuel injection valve, and injects a fuel in the form of a spray having a wide spread angle and a large dispersion of the spray, and a weak penetration force. The fuel injection valve 5 is arranged diagonally downward at the top of the cylinder chamber 64 and is arranged so as to inject fuel toward the vicinity of the spark plug 65. Further, the fuel injection direction and the fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed to the recess 63 formed at the top of the piston 62.

【0017】図4は第一実施例の機関の動作説明図であ
り、(a)は吸気行程初期、(b)は吸気行程後期から
圧縮行程初期、(c)は圧縮行程後期、および(d)は
燃焼行程における機関の動作をそれぞれ示す図である。
本発明の第一実施例においては機関の始動時に図4の
(a)に示す吸気行程初期の吸気行程噴射と図4の
(c)に示す圧縮行程後期の圧縮行程噴射が実行され
る。先ず図4の(a)に示すように燃料噴射弁5から点
火プラグ65およびピストン62の頂面の凹部63を指
向して吸気行程に燃料が噴射される。この噴射燃料は広
がり角が大きく貫徹力の弱い噴霧状の燃料であり、噴射
燃料の一部はシリンダ室64に浮遊し、他は凹部63に
衝突する。これらの噴射燃料は吸気ポートからシリンダ
室64内に流入する吸入空気流によって生ずるシリンダ
室64内の乱れRによってシリンダ室64内に拡散さ
れ、図4の(b)に示すように吸気行程から圧縮行程に
至る間に予混合気Pが形成される。この予混合気Pの空
燃比は着火火炎が伝播できる程度の空燃比である。図4
の(b)の状態では噴射燃料の中心軸線の延長がシリン
ダ壁に指向しているため噴射燃料の貫徹力が強い場合に
は噴霧の一部が直接シリンダ壁に付着する虞があるが、
この期間を無噴射期間とすることにより燃料のシリンダ
壁面への付着防止効果を高めている。
4A and 4B are explanatory diagrams of the operation of the engine of the first embodiment. FIG. 4A is an early intake stroke, FIG. 4B is a late intake stroke to an early compression stroke, and FIG. 4C is a late compression stroke, and FIG. 4] are views showing the operation of the engine in the combustion stroke, respectively.
In the first embodiment of the present invention, when the engine is started, the intake stroke injection at the beginning of the intake stroke shown in FIG. 4A and the compression stroke injection at the latter stage of the compression stroke shown in FIG. 4C are executed. First, as shown in (a) of FIG. 4, fuel is injected from the fuel injection valve 5 toward the spark plug 65 and the recess 63 on the top surface of the piston 62 in the intake stroke. The injected fuel is a spray-like fuel having a large divergence angle and a weak penetration force, and a part of the injected fuel floats in the cylinder chamber 64 and the other collides with the recess 63. These injected fuels are diffused into the cylinder chamber 64 by the turbulence R in the cylinder chamber 64 caused by the intake air flow flowing into the cylinder chamber 64 from the intake port, and are compressed from the intake stroke as shown in FIG. 4B. The premixed gas P is formed during the stroke. The air-fuel ratio of the premixed air P is such that the ignition flame can propagate. FIG.
In the state of (b), since the extension of the central axis of the injected fuel is directed toward the cylinder wall, there is a possibility that a part of the spray may directly adhere to the cylinder wall when the penetrating force of the injected fuel is strong.
By making this period a non-injection period, the effect of preventing fuel from adhering to the cylinder wall surface is enhanced.

【0018】図4の(c)に示すように燃料噴射弁5か
ら点火プラグ65近傍およびピストン62頂面の凹部6
3を指向して圧縮行程後期に噴射が行われる。この噴射
燃料は元々点火プラグ65に指向している上貫徹力が弱
く、またシリンダ室64内の圧力が大きいため噴射燃料
は点火プラグ65付近の領域Kに偏在する。この領域K
内の燃料分布も不均一であり、リッチな混合気層から空
気層まで変化するため、この領域K内には最も燃焼し易
い理論空燃比付近の可燃混合気層が存在する。したがっ
て図4の(d)の燃焼行程において、点火プラグ65付
近の可燃混合気層が着火されると不均一混合気領域Kを
中心に燃焼が進行する。この燃焼過程で体積膨張した燃
焼ガスBの周辺から順次、予混合気Pに火炎が伝播し燃
焼が完了する。
As shown in FIG. 4 (c), the fuel injection valve 5 to the vicinity of the spark plug 65 and the concave portion 6 on the top surface of the piston 62.
Injection is performed in the latter half of the compression stroke by directing to point 3. The injected fuel originally has a weak upward penetration force directed to the spark plug 65, and the pressure in the cylinder chamber 64 is large, so that the injected fuel is unevenly distributed in the region K near the spark plug 65. This area K
Since the fuel distribution inside is also non-uniform and changes from the rich air-fuel mixture layer to the air layer, a combustible air-fuel mixture layer near the stoichiometric air-fuel ratio that is most likely to burn exists in this region K. Therefore, in the combustion stroke of FIG. 4D, when the combustible mixture layer near the ignition plug 65 is ignited, the combustion proceeds around the nonuniform mixture region K. In this combustion process, the flame is sequentially propagated to the premixed gas P from the periphery of the combustion gas B whose volume is expanded, and the combustion is completed.

【0019】このように第一実施例において、機関の始
動時の吸気行程初期に燃料を噴射することにより(機関
を回転させ、かつ)火炎伝播用の混合気をシリンダ室6
4内全体に形成すると共に、圧縮行程後期に燃料を噴射
することにより点火プラグ65近傍に比較的濃い混合気
を形成することができ、良好な着火と空気利用率の高い
燃焼が得られる。
As described above, in the first embodiment, by injecting the fuel at the beginning of the intake stroke at the time of starting the engine (rotating the engine, and), the air-fuel mixture for flame propagation is supplied to the cylinder chamber 6
In addition to being formed in the whole of No. 4 and by injecting fuel in the latter part of the compression stroke, a relatively rich air-fuel mixture can be formed in the vicinity of the ignition plug 65, and good ignition and combustion with a high air utilization rate can be obtained.

【0020】図5は第1と第2の請求項にかかる機関の
燃料噴射制御ルーチンを示すフローチャートである。本
図に示す燃料噴射制御ルーチンは720°CR毎の割り
込みによって各噴射弁に対して実行される。この割り込
み処理は各噴射弁間で180°CR(クランク角)づつ
シフトして実行開始される。本図においてSに続く数字
はステップ番号を示す。なお本フローチャートにおいて
ステップS4は第二発明に関する。先ずステップS1で
は機関がクランキング回転中であるか否かを、例えばN
Eと600RPMを比較して0<NE<600RPMの
ときはクランキング回転中とみなしステップS2へ進み
NE≧600RPMのときは始動完了とみなしクランキ
ング回転フラグを1にセットしこのルーチンを終了す
る。このフラグが1にセットされた後はNE<400R
PMとなるまではフラグを1に保持し回転数が降下しN
E<400RPMとなったとき再びフラグを0にリセッ
トしてクランキング回転中とみなす。すなわちヒステリ
ヒスをもたせて始動中の制御と始動完了後の制御の切り
替わりが頻繁に行われて機関の燃焼が不安定になること
を防止している。
FIG. 5 is a flow chart showing a fuel injection control routine of the engine according to the first and second claims. The fuel injection control routine shown in this figure is executed for each injection valve by interruption every 720 ° CR. This interrupt process is started by shifting each injection valve by 180 ° CR (crank angle). In the figure, the numbers following S indicate step numbers. Note that step S4 in this flowchart relates to the second invention. First, in step S1, it is determined whether the engine is cranking or not, for example, N
E is compared with 600 RPM, and when 0 <NE <600 RPM, it is considered that cranking rotation is in progress and the process proceeds to step S2. When NE ≧ 600 RPM, it is considered that start is completed and the cranking rotation flag is set to 1 and this routine is ended. NE <400R after this flag is set to 1
The flag is kept at 1 until the PM is reached, the rotation speed drops and N
When E <400 RPM, the flag is reset to 0 and cranking rotation is considered to be in progress. That is, it is possible to prevent the combustion of the engine from becoming unstable due to frequent switching between the control during the start and the control after the start is completed by providing hysterisis.

【0021】ステップS2では機関の水温を読み取り、
ステップS3へ進む。ステップS3では図6に示す機関
の水温に対する吸気行程の燃料噴射量Qinj1のマップ1
からステップS2で読み取った水温に対する燃料噴射量
Qinj1を算出する。このマップは実験により求めたデー
タに基づいて作成され予めROMに格納される。このマ
ップから判るように水温が低い程燃料噴射量Qinj1は高
く設定されている。
In step S2, the water temperature of the engine is read,
Go to step S3. In step S3, the map 1 of the fuel injection amount Qinj1 in the intake stroke with respect to the engine water temperature shown in FIG.
Then, the fuel injection amount Qinj1 with respect to the water temperature read in step S2 is calculated. This map is created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the lower the water temperature, the higher the fuel injection amount Qinj1 is set.

【0022】ステップS4では図7に示す機関の回転数
NEに対する圧縮行程の噴射時期のマップ2から機関の
クランク角センサから検出され算出された現在の機関の
回転数NEに対する圧縮行程の噴射時期を算出する。こ
のマップも実験により求めたデータに基づいて作成され
予めROMに格納される。このマップから判るように機
関の回転数が高い程噴射時期は進角側に設定される。こ
れは圧縮行程に噴射した燃料が気化し良好な混合気とな
るまでの時間は略一定なので機関の回転数が高い程噴射
時期を進角側として気化時間をもたせるからである。
In step S4, the injection timing of the compression stroke for the current engine speed NE calculated from the crank angle sensor of the engine is calculated from the map 2 of the injection timing of the compression stroke for the engine speed NE shown in FIG. calculate. This map is also created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the injection timing is set to the advance side as the engine speed increases. This is because the time it takes for the fuel injected in the compression stroke to vaporize and become a good mixture is substantially constant, so that the injection timing is advanced and the vaporization time is increased as the engine speed increases.

【0023】このように求められた吸気行程の燃料噴射
量と圧縮行程の燃料噴射時期に基づいて、燃料噴射弁は
開弁制御される。なお、吸気行程の燃料噴射時期は各燃
料噴射弁に対して所定のクランク角とし、圧縮行程の燃
料噴射量は各燃料噴射弁に対して所定量に設定する。圧
縮行程の燃料噴射量に関しては図6と同様に水温に対す
るマップを設けてもよい。以上により第1と第2の請求
項にかかる発明は、機関の始動に必要なトルクを発生さ
せる燃料の大半を吸気行程で噴射し、その噴射燃料が気
化し拡散した圧縮行程の噴射時期に、点火に必要最小限
の火種分の燃料を噴射するので、良好な混合気を形成す
ることができ、機関の始動性を良好にする。
The fuel injection valve is controlled to open based on the fuel injection amount in the intake stroke and the fuel injection timing in the compression stroke thus obtained. The fuel injection timing in the intake stroke is set to a predetermined crank angle for each fuel injection valve, and the fuel injection amount in the compression stroke is set to a predetermined amount for each fuel injection valve. Regarding the fuel injection amount in the compression stroke, a map for the water temperature may be provided as in FIG. As described above, the invention according to the first and second claims injects most of the fuel that generates the torque necessary for starting the engine in the intake stroke, and the injected fuel is vaporized and diffused at the injection timing of the compression stroke, Since a minimum amount of fuel required for ignition is injected, a good air-fuel mixture can be formed and engine startability is improved.

【0024】図8は第3と第4の請求項にかかる機関の
燃料噴射制御ルーチンを示すフローチャートである。本
図に示す燃料噴射制御ルーチンは720°CR毎の割り
込みによって各噴射弁に対して実行される。この割り込
み処理は各噴射弁間で180°CRづつシフトして実行
開始される。本図においてSに続く数字はステップ番号
を示す。なお本フローチャートにおいてステップS5と
S6は第四発明に関する。先ずステップS1では機関が
クランキング回転中であるか否かを、図5のステップS
1と同様に判別する。クランキングフラグが0のときス
テップS2へ進み、クランキングフラグが1にセットさ
れたとき始動完了とみなしステップS11へ進み、噴射
回数カウンタIJCUTをクリアする。
FIG. 8 is a flow chart showing a fuel injection control routine of the engine according to the third and fourth claims. The fuel injection control routine shown in this figure is executed for each injection valve by interruption every 720 ° CR. This interrupt process is started by shifting each injection valve by 180 ° CR. In the figure, the numbers following S indicate step numbers. In this flowchart, steps S5 and S6 relate to the fourth invention. First, in step S1, it is determined whether the engine is cranking or not in step S1 of FIG.
It is determined in the same manner as 1. When the cranking flag is 0, the process proceeds to step S2. When the cranking flag is set to 1, it is considered that the start is completed and the process proceeds to step S11 to clear the injection number counter IJCUT.

【0025】ステップS2では機関の水温を読み取り、
ステップS3へ進む。ステップS3では図6に示す機関
の水温に対する吸気行程の燃料噴射量Qinj1のマップ1
からステップS2で読み取った水温に対する燃料噴射量
Qinj1を算出する。このマップは実験により求めたデー
タに基づいて作成され予めROMに格納される。このマ
ップから判るように水温が低い程燃料噴射量Qinj1は高
く設定されている。
In step S2, the water temperature of the engine is read,
Go to step S3. In step S3, the map 1 of the fuel injection amount Qinj1 in the intake stroke with respect to the engine water temperature shown in FIG.
Then, the fuel injection amount Qinj1 with respect to the water temperature read in step S2 is calculated. This map is created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the lower the water temperature, the higher the fuel injection amount Qinj1 is set.

【0026】ステップS4では図9に示す機関の回転数
NEに対する吸気行程の噴射量を補正する補正係数KN
Eのマップ3から機関のクランク角センサから検出され
算出された現在の回転数NEに対する補正係数KNEを
算出する。このマップも実験により求めたデータに基づ
いて作成され予めROMに格納される。このマップから
判るように機関の回転数が低い程補正係数KNEは高く
設定され機関の回転数が高くなる程漸次減少している。
これは回転数が高い程吸入空気の流速が大きいので、噴
射した燃料が気化し拡散し良好な混合気となりやすく、
シリンダ壁等に付着して無駄になる燃料分が少ないから
である。
In step S4, a correction coefficient KN for correcting the injection amount in the intake stroke with respect to the engine speed NE shown in FIG.
From the map 3 of E, the correction coefficient KNE for the current rotational speed NE detected and calculated by the crank angle sensor of the engine is calculated. This map is also created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the lower the engine speed is, the higher the correction coefficient KNE is set, and the higher the engine speed, the more the correction coefficient KNE gradually decreases.
This is because the higher the number of revolutions, the higher the flow velocity of the intake air, so the injected fuel is likely to vaporize and diffuse, resulting in a good mixture.
This is because a small amount of fuel is wasted by adhering to the cylinder wall or the like.

【0027】ステップS5では噴射回数カウンタIJC
UTを1インクリメントする。すなわちIJCUT=I
JCUT+1を演算する。ステップS6では図10に示
す噴射回数に対する吸気行程の噴射量を補正する補正係
数KCのマップ4から補正係数KCを算出する。このマ
ップも実験により求めたデータに基づいて作成され予め
ROMに格納される。このマップから判るように噴射回
数が多い程補正係数KCは低く設定され、すなわち噴射
回数が多くなる程補正係数KCは漸次減少する。これは
機関の始動に時間を要し噴射する度に同量の燃料が噴射
されると燃料過多となり燃焼室内に燃料が付着しプラグ
かぶりやくすぶりが発生し始動性を悪化させるからであ
る。
In step S5, the injection number counter IJC
Increment the UT by 1. That is, IJCUT = I
Calculate JCUT + 1. In step S6, the correction coefficient KC is calculated from the map 4 of the correction coefficient KC for correcting the injection amount in the intake stroke with respect to the number of injections shown in FIG. This map is also created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the correction coefficient KC is set lower as the number of injections increases, that is, the correction coefficient KC gradually decreases as the number of injections increases. This is because it takes time to start the engine, and if the same amount of fuel is injected each time the fuel is injected, the fuel becomes excessive and the fuel adheres to the combustion chamber, causing plug fogging and smoldering, which deteriorates startability.

【0028】ステップS7ではステップS4で求めた補
正係数KNE、ステップS6で求めたKCを用いて次式
から吸気行程の噴射量Qinj1を算出する。 Qinj1=Qinj1×KNE×KC
In step S7, the injection amount Qinj1 in the intake stroke is calculated from the following equation using the correction coefficient KNE obtained in step S4 and KC obtained in step S6. Qinj1 = Qinj1 x KNE x KC

【0029】ステップS8では図7に示す機関の回転数
NEに対する圧縮行程の噴射時期のマップ2から圧縮行
程における噴射時期を算出する。このマップも実験によ
り求めたデータに基づいて作成され予めROMに格納さ
れる。このマップから判るように機関の回転数が高い程
噴射時期は進角側に設定される。これは圧縮行程に噴射
した燃料が気化し良好な混合気となるまでの時間は略一
定なので機関の回転数が高い程噴射時期を進角側とする
必要があるからである。
In step S8, the injection timing in the compression stroke is calculated from the map 2 of the injection timing in the compression stroke with respect to the engine speed NE shown in FIG. This map is also created based on the data obtained by the experiment and stored in the ROM in advance. As can be seen from this map, the injection timing is set to the advance side as the engine speed increases. This is because the time taken for the fuel injected in the compression stroke to vaporize and become a good mixture is substantially constant, so the injection timing must be advanced as the engine speed increases.

【0030】このように求められた吸気行程の燃料噴射
量と圧縮行程の燃料噴射時期に基づいて、燃料噴射弁は
開弁制御される。なお、吸気行程の燃料噴射時期は各燃
料噴射弁に対して所定のクランク角とし、圧縮行程の燃
料噴射量は各燃料噴射弁に対して所定量に設定する。圧
縮行程の燃料噴射量に関しては図6と同様に水温に対す
るマップを設けてもよい。以上により第3と第4の請求
項にかかる発明は、機関の始動の吸気行程噴射におい
て、噴射燃料を機関のクランキング回転数が高い程補正
係数KNEは漸次減少して噴射燃料を減量するので良好
な混合気を得つつ、また噴射回数が多くなる程補正係数
KCを漸次減少して噴射燃料を減量するので燃料過多に
よる燃焼室内への燃料の付着を防止でき、機関の始動不
良を防止できる。
The fuel injection valve is controlled to open based on the fuel injection amount in the intake stroke and the fuel injection timing in the compression stroke thus obtained. The fuel injection timing in the intake stroke is set to a predetermined crank angle for each fuel injection valve, and the fuel injection amount in the compression stroke is set to a predetermined amount for each fuel injection valve. Regarding the fuel injection amount in the compression stroke, a map for the water temperature may be provided as in FIG. As described above, in the inventions according to the third and fourth claims, in the intake stroke injection for starting the engine, the higher the cranking speed of the engine is, the more the correction coefficient KNE is gradually decreased and the injected fuel is decreased. While obtaining a good air-fuel mixture, and as the number of injections increases, the correction coefficient KC is gradually decreased to reduce the amount of injected fuel, so that the fuel can be prevented from adhering to the combustion chamber due to excessive fuel, and engine start failure can be prevented. .

【0031】以上説明してきた本発明の実施例に採用し
た機関は、気筒内に直接燃料を噴射できるようにした燃
料噴射弁を設け前述のように吸気行程噴射と圧縮行程噴
射を行うものであったが、これに加えて機関の吸気ポー
トに向けて燃料を噴射する燃料噴射弁を別に設けて、こ
の燃料噴射弁より燃料を噴射することにより前述の吸気
行程噴射と同様な均質な混合気を得ることができるよう
にしてもよい。さらに前述の気筒内に直接噴射する燃料
噴射弁からも吸気行程噴射の一部を行ってもよいことは
言うまでもない。
The engine adopted in the embodiment of the present invention described above is provided with the fuel injection valve capable of directly injecting fuel into the cylinder to perform the intake stroke injection and the compression stroke injection as described above. However, in addition to this, a separate fuel injection valve for injecting fuel toward the intake port of the engine is provided, and by injecting fuel from this fuel injection valve, a homogeneous mixture similar to the above-described intake stroke injection is obtained. You may be able to obtain. Needless to say, part of the intake stroke injection may be performed from the above-described fuel injection valve that directly injects into the cylinder.

【0032】図11は第二実施例の圧縮行程後期におけ
る機関の縦断面図である。図3に示した第一実施例と比
べて燃料噴射弁5およびピストン62の頂部に形成され
る凹部が異なる。異なる点について以下に説明する。ピ
ストン頂部に形成された凹状燃焼室67は上部側の大径
の浅皿部68と、浅皿部68の中央部に形成された下部
側の深皿部69との二重構造とされ、深皿部69は浅皿
部68よりも小径に形成されている。
FIG. 11 is a longitudinal sectional view of the engine in the latter half of the compression stroke of the second embodiment. The recesses formed at the top of the fuel injection valve 5 and the piston 62 are different from those of the first embodiment shown in FIG. The different points will be described below. The concave combustion chamber 67 formed on the top of the piston has a double structure of a large-diameter shallow dish portion 68 on the upper side and a deep dish portion 69 on the lower side formed in the central portion of the shallow dish section 68. The dish 69 has a smaller diameter than the shallow dish 68.

【0033】図示しない吸気ポートはスワールポートと
なっており燃料噴射弁5は多噴孔ホールノズルを有す
る。したがって燃料噴射弁5は比較的貫徹力が強くかつ
広がり角の小さい比較的棒状の燃料を噴射する。燃料噴
射弁5は斜め下方を指向してシリンダ室64の頂部に配
置される。また燃料噴射弁5の燃料噴射方向および燃料
噴射時期は噴射燃料が燃焼室67内に指向するように決
められている。点火プラグ65はピストン62が上死点
の時に凹状燃焼室67内に位置するように配設される。
The intake port (not shown) is a swirl port, and the fuel injection valve 5 has a multi-hole nozzle. Therefore, the fuel injection valve 5 injects a relatively rod-shaped fuel having a relatively high penetration force and a small spread angle. The fuel injection valve 5 is arranged diagonally downward and is arranged at the top of the cylinder chamber 64. The fuel injection direction and fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed into the combustion chamber 67. The spark plug 65 is arranged so as to be located in the concave combustion chamber 67 when the piston 62 is at the top dead center.

【0034】図12は第二実施例の機関の動作説明図で
あり、(a)は吸気行程初期、(b)は吸気行程後期か
ら圧縮行程初期、(c)は圧縮行程後期、および(d)
は燃焼行程における機関の動作をそれぞれ示す図であ
る。図4を参照しつつ説明した第一実施例と同様に本発
明の第二実施例においては機関の始動時に図12の
(a)に示す吸気行程初期の吸気行程噴射と図12の
(c)に示す圧縮行程後期の圧縮行程噴射が実行され
る。先ず図12の(a)に示すように吸気行程に燃料噴
射弁5から燃焼室67を指向して燃料が噴射される。こ
の噴射燃料Fは主に浅皿部68に衝突しその一部はシリ
ンダ室54中に反射し、他の一部は浅皿部68の壁面に
付着し壁面からの加熱により蒸発霧化する。これらの燃
料は吸入渦流SWおよび吸気流の乱れRによって図12
の(b)に示すように吸気行程から圧縮行程に至る間に
予混合気Pが形成される。ここで吸入渦流SWとは図示
しない吸気制御弁を閉じることによりストレート吸気弁
からでなくヘリカル状吸気弁のみからシリンダ室64内
に空気を吸入して発生する旋回流を示す。この予混合気
Pの空燃比は第一実施例と同様に(機関を回転開始させ
ることのできるエネルギー分以上の燃料量で、かつ)着
火火炎が伝播できる程度の空燃比とされる。吸入渦流S
Wが強い場合にはシリンダ室64外周付近が濃く中央付
近が薄くなるような予混合気が形成される。なお吸気行
程噴射時期を早めてピストン62がより上死点に近い位
置にあるときに燃料を噴射すると、大部分の燃料は深皿
部69内に噴射され大部分の燃料が深皿部69内で予混
合気化される。
FIG. 12 is a diagram for explaining the operation of the engine of the second embodiment. (A) is the early stage of the intake stroke, (b) is the latter stage of the intake stroke to the early stage of the compression stroke, (c) is the latter stage of the compression stroke, and (d). )
[Fig. 3] is a diagram showing the operation of the engine in a combustion stroke. Similar to the first embodiment described with reference to FIG. 4, in the second embodiment of the present invention, the intake stroke injection at the beginning of the intake stroke shown in FIG. The compression stroke injection in the latter half of the compression stroke shown in is executed. First, as shown in FIG. 12A, fuel is injected from the fuel injection valve 5 toward the combustion chamber 67 in the intake stroke. The injected fuel F mainly collides with the shallow dish portion 68, a part thereof is reflected in the cylinder chamber 54, and the other part is attached to the wall surface of the shallow dish portion 68 and evaporated and atomized by heating from the wall surface. These fuels are generated by the intake vortex flow SW and the turbulence R of the intake flow in FIG.
(B), the premixed gas P is formed during the intake stroke to the compression stroke. Here, the intake swirl flow SW indicates a swirl flow generated by closing the intake control valve (not shown) and sucking air into the cylinder chamber 64 only from the helical intake valve, not from the straight intake valve. The air-fuel ratio of the premixed air P is set to an air-fuel ratio at which the ignition flame can be propagated (with a fuel amount equal to or more than the energy amount capable of starting the rotation of the engine) as in the first embodiment. Suction vortex S
When W is strong, a premixed gas is formed such that the vicinity of the outer periphery of the cylinder chamber 64 is dark and the vicinity of the center is thin. If the fuel is injected when the intake stroke injection timing is advanced and the piston 62 is closer to the top dead center, most of the fuel is injected into the deep dish portion 69 and most of the fuel is injected into the deep dish portion 69. Is premixed and vaporized.

【0035】図12の(c)に示すように圧縮行程後期
に燃料噴射弁5から噴射される大部分の燃料は深皿部6
9内に指向される。またピストン62により押されるシ
リンダ室64内の混合気は深皿部69内へ向かうスキッ
シュ流Sを発生する。深皿部69内に付着した燃料は壁
面および圧縮空気からの加熱により気化し渦流SWによ
り拡散混合し可燃域を含む濃淡のある不均一混合気層を
形成する。図12の(d)の燃焼行程において、この混
合気層の一部が点火プラグ65により点火され不均一混
合気層の燃焼が進行する。この燃焼により形成された火
炎Bが深皿部69内で発達する過程で周辺の予混合気に
伝播し、さらに燃焼行程において深皿部69内に閉じ込
められた混合気は深皿部69から外のシリンダ室64内
へ向かって押し出される逆スキッシュ流RSにより燃焼
を進行させる。
As shown in FIG. 12 (c), most of the fuel injected from the fuel injection valve 5 in the latter stage of the compression stroke is the deep plate portion 6.
Directed within 9. Further, the air-fuel mixture in the cylinder chamber 64, which is pushed by the piston 62, generates a squish flow S flowing into the deep pan 69. The fuel adhering to the inside of the basin 69 is vaporized by heating from the wall surface and the compressed air and diffused and mixed by the vortex flow SW to form a dense and uneven mixture layer including a combustible region. In the combustion stroke of (d) of FIG. 12, a part of this air-fuel mixture layer is ignited by the spark plug 65, and combustion of the heterogeneous air-fuel mixture layer proceeds. The flame B formed by this combustion propagates to the surrounding premixed air in the process of developing in the deep pan 69, and the air-fuel mixture trapped in the deep pan 69 in the combustion process is discharged from the deep pan 69. Combustion is promoted by the reverse squish flow RS pushed toward the inside of the cylinder chamber 64.

【0036】このように第二実施例においても第一実施
例と同様に機関の始動時の吸気行程初期に燃料を噴射す
ることにより火炎伝播用の混合気をシリンダ室64内全
体に形成すると共に、圧縮行程後期に燃料を噴射するこ
とにより点火プラグ65近傍に比較的濃い混合気を形成
することができ、良好な着火と空気利用率の高い燃焼が
得られる。
In this way, in the second embodiment as well, as in the first embodiment, by injecting fuel at the beginning of the intake stroke at the start of the engine, a mixture for flame propagation is formed throughout the cylinder chamber 64. By injecting fuel in the latter part of the compression stroke, a relatively rich air-fuel mixture can be formed in the vicinity of the spark plug 65, and good ignition and combustion with a high air utilization rate can be obtained.

【0037】なお、第二実施例の機関の燃料噴射制御は
図5〜図10を用いて説明した第一実施例の機関の燃料
噴射制御と同様であるので説明は省略する。
The fuel injection control of the engine of the second embodiment is the same as the fuel injection control of the engine of the first embodiment described with reference to FIGS.

【0038】[0038]

【発明の効果】以上説明したように、第1の請求項にか
かる筒内噴射式内燃機関の燃料噴射制御装置によれば、
機関始動時の吸気行程において点火プラグで点火された
火炎が気筒内に伝播し得るようにその点火に先立って気
筒内に機関を回転開始することのできるエネルギー分以
上の燃料を噴射し、(気化拡散させる、)機関始動時の
圧縮行程において着火可能な混合気を形成し得る最小限
の燃料を噴射するので、点火プラグ近傍に良好な混合気
を形成できる。それゆえ点火プラグ近傍に過濃な混合気
や液状燃料が発生することなく始動が良好となる。また
少量の燃料で始動が可能となりシリンダ壁面に付着する
燃料が減少してシリンダ壁面の潤滑が改善され、異常磨
耗や焼きつきの防止ができる。また、低温時の有害物質
(HC、CO)の排出量も低減できる。
As described above, according to the fuel injection control device for a cylinder injection type internal combustion engine according to the first aspect,
In order to allow the flame ignited by the spark plug to propagate into the cylinder during the intake stroke at the time of starting the engine, fuel is injected into the cylinder in excess of the energy required to start rotation of the engine prior to the ignition, Since a minimum amount of fuel that can form an air-fuel mixture that can be ignited in the compression stroke at the time of engine start is injected, a good air-fuel mixture can be formed in the vicinity of the spark plug. Therefore, a good start can be achieved without generating a rich mixture or liquid fuel in the vicinity of the spark plug. Further, starting can be performed with a small amount of fuel, the fuel adhering to the cylinder wall surface is reduced, lubrication of the cylinder wall surface is improved, and abnormal wear and seizure can be prevented. Further, the emission amount of harmful substances (HC, CO) at low temperatures can be reduced.

【0039】また第2の請求項にかかる筒内噴射式内燃
機関の燃料噴射制御装置によれば、回転検出手段により
検出された機関の回転数が高い程、噴射時期補正手段に
より圧縮行程の噴射時期を進角側に補正するので、機関
の始動時の回転数にバラツキがあっても圧縮行程の燃料
噴射時期から点火時期までの時間が機関の回転数に応じ
て適切に制御され、圧縮行程に噴射された燃料が点火時
期までに気化し着火時の点火プラグ近傍の混合気を最適
とする。それゆえ始動不良を防止できる。
According to the fuel injection control device for a cylinder injection type internal combustion engine according to the second aspect of the present invention, the higher the engine speed detected by the rotation detection means, the more the injection in the compression stroke by the injection timing correction means. Since the timing is corrected to the advance side, the time from the fuel injection timing of the compression stroke to the ignition timing is appropriately controlled according to the engine speed, even if the engine speed at start-up varies. The fuel injected into is vaporized by the ignition timing, and the air-fuel mixture near the ignition plug at the time of ignition is optimized. Therefore, starting failure can be prevented.

【0040】また第3の請求項にかかる筒内噴射式内燃
機関の燃料噴射制御装置によれば、回転検出手段により
検出された機関の回転数が高い程、第一燃料噴射量補正
手段により吸気行程の燃料噴射量を減量補正するので、
機関の回転数に応じた吸入空気量に対して吸気行程の噴
射燃料量は適量となり、気筒内の燃料の拡散や気化が適
正となる。それゆえ始動不良を防止できる。さらに必要
最小限の燃料噴射量で始動ができるので燃費の向上とな
る。
According to the fuel injection control device for a cylinder injection type internal combustion engine according to the third aspect, the higher the engine speed detected by the rotation detecting means, the more the intake air is taken by the first fuel injection amount correcting means. Since the amount of fuel injection in the stroke is corrected to decrease,
The amount of injected fuel in the intake stroke becomes appropriate with respect to the amount of intake air according to the engine speed, and the diffusion and vaporization of the fuel in the cylinder become appropriate. Therefore, starting failure can be prevented. Further, the fuel consumption can be improved because the engine can be started with the minimum required fuel injection amount.

【0041】また第4の請求項にかかる筒内噴射式内燃
機関の燃料噴射制御装置によれば、機関始動開始から始
動完了までの燃料噴射回数を計数手段により計数して燃
料噴射回数が大きくなる程、第二燃料噴射量補正手段に
より吸気行程の燃料噴射量を減量補正するので、噴射燃
料の燃焼室内の付着を防止し、ひいては付着した燃料が
燃焼室内に飛び散って点火プラグに付着することを防止
でき、これから引き起こされる着火不良や失火を防止で
きる。それゆえ始動不良を防止できる。
Further, according to the fuel injection control device for a cylinder injection type internal combustion engine according to the fourth aspect, the number of fuel injections from the start of engine start to the completion of start is counted by the counting means to increase the number of fuel injections. The second fuel injection amount correcting means reduces and corrects the fuel injection amount in the intake stroke, so that the injection fuel is prevented from adhering to the combustion chamber, and the adhering fuel is prevented from being scattered into the combustion chamber and adhering to the ignition plug. It is possible to prevent the ignition failure and the misfire which will be caused in the future. Therefore, starting failure can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に採用した4気筒ガソリン機関
の構成図である。
FIG. 1 is a configuration diagram of a 4-cylinder gasoline engine adopted in an embodiment of the present invention.

【図2】燃料噴射弁の側断面図である。FIG. 2 is a side sectional view of a fuel injection valve.

【図3】第一実施例の機関の縦断面図である。FIG. 3 is a longitudinal sectional view of the engine of the first embodiment.

【図4】(a)は吸気行程初期、(b)は吸気行程後期
から圧縮行程初期、(c)は圧縮行程後期、および
(d)は燃焼行程における第一実施例の機関の動作をそ
れぞれ示す図である。
FIG. 4 (a) shows the operation of the engine of the first embodiment in the early stage of the intake stroke, (b) the latter half of the intake stroke to the early stage of the compression stroke, (c) the latter half of the compression stroke, and (d) the combustion stroke. FIG.

【図5】第1と第2の請求項にかかる機関の燃料噴射制
御ルーチンを示すフローチャートである。
FIG. 5 is a flowchart showing a fuel injection control routine of the engine according to the first and second claims.

【図6】機関の水温に対する吸気行程の燃料噴射量のマ
ップを示す図である。
FIG. 6 is a diagram showing a map of a fuel injection amount in an intake stroke with respect to a water temperature of an engine.

【図7】機関の回転数に対する圧縮行程の噴射時期のマ
ップを示す図である。
FIG. 7 is a diagram showing a map of injection timing of compression stroke with respect to engine speed.

【図8】第3と第4の請求項にかかる機関の燃料噴射制
御ルーチンを示すフローチャートである。
FIG. 8 is a flowchart showing a fuel injection control routine of the engine according to the third and fourth claims.

【図9】機関の回転数に対する吸気行程の噴射量補正係
数のマップを示す図である。
FIG. 9 is a diagram showing a map of an intake stroke injection amount correction coefficient with respect to the engine speed.

【図10】噴射回数に対する吸気行程の噴射量補正係数
のマップを示す図である。
FIG. 10 is a diagram showing a map of the injection amount correction coefficient in the intake stroke with respect to the number of injections.

【図11】第二実施例の機関の縦断面図である。FIG. 11 is a vertical sectional view of an engine according to a second embodiment.

【図12】(a)は吸気行程初期、(b)は吸気行程後
期から圧縮行程初期、(c)は圧縮行程後期、および
(d)は燃焼行程における第二実施例の機関の動作をそ
れぞれ示す図である。
FIG. 12 (a) shows the operation of the engine of the second embodiment in the intake stroke early stage, (b) the intake stroke late stage to the compression stroke early stage, (c) the compression stroke late stage, and (d) the combustion stroke. FIG.

【符号の説明】[Explanation of symbols]

5…燃料噴射弁 20…電子制御ユニット 29…クランク角センサ 32…水温センサ 61…シリンダヘッド 62…ピストン 63…凹状燃焼室 64…シリンダ室 5 ... Fuel injection valve 20 ... Electronic control unit 29 ... Crank angle sensor 32 ... Water temperature sensor 61 ... Cylinder head 62 ... Piston 63 ... Recessed combustion chamber 64 ... Cylinder chamber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 機関の気筒内に要求燃料を直接噴射でき
る燃料噴射弁を備えた筒内噴射式内燃機関の燃料噴射制
御装置において、 機関始動時に機関の燃焼室内に均質な混合気を形成する
に要する第一燃料噴射量を算出する第一噴射量算出手段
と、 機関始動時に前記燃焼室内の点火プラグ近傍に着火し得
る混合気を形成するに要する第二燃料噴射量を算出する
第二噴射量算出手段と、 前記第一燃料噴射量の燃料を吸気行程時に噴射し、前記
第二燃料噴射量の燃料を圧縮行程時に噴射するように燃
料噴射時期を制御する噴射時期制御手段と、を備えたこ
とを特徴とする筒内噴射式内燃機関の燃料噴射制御装
置。
1. A fuel injection control device for a cylinder injection type internal combustion engine equipped with a fuel injection valve capable of directly injecting required fuel into a cylinder of an engine, wherein a homogeneous air-fuel mixture is formed in a combustion chamber of the engine when the engine is started. And a second injection for calculating a second fuel injection amount required to form an air-fuel mixture that can be ignited in the vicinity of the spark plug in the combustion chamber when the engine is started. And an injection timing control means for controlling the fuel injection timing so that the fuel of the first fuel injection amount is injected during the intake stroke and the fuel of the second fuel injection amount is injected during the compression stroke. A fuel injection control device for a cylinder injection type internal combustion engine.
【請求項2】 機関の回転数を検出する回転検出手段
と、 前記回転検出手段により検出された機関の回転数が高い
程、前記圧縮行程時の燃料噴射時期を圧縮行程の進角側
に補正する噴射時期補正手段と、をさらに備えた請求項
1に記載の筒内噴射式内燃機関の燃料噴射制御装置。
2. A rotation detecting means for detecting the number of revolutions of the engine, and the higher the engine speed detected by the rotation detecting means, the more the fuel injection timing during the compression stroke is corrected to the advance side of the compression stroke. The fuel injection control device for a direct injection internal combustion engine according to claim 1, further comprising:
【請求項3】 機関の気筒内に要求燃料を直接噴射でき
る燃料噴射弁を備えた筒内噴射式内燃機関の燃料噴射制
御装置において、 機関始動時に機関の燃焼室内に均質な混合気を形成する
に要する第一燃料噴射量を算出する第一噴射量算出手段
と、 機関始動時に前記燃焼室内の点火プラグ近傍に着火し得
る混合気を形成するに要する第二燃料噴射量を算出する
第二噴射量算出手段と、 前記第一燃料噴射量の燃料を吸気行程時に噴射し、前記
第二燃料噴射量の燃料を圧縮行程時に噴射するように燃
料噴射時期を制御する噴射時期制御手段と、 機関の回転数を検出する回転検出手段と、 前記回転検出手段により検出された機関の回転数が高い
程、前記第一燃料噴射量を減量補正する第一燃料噴射量
補正手段と、を備えたことを特徴とする筒内噴射式内燃
機関の燃料噴射制御装置。
3. A fuel injection control device for a cylinder injection type internal combustion engine equipped with a fuel injection valve capable of directly injecting required fuel into a cylinder of an engine, wherein a homogeneous air-fuel mixture is formed in a combustion chamber of the engine when the engine is started. And a second injection for calculating a second fuel injection amount required to form an air-fuel mixture that can be ignited in the vicinity of the spark plug in the combustion chamber when the engine is started. An amount calculation means, an injection timing control means for controlling the fuel injection timing so that the fuel of the first fuel injection quantity is injected during the intake stroke, and the fuel of the second fuel injection quantity is injected during the compression stroke, Rotation detection means for detecting the rotation speed; and a first fuel injection amount correction means for reducing the first fuel injection amount as the rotation speed of the engine detected by the rotation detection means is higher. Characteristic in-cylinder injection Fuel injection control device for an internal combustion engine.
【請求項4】 機関始動開始から始動完了までの燃料噴
射回数を計数する計数手段と、 前記計数手段により計数された燃料噴射回数が大きくな
る程、前記第一燃料噴射量を減量補正する第二燃料噴射
量補正手段と、をさらに備えた請求項3に記載の筒内噴
射式内燃機関の燃料噴射制御装置。
4. A counting means for counting the number of fuel injections from the start of engine start to the completion of starting, and a second means for reducing the first fuel injection amount as the number of fuel injections counted by the counting means increases. The fuel injection control device for a cylinder injection type internal combustion engine according to claim 3, further comprising a fuel injection amount correction means.
JP7005725A 1995-01-18 1995-01-18 Fuel injection controller of cylinder injection type internal combustion engine Pending JPH08193536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7005725A JPH08193536A (en) 1995-01-18 1995-01-18 Fuel injection controller of cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7005725A JPH08193536A (en) 1995-01-18 1995-01-18 Fuel injection controller of cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08193536A true JPH08193536A (en) 1996-07-30

Family

ID=11619108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7005725A Pending JPH08193536A (en) 1995-01-18 1995-01-18 Fuel injection controller of cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08193536A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856655A2 (en) 1997-01-30 1998-08-05 Mazda Motor Corporation Direct fuel injection engine
US5881694A (en) * 1997-02-12 1999-03-16 Nissan Motor Co., Ltd. Fuel injection control system for in-cylinder direct injection, spark-ignition internal combustion engines
JPH11280532A (en) * 1998-03-31 1999-10-12 Mazda Motor Corp Control device of engine for automobible
US5970955A (en) * 1997-03-04 1999-10-26 Nissan Motor Co., Ltd. Fuel injection control method and system in a cylinder-inside direct injection type spark ignition combustion engine
US6006724A (en) * 1997-06-24 1999-12-28 Nissan Motor Co., Ltd. Engine throttle control apparatus
JP2003003897A (en) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd Self-ignition type engine
GB2446689A (en) * 2007-02-15 2008-08-20 Ford Global Tech Llc Method for starting a direct injection ic engine comprising injecting fuel twice, wherein one injection is during the compression stroke
US7567866B2 (en) * 2006-08-29 2009-07-28 Honda Motor Co., Ltd. Fuel injection control device
US7866303B2 (en) 2007-02-15 2011-01-11 Ford Global Technologies, Llc Direct injection event-based engine starting
JP2013224621A (en) * 2012-04-23 2013-10-31 Mazda Motor Corp Method and control device for starting direct injection engine
JP2017008865A (en) * 2015-06-24 2017-01-12 ダイハツ工業株式会社 Controller of internal combustion engine
CN113775426A (en) * 2020-06-09 2021-12-10 丰田自动车株式会社 Control device for internal combustion engine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856655A3 (en) * 1997-01-30 2000-02-23 Mazda Motor Corporation Direct fuel injection engine
US6044642A (en) * 1997-01-30 2000-04-04 Mazda Motor Corporation Direct fuel injection engine
EP0856655A2 (en) 1997-01-30 1998-08-05 Mazda Motor Corporation Direct fuel injection engine
US5881694A (en) * 1997-02-12 1999-03-16 Nissan Motor Co., Ltd. Fuel injection control system for in-cylinder direct injection, spark-ignition internal combustion engines
US5970955A (en) * 1997-03-04 1999-10-26 Nissan Motor Co., Ltd. Fuel injection control method and system in a cylinder-inside direct injection type spark ignition combustion engine
US6006724A (en) * 1997-06-24 1999-12-28 Nissan Motor Co., Ltd. Engine throttle control apparatus
JPH11280532A (en) * 1998-03-31 1999-10-12 Mazda Motor Corp Control device of engine for automobible
JP2003003897A (en) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd Self-ignition type engine
US7567866B2 (en) * 2006-08-29 2009-07-28 Honda Motor Co., Ltd. Fuel injection control device
US7866303B2 (en) 2007-02-15 2011-01-11 Ford Global Technologies, Llc Direct injection event-based engine starting
GB2446689A (en) * 2007-02-15 2008-08-20 Ford Global Tech Llc Method for starting a direct injection ic engine comprising injecting fuel twice, wherein one injection is during the compression stroke
GB2446689B (en) * 2007-02-15 2011-07-13 Ford Global Tech Llc A method of starting an internal combustion engine
US8146557B2 (en) 2007-02-15 2012-04-03 Ford Global Technologies, Llc Direct injection event-based engine starting
US8561587B2 (en) 2007-02-15 2013-10-22 Ford Global Technologies, Llc Direct injection event-based engine starting
US8656881B2 (en) 2007-02-15 2014-02-25 Ford Global Technologies, Llc Direct injection event-based engine starting
US9222423B2 (en) 2007-02-15 2015-12-29 Ford Global Technologies, Llc Direct injection event-based engine starting
DE102008008605B4 (en) 2007-02-15 2019-04-11 Ford Global Technologies, Llc Starting an event-based direct injection engine with variable number of injections
JP2013224621A (en) * 2012-04-23 2013-10-31 Mazda Motor Corp Method and control device for starting direct injection engine
JP2017008865A (en) * 2015-06-24 2017-01-12 ダイハツ工業株式会社 Controller of internal combustion engine
CN113775426A (en) * 2020-06-09 2021-12-10 丰田自动车株式会社 Control device for internal combustion engine
CN113775426B (en) * 2020-06-09 2024-03-08 丰田自动车株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US4955339A (en) Internal combustion engine
KR100916737B1 (en) Control device of internal combustion engine
JP2765305B2 (en) Internal combustion engine
EP1859140B1 (en) Control apparatus for internal combustion engine
RU2349783C1 (en) Control device for internal combustion engine
US7073480B2 (en) Exhaust emission control apparatus and method for internal combustion engine
JP3870692B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH05113146A (en) Internal combustion engine
US7128053B2 (en) Control apparatus for internal combustion engine
US20060207241A1 (en) Control apparatus for internal combustion engine
JPH05118245A (en) Internal combustion engine
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
JPH04219445A (en) Fuel injection control device for multicylinder internal combustion engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
EP0445817A2 (en) A control device for an internal combustion engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JP3894058B2 (en) Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine
JP2513004B2 (en) In-cylinder direct injection spark ignition engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JP2004052660A (en) Fuel injection control device of internal combustion engine
JP3680335B2 (en) Injection control device for in-cylinder internal combustion engine
JP2850595B2 (en) Internal combustion engine
JP3293545B2 (en) Fuel injection control device for internal combustion engine
JP2008175112A (en) Control device for direct-injection engine