JP2751626B2 - In-cylinder direct injection spark ignition engine - Google Patents

In-cylinder direct injection spark ignition engine

Info

Publication number
JP2751626B2
JP2751626B2 JP2311658A JP31165890A JP2751626B2 JP 2751626 B2 JP2751626 B2 JP 2751626B2 JP 2311658 A JP2311658 A JP 2311658A JP 31165890 A JP31165890 A JP 31165890A JP 2751626 B2 JP2751626 B2 JP 2751626B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
cylinder
compression stroke
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2311658A
Other languages
Japanese (ja)
Other versions
JPH04183924A (en
Inventor
貴宣 植田
静夫 三々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2311658A priority Critical patent/JP2751626B2/en
Publication of JPH04183924A publication Critical patent/JPH04183924A/en
Application granted granted Critical
Publication of JP2751626B2 publication Critical patent/JP2751626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒内直接噴射式火花点火機関に関する。The present invention relates to a direct injection type spark ignition engine.

〔従来の技術〕[Conventional technology]

シリンダ内に燃料を直接噴射するための燃料噴射弁を
備え、低負荷時には圧縮行程後半に点火栓を指向せしめ
て燃料を噴射せしめて成層燃焼を行い、中・高負荷時に
は吸気行程と圧縮行程後半とにおいて燃料を噴射せしめ
て弱成層燃焼を行うようにした筒内直接噴射式火花点火
機関が開示されている(特開平2−169834号公報参
照)。
A fuel injection valve for injecting fuel directly into the cylinder is provided.At low load, the ignition plug is directed in the second half of the compression stroke to inject fuel to perform stratified combustion, and at medium / high load, the intake stroke and the second half of the compression stroke. An in-cylinder direct injection spark ignition engine in which fuel is injected to perform weak stratified combustion is disclosed in Japanese Patent Application Laid-Open No. 2-169834.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながらこの内燃機関では、機関冷間時において
はシリンダ内の温度、例えば燃焼室の壁温が低いため
に、シリンダ内に噴射された燃料の蒸発が悪化し、この
ため、着火および火炎伝播に必要な混合気の形成が不十
分となり良好な燃焼が得られないという問題を生ずる。
However, in this internal combustion engine, when the engine is cold, the temperature in the cylinder, for example, the wall temperature of the combustion chamber is low, so that the evaporation of the fuel injected into the cylinder is deteriorated, so that it is necessary for ignition and flame propagation. However, there is a problem that the formation of a suitable air-fuel mixture is insufficient and good combustion cannot be obtained.

また、例えば低負荷運転時からの加速時においても、
シリンダ内の温度が相対的に低いために同様の問題を生
ずる。
Also, for example, during acceleration from low load operation,
A similar problem arises due to the relatively low temperature in the cylinder.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点を解決するために本発明によれば、圧縮行
程にシリンダ内に燃料を直接噴射せしめて点火栓によっ
て着火せしめるようにした内燃機関において、シリンダ
内低温時においては圧縮行程噴射の燃料噴射時期を進角
せしめると共に点火時期を進角せしめるようにしてい
る。
According to the present invention, in order to solve the above problems, in an internal combustion engine in which fuel is directly injected into a cylinder during a compression stroke so as to be ignited by an ignition plug, fuel injection of a compression stroke injection is performed at a low temperature in the cylinder. The timing is advanced and the ignition timing is advanced.

〔作 用〕(Operation)

シリンダ内低温時においては圧縮行程噴射の燃料噴射
時期が進角せしめられると共に点火時期が進角せしめれ
る。これによって火炎核が早期に形成され、この結果シ
リンダ内温度がより高くなるために燃料の蒸発を促進し
て良好な混合気を形成することができる。
When the temperature in the cylinder is low, the fuel injection timing of the compression stroke injection is advanced and the ignition timing is advanced. As a result, a flame nucleus is formed at an early stage, and as a result, the temperature in the cylinder becomes higher, so that the evaporation of the fuel is promoted and a good air-fuel mixture can be formed.

〔実施例〕〔Example〕

第1図を参照すると、1はシリンダブロック、2はシ
リンダヘッド、3はピストン、4はシリンダ室、5は吸
気管、6は排気管を夫々示す。吸気管5にはリンクレス
スロットル弁7が配置される。このスロットル弁7はス
テップモータ8によって開閉制御せしめられ、アイドル
運転時以外および減速運転時以外においてはほぼ全開状
態とされる。燃料噴射弁9の先端はシリンダ室4まで延
び、シリンダ室内に燃料を直接噴射することができる。
各気筒の燃料噴射弁9は各燃料噴射弁9に共通の畜圧室
10に接続され、この畜圧室10は燃料ポンプ11によってほ
ぼ一定圧力の高圧燃料で満たされている。点火栓12はデ
ィストリビュータ13を介してイグナイタ14に接続され
る。
Referring to FIG. 1, 1 is a cylinder block, 2 is a cylinder head, 3 is a piston, 4 is a cylinder chamber, 5 is an intake pipe, and 6 is an exhaust pipe. A linkless throttle valve 7 is arranged in the intake pipe 5. The throttle valve 7 is controlled to be opened and closed by a step motor 8, and is almost fully opened except during idle operation and during deceleration operation. The tip of the fuel injection valve 9 extends to the cylinder chamber 4 and can directly inject fuel into the cylinder chamber.
The fuel injection valve 9 of each cylinder is a common pressure chamber for each fuel injection valve 9.
The pressure storage chamber 10 is connected to a fuel pump 11 and is filled with high-pressure fuel having a substantially constant pressure. The ignition plug 12 is connected to an igniter 14 via a distributor 13.

電子制御ユニット30はディジタルコンピュータからな
り、双方向性バス31によって相互に接続されたROM(リ
ードオンリメモリ)32,RAM(ランダムアクセスメモリ)
33、CPU(マイクロプロセッサ)34、入力ポート35およ
び出力ポート36を具備する。機関回転数を検出するため
のクランク角センサ25はディストリビュータ13に内蔵さ
れ、クランク角センサ25の出力信号は入力ポート35に入
力される。機関冷却水温を検出するための水温センサ26
はAD変換器37を介して入力ポート35に接続される。図示
しないアクセルペダルの踏込み量を検出するためのアク
セル開度センサ27はAD変換器38を介して入力ポート35に
接続される。
The electronic control unit 30 is composed of a digital computer, and is connected to a ROM (read only memory) 32 and a RAM (random access memory) by a bidirectional bus 31.
33, a CPU (microprocessor) 34, an input port 35 and an output port 36 are provided. The crank angle sensor 25 for detecting the engine speed is built in the distributor 13, and the output signal of the crank angle sensor 25 is input to the input port 35. Water temperature sensor 26 for detecting engine cooling water temperature
Is connected to the input port 35 via the AD converter 37. An accelerator opening sensor 27 for detecting the depression amount of an accelerator pedal (not shown) is connected to an input port 35 via an AD converter 38.

一方、出力ポート36は各自動回路39,40,41を介して夫
々燃料噴射弁9,イグナイタ14、ステップモータ8に接続
される。
On the other hand, the output port 36 is connected to the fuel injection valve 9, the igniter 14, and the step motor 8 via the automatic circuits 39, 40, 41, respectively.

第2図には第1図の機関本体の拡大断面図を示す。第
2図を参照すると、ピストン頂部に形成された凹状燃焼
室20は、上部側の大径の浅皿部21と、浅皿部21の中央部
に形成された下部側の深皿部22との二重構造とされ、深
皿部22は浅皿部21よりも小径に形成されている。
FIG. 2 is an enlarged sectional view of the engine body of FIG. Referring to FIG. 2, the concave combustion chamber 20 formed at the top of the piston includes a large-diameter shallow dish 21 on the upper side, and a lower deep dish 22 formed at the center of the shallow dish 21. The deep plate portion 22 is formed to have a smaller diameter than the shallow plate portion 21.

図示しない吸気ポートはスワールポートとなってお
り、燃料噴射弁9は多噴孔ホールノズルを有する。した
がって燃料噴射弁9は比較的貫徹力が強くかつ広がり角
の小さい棒状の燃料を噴射する。燃料噴射弁9は、斜め
下方を指向してシリンダ室4の頂部に配置される。また
燃料噴射弁9の燃料噴射方向および燃料噴射時期は、噴
射燃料が燃焼室20内に指向するように決められている。
点火栓12は、ピストン3の上死点時に凹状燃焼室20内に
位置するように配設される。
The intake port (not shown) is a swirl port, and the fuel injection valve 9 has a multi-hole hole nozzle. Therefore, the fuel injection valve 9 injects rod-shaped fuel having a relatively strong penetration force and a small spread angle. The fuel injection valve 9 is disposed at the top of the cylinder chamber 4 so as to face diagonally downward. The fuel injection direction and fuel injection timing of the fuel injection valve 9 are determined so that the injected fuel is directed into the combustion chamber 20.
The ignition plug 12 is disposed so as to be located in the concave combustion chamber 20 at the time of the top dead center of the piston 3.

第3図には圧縮行程噴射と吸気行程噴射の制御パター
ンを示す。第3図を参照すると、横軸は機関の負荷を表
しており、第3図では負荷として燃料噴射量Qをとり、
縦軸には燃料噴射量Qをとっている。燃料噴射量QSに相
当する負荷領域までは、圧縮行程においてだけ燃料が噴
射される。圧縮行程燃料噴射量はQSまで漸次増大せしめ
られる。燃料噴射量QSにおいて、圧縮行程燃料噴射量は
QDまで急激に減少せしめられると共に吸気行程燃料噴射
量はQPまで急激に増大せしめられる。QSは中負荷付近の
燃料噴射量であり、QDとQPとの和として次式で示され
る。
FIG. 3 shows a control pattern of the compression stroke injection and the intake stroke injection. Referring to FIG. 3, the horizontal axis represents the engine load. In FIG. 3, the fuel injection amount Q is taken as the load.
The vertical axis represents the fuel injection amount Q. Until the load region corresponding to the fuel injection amount Q S, the fuel only during the compression stroke is injected. Compression stroke fuel injection amount is made to gradually increase up to Q S. In the fuel injection amount Q S, the compression stroke fuel injection amount is
Intake stroke fuel injection amount with used to lower rapidly to Q D is caused to abruptly increase to Q P. Q S is the fuel injection amount near the medium load, as the sum of the Q D and Q P shown by the following equation.

QS=QD+QP ここで、QDは点火栓12により着火可能な混合気を形成し
得る最小限の圧縮行程燃料噴射量であり、QPは吸気行程
において噴射された燃料がシリンダ室4内に均質に拡散
した際に点火栓12による着火火災が伝播可能な最小限の
吸気行程燃料噴射量である。
Here Q S = Q D + Q P , Q D is the least compression stroke fuel injection amount capable of forming a ignitable mixture by the spark plugs 12, Q P is fuel cylinder chamber which is injected in the intake stroke This is the minimum intake stroke fuel injection amount that allows the ignition fire by the spark plug 12 to propagate when it is homogeneously diffused into the inside 4.

燃料噴射量がQSより大きくかつQHより小さい負荷領域
においては、全燃料噴射量Qを圧縮行程と吸気行程とに
分割して噴射し、圧縮行程燃料噴射量は負荷によらず一
定とし吸気行程燃料噴射量は負荷の増大に伴って増大せ
しめられる。
In a load region in which the fuel injection amount is larger than Q S and smaller than Q H , the entire fuel injection amount Q is divided into a compression stroke and an intake stroke, and the fuel is injected. The stroke fuel injection amount is increased as the load increases.

燃料噴射量がQHより大きい負荷領域においては、燃料
噴射量が多いため吸気行程噴射によって形成されるシリ
ンダ室内の予混合気の濃度が着火に十分なほど濃いた
め、着火のための圧縮行程噴射をやめて、要求燃料噴射
量の全量を吸気行程において噴射することとしている。
QHはシリンダ室内に燃料が均質に拡散した場合にも点火
栓により着火可能な均質混合気を形成可能な最小限吸気
行程燃料噴射量である。
In the fuel injection amount Q H greater load range, because the concentration of the premixed gas in the cylinder chamber formed by the intake stroke injection for the fuel injection amount is large deep enough to ignition, the compression stroke injection for the ignition And the entire required fuel injection amount is injected in the intake stroke.
Q H is minimal intake stroke fuel injection amount that can form a uniform mixture which can be ignited by a spark plug even when the fuel is homogeneously diffused in the cylinder chamber.

第4図には、第3図の燃料噴射制御パターンを負荷と
クランク角との関係で表わした図を示す。
FIG. 4 is a diagram showing the fuel injection control pattern of FIG. 3 in the relationship between load and crank angle.

再び第2図を参照すると、中負荷付近QSより低い負荷
領域においては、圧縮行程後期に燃料噴射弁9から燃焼
室20に向かって要求噴射量の全量が噴射される。燃料噴
射時期は遅くされ、このため大部分の燃料は深皿部22内
に噴射される。深皿部22内壁面に付着した燃料は蒸発霧
化し、燃焼室20内に可燃域を含む濃淡のある混合気層を
形成する。この混合気層の一部が点火栓12により点火さ
れ、主に深皿部22内で良好な燃焼が完了する。
Referring to FIG. 2 again, in the lower load range than the near medium load Q S, the total amount of the required injection quantity toward the combustion chamber 20 from the fuel injection valve 9 is injected in the compression stroke later. The fuel injection timing is delayed so that most of the fuel is injected into the deep dish 22. The fuel adhering to the inner wall surface of the deep dish portion 22 evaporates and atomizes, and forms a dense and mixed gas layer including a combustible region in the combustion chamber 20. A part of the air-fuel mixture layer is ignited by the ignition plug 12, and good combustion is completed mainly in the deep dish portion 22.

中負荷付近QSより高くQHより低い負荷領域において
は、第5図に示されるように、吸気行程初期(第5図
(a))に吸気行程噴射が実行され、燃料噴射弁9から
燃焼室20を指向して燃料が噴射される。噴射燃料Fは下
に浅皿部21に衝突し、その一部はシリンダ室4中に反射
し、他の一部は浅皿部21の壁面に付着し壁面からの加熱
により蒸発霧化する。これらの燃料は、吸気渦流SWおよ
び吸気流の乱れRによって吸気行程から圧縮行程に至る
間に予混合気Pが形成される。(第5図(b))。この
予混合気Pの空燃比は、着火火炎が伝播できる程度の空
燃比とされる。吸入渦流SWが強い場合には、シリンダ室
4外周付近が濃く、中心付近が薄くなるような予混合気
が形成される。
In a load region higher than Q S and lower than Q H near the middle load, as shown in FIG. 5, the intake stroke injection is executed at the beginning of the intake stroke (FIG. 5 (a)), Fuel is injected toward the chamber 20. The injected fuel F collides downwardly with the shallow plate portion 21, a part of which is reflected into the cylinder chamber 4, and another portion adheres to the wall surface of the shallow plate portion 21 and is evaporated and atomized by heating from the wall surface. In these fuels, a premixed gas P is formed during the period from the intake stroke to the compression stroke due to the intake vortex SW and the turbulence R of the intake flow. (FIG. 5 (b)). The air-fuel ratio of the premixed air P is set to such an extent that the ignition flame can propagate. When the suction vortex SW is strong, a premixed gas is formed such that the area around the outer periphery of the cylinder chamber 4 is dense and the area near the center is thin.

なお、吸気行程噴射時期を早めて、ピストン3がより
上死点に近い位置にあるときに燃料を噴射すると、大部
分の燃料は深皿部22内に噴射され、大部分の燃料が深皿
部22内で予混合気化される。
If the fuel is injected when the piston 3 is located closer to the top dead center when the intake stroke injection timing is advanced, most of the fuel is injected into the deep dish portion 22, and most of the fuel is injected into the deep dish portion 22. It is premixed and vaporized in the section 22.

続いて圧縮行程後期(第5図(c))に圧縮行程噴射
が実行され、大部分の燃料が深皿部22内に噴射される。
深皿部22内壁面に付着した燃料は、壁面および圧縮空気
からの加圧により気化し、渦流SWにより拡散混合し、可
燃域を含む濃淡のある不均一混合気層が形成される。こ
の混合気層の一部が点火栓12により点火され、不均一混
合気層の燃焼が進行する(第5図(d))。この燃焼に
より形成された火炎Bが深皿部22内で発達する過程で、
周辺の予混合気に伝播し、さらに逆スキッシュ流Sによ
り、深皿部22外まで燃焼を進行させる。
Subsequently, compression stroke injection is performed in the latter half of the compression stroke (FIG. 5 (c)), and most of the fuel is injected into the deep dish portion 22.
The fuel adhering to the inner wall surface of the deep dish portion 22 is vaporized by pressurization from the wall surface and the compressed air, and is diffused and mixed by the vortex SW, thereby forming a heterogeneous mixed gas layer including a combustible region. A part of the air-fuel mixture layer is ignited by the ignition plug 12, and the combustion of the heterogeneous air-fuel mixture proceeds (FIG. 5 (d)). In the process of developing the flame B formed by this combustion in the deep dish portion 22,
Propagation to the surrounding premixed gas, and furthermore, the combustion proceeds to the outside of the deep dish portion 22 by the reverse squish flow S.

なお圧縮行程噴射時期を早め、燃料を浅皿部21と深皿
部22の両方に噴射する場合には、火炎が浅皿部21と深皿
部22とに広く分布し、予混合気への火炎の伝播をより容
易にすることができる。
When the compression stroke injection timing is advanced and fuel is injected into both the shallow plate portion 21 and the deep plate portion 22, the flame is widely distributed in the shallow plate portion 21 and the deep plate portion 22, and the flame is diffused into the premixed gas. Flame propagation can be made easier.

ところでこのような内燃機関では、機関冷間時におい
てはシリンダ内の温度、例えば燃焼室20の壁温が低いた
めに、シリンダ内に噴射された燃料の蒸発が悪化し、こ
のため着火および火炎伝播に必要な混合気の形成が不十
分となり、良好な燃焼が得られないという問題を生ず
る。
By the way, in such an internal combustion engine, when the engine is cold, the temperature in the cylinder, for example, the wall temperature of the combustion chamber 20 is low, so that the evaporation of the fuel injected into the cylinder is deteriorated. However, the formation of an air-fuel mixture required for the combustion becomes insufficient, so that good combustion cannot be obtained.

また、シリンダ内の温度は燃料噴射量が少な程低下す
るために、低負荷運転時からの加速時においては、シリ
ンダ内の温度は相対的に低くなり上述と同様の問題を生
ずる。
Further, since the temperature in the cylinder decreases as the fuel injection amount decreases, the temperature in the cylinder relatively decreases during acceleration after a low-load operation, causing the same problem as described above.

そこで本実施例ではシリンダ内の温度が低いときに
は、圧縮行程噴射の燃料噴射時期を進角せしめると共に
点火時期を進角せしめるようにしている。すなわち、第
4図に示されるように、シリンダ内低温度においては圧
縮行程噴射時期および点火時期は実線で示されるよう
に、シリンダ内が低温でないとき(点線で示される)に
対して進角せしめられている。
Therefore, in this embodiment, when the temperature in the cylinder is low, the fuel injection timing of the compression stroke injection is advanced and the ignition timing is advanced. That is, as shown in FIG. 4, when the temperature in the cylinder is low, the compression stroke injection timing and the ignition timing are advanced as shown by the solid line, when the temperature in the cylinder is not low (indicated by the dotted line). Have been.

これによって火炎核が早期に形成されるために、圧縮
行程におけるガス圧縮による発熱と相まってシリンダ内
温度がより高くなるために燃料の蒸発を促進することが
できる。この結果、良好な混合気を形成することがで
き、斯くして良好な燃焼を得ることができる。
As a result, the flame nucleus is formed early, and the temperature in the cylinder becomes higher in combination with the heat generated by the gas compression in the compression stroke, so that the evaporation of fuel can be promoted. As a result, a good air-fuel mixture can be formed, and thus good combustion can be obtained.

第6図には本実施例を実行するためのルーチンを示
す。このルーチンは一定クランク角毎の割込によって実
行される。第6図を参照すると、まずステップ60におい
て、アクセル踏込み量と機関回転数とのマップから全燃
料噴射量得Qが計算される。次いでステップ61において
全燃料噴射量Qと機関回転数とのマップから圧縮行程燃
料噴射量QCが計算される。次いでステップ62では圧縮行
程燃料噴射量QCと機関回転数のマップから圧縮行程燃料
噴射時期ACが計算される。次いでステップ63では全燃料
噴射量Qと機関回転数のマップから点火時期Igが計算さ
れる。ステップ64では、機関冷却水温TWが70℃以上か否
か、すなわち機関冷間時か否か判定される。TW<70℃の
場合、すなわち機関冷間時においてはステップ67に進
み、圧縮行程燃料噴射量QCが0か否か判定される。QC
0の場合、すなわち圧縮行程噴射が実行される場合に
は、ステップ68に進み圧縮行程燃料噴射時期ACの進角量
Xが計算される。次いでステップでは圧縮行程燃料噴射
時期ACにXが加算され、進角量Xだけ進角せしめられ
る。ここで、圧縮行程燃料噴射時期ACは圧縮上死点から
吸気下死点に向かって計測した角度である。次いでステ
ップ70では点火時期Igの進角量Yが計算される。次いで
ステップ71では点火時期IgにYが加算され、進角量Yだ
け進角せしめられる。
FIG. 6 shows a routine for executing this embodiment. This routine is executed by interruption every fixed crank angle. Referring to FIG. 6, first, in step 60, the total fuel injection amount gain Q is calculated from a map of the accelerator depression amount and the engine speed. Then the compression stroke fuel injection amount Q C from the map of the total fuel injection amount Q and the engine speed at step 61 is calculated. Next, at step 62 stroke compression from the compression stroke fuel injection amount Q C and the engine speed of the map fuel injection timing A C is calculated. Next, at step 63, the ignition timing Ig is calculated from the map of the total fuel injection amount Q and the engine speed. In step 64, it is determined whether or not the engine cooling water temperature TW is 70 ° C. or higher, that is, whether or not the engine is cold. If TW <of 70 ° C., i.e. at the time of engine cold flow proceeds to step 67, the compression stroke fuel injection amount Q C is determined whether 0 or not. Q C
0, that is, when the compression stroke injection is performed, advance amount X of the compression stroke fuel injection timing A C is calculated proceeds to step 68. Next, at step S , X is added to the compression stroke fuel injection timing AC, and the fuel injection timing is advanced by the advance amount X. Here, the compression stroke fuel injection timing AC is an angle measured from the compression top dead center to the intake bottom dead center. Then advance amount Y of step 70 the ignition timing I g is calculated. Then Y is added to the ignition timing I g In step 71, it is caused to only advance amount Y advance.

一方、ステップ67においてQC=0と判定された場合、
すなわち圧縮行程噴射が実行されないときには、ステッ
プ70およびステップ71において点火時期Igが進角せしめ
られる。
On the other hand, if it is determined that Q C = 0 in step 67,
That is, when the compression stroke injection is not executed, the ignition timing I g is made to advance in step 70 and step 71.

一方、ステップ64においてTW≧70℃と判定されると、
ステップ65に進み、平均燃料噴射量QAが次式により計算
される。
On the other hand, if it is determined in step 64 that TW ≧ 70 ° C.,
The process proceeds to step 65, the average fuel injection quantity Q A is calculated by the following equation.

QA=ΣQn/n ここでΣQnは現在に最も近い過去n回分の全燃料噴射量
Qの総和を示しており、従ってΣQn/nによって過去n回
分の平均燃料噴射量を計算することができる。シリンダ
内温度は燃料噴射量が多い程高くなり、従ってQAはシリ
ンダ内温度を間接的に示している。すなわちQAが小さい
ということはシリンダ内温度が低いということを示して
いる。次いでステップ66では今回の全燃料噴射量Qと平
均燃料噴射量QAとの差を計算する。Q−QAが予め定めら
れた値、例えば15mm3以上になると、シリンダ内温度が
相対的に低いということを示している。例えば低負荷運
転時から加速運転をした場合にはQ−QA>15となる。こ
の場合にも機関冷間時と同様に、良好な着火および燃焼
が得られないという問題がある。従って、Q−QA>15の
場合、ステップ67以下に進み、圧縮行程噴射が実行され
る場合には、圧縮行程燃料噴射時期ACおよび点火時期Ig
を進角せしめ、圧縮行程噴射が実行されない場合には点
火時期だけを進角せしめる。
Q A = [sum] Q n / n [sum] Q n, where denotes the nearest sum of total fuel injection quantity Q of past n times the current, thus calculating the average fuel injection quantity of the past n times by [sum] Q n / n Can be. Cylinder temperature is higher the larger the fuel injection amount, thus Q A is indirectly indicates cylinder temperature. That means that Q A is low indicates that the cylinder temperature is low. Then calculating the difference in step 66 and this total fuel injection amount Q and the average fuel injection quantity Q A. When Q-Q A exceeds a predetermined value, for example, 15 mm 3 or more, it indicates that the temperature in the cylinder is relatively low. For example, when the acceleration operation is performed from the low load operation, Q−Q A > 15. Also in this case, there is a problem that good ignition and combustion cannot be obtained as in the case of cold engine. Therefore, when Q−Q A > 15, the routine proceeds to step 67 and below, and when the compression stroke injection is executed, the compression stroke fuel injection timing AC and the ignition timing I g
If the compression stroke injection is not executed, only the ignition timing is advanced.

一方、Q−QA≦15と判定された場合には本ルーチンを
終了する。すなわちシリンダ内が低温時でない場合には
圧縮行程燃料噴射時期ACおよび点火時期Igは進角せしめ
られない。
On the other hand, if it is determined that Q−Q A ≦ 15, the present routine ends. That compression stroke fuel injection timing A C and the ignition timing I g if the cylinder is not at a low temperature is not allowed to advance.

なお、本実施例では1つの燃料噴射弁9によって吸気
行程噴射および圧縮行程噴射を実行するようにしている
が、2つの燃料噴射弁を有し、一方の燃料噴射弁で吸気
行程噴射を実行すると共に他方の燃料噴射弁によって圧
縮行程噴射を実行するようにしてもよい。
In the present embodiment, the intake stroke injection and the compression stroke injection are executed by one fuel injection valve 9, but two fuel injection valves are provided, and one of the fuel injection valves executes the intake stroke injection. At the same time, the compression stroke injection may be executed by the other fuel injection valve.

〔発明の効果〕〔The invention's effect〕

シリンダ内低温時においても良好な混合気を形成でき
るため、良好な燃料を得ることができる。
Since a good air-fuel mixture can be formed even at a low temperature in the cylinder, a good fuel can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は内燃機関の全体図、第2図は機関本体の縦断面
図、第3図は圧縮行程噴射と吸気行程噴射の制御パター
ンの一例を示す線図、第4図は第3図の制御パターンを
負荷とクランク角との関係で表わした線図、第5図は燃
料噴射の状態を示す説明図、第6図は圧縮行程燃料噴射
時期および点火時期を計算するためのフローチャートで
ある。 4……シリンダ室、9……燃料噴射弁、 12……点火栓、26……水温センサ。
1 is an overall view of an internal combustion engine, FIG. 2 is a longitudinal sectional view of an engine body, FIG. 3 is a diagram showing an example of a control pattern of compression stroke injection and intake stroke injection, and FIG. FIG. 5 is a diagram showing a control pattern as a relationship between load and crank angle, FIG. 5 is an explanatory diagram showing a state of fuel injection, and FIG. 6 is a flowchart for calculating a compression stroke fuel injection timing and an ignition timing. 4 ... cylinder chamber, 9 ... fuel injection valve, 12 ... spark plug, 26 ... water temperature sensor.

フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 43/00 301 F02D 43/00 301B F02P 5/15 F02P 5/15 B Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 43/00 301 F02D 43/00 301B F02P 5/15 F02P 5/15 B

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮行程にシリンダ内に燃料を直接噴射せ
しめて点火栓によって着火せしめるようにした内燃機関
において、シリンダ内低温時においては圧縮行程噴射の
燃料噴射時期を進角せしめると共に点火時期を進角せし
めるようにした筒内直接噴射式火花点火機関。
In an internal combustion engine in which fuel is directly injected into a cylinder during a compression stroke to be ignited by an ignition plug, when the temperature in the cylinder is low, the fuel injection timing of the compression stroke injection is advanced and the ignition timing is adjusted. In-cylinder direct injection spark ignition engine with advanced timing.
JP2311658A 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine Expired - Lifetime JP2751626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311658A JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311658A JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH04183924A JPH04183924A (en) 1992-06-30
JP2751626B2 true JP2751626B2 (en) 1998-05-18

Family

ID=18019929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311658A Expired - Lifetime JP2751626B2 (en) 1990-11-19 1990-11-19 In-cylinder direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2751626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087064B2 (en) * 1998-06-22 2008-05-14 株式会社日立製作所 In-cylinder injection internal combustion engine, control method for internal combustion engine, and fuel injection valve

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186589B2 (en) * 1996-02-16 2001-07-11 三菱自動車工業株式会社 Ignition timing control system for in-cylinder injection spark ignition internal combustion engine
EP0824188B1 (en) * 1996-08-09 2003-06-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection internal combustion engine
DE19650518C1 (en) * 1996-12-05 1998-06-10 Siemens Ag Method for controlling a direct injection internal combustion engine
AT1922U3 (en) * 1997-03-14 1998-06-25 Avl List Gmbh METHOD FOR INPUTING FUEL INTO THE COMBUSTION CHAMBER OF A DIRECTLY INJECTING OTTO INTERNAL COMBUSTION ENGINE
DE19954463A1 (en) * 1999-11-12 2001-05-31 Bosch Gmbh Robert Method of control of fuel injected internal combustion engine for motor vehicle has fuel fed into combustion chamber in compression or induction phases depending on operating temperature
DE10142493A1 (en) * 2001-08-30 2003-04-03 Bosch Gmbh Robert Method for operating a direct injection internal combustion engine
JP5270127B2 (en) * 2007-09-07 2013-08-21 トヨタ自動車株式会社 Internal combustion engine control system
CN112412624A (en) * 2016-11-07 2021-02-26 保罗·约翰·威廉·玛利亚·努奥伊耶恩 Method of controlling operation of internal combustion engine including crankshaft and cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087064B2 (en) * 1998-06-22 2008-05-14 株式会社日立製作所 In-cylinder injection internal combustion engine, control method for internal combustion engine, and fuel injection valve

Also Published As

Publication number Publication date
JPH04183924A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
US4955339A (en) Internal combustion engine
US5170759A (en) Fuel injection control device for an internal combustion engine
US6725827B2 (en) Spark ingition stratified combustion internal combustion engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JPH04187851A (en) Cylinder direct-injection type spark ignition engine
JPH05113146A (en) Internal combustion engine
JPH11153034A (en) Direct injection spark ignition type engine
JPH05118245A (en) Internal combustion engine
JPH0552145A (en) Control device for internal combustion engine
JPH02169834A (en) Inner-cylinder direct jet type spark ignition engine
JPH11236848A (en) Compression ignition type internal combustion engine
US5101785A (en) Control device for an internal combustion engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JP2871220B2 (en) In-cylinder internal combustion engine
JP2987925B2 (en) In-cylinder direct injection spark ignition engine
JPH0579370A (en) Cylinder injection type internal combustion engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JPS60230544A (en) Fuel injector for engine
JP3835130B2 (en) Compression self-ignition internal combustion engine
JP2929708B2 (en) In-cylinder direct injection spark ignition engine
JPH0730693B2 (en) Fuel injection method for internal combustion engine
JP2513004B2 (en) In-cylinder direct injection spark ignition engine
JP3196674B2 (en) In-cylinder injection spark ignition engine
JPH04187819A (en) Cylinder direct injection type spark ignition engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13