JPH0815133A - Analytic element - Google Patents

Analytic element

Info

Publication number
JPH0815133A
JPH0815133A JP14740694A JP14740694A JPH0815133A JP H0815133 A JPH0815133 A JP H0815133A JP 14740694 A JP14740694 A JP 14740694A JP 14740694 A JP14740694 A JP 14740694A JP H0815133 A JPH0815133 A JP H0815133A
Authority
JP
Japan
Prior art keywords
substrate
sample
groove
infrared
analysis element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14740694A
Other languages
Japanese (ja)
Inventor
Toshiko Fujii
稔子 藤井
Yuji Miyahara
裕二 宮原
Yoshio Watanabe
▲吉▼雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14740694A priority Critical patent/JPH0815133A/en
Publication of JPH0815133A publication Critical patent/JPH0815133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the infrared absorption spectrum of a liquid sample with high accuracy and sensitivity by applying a substrate, having a groove deposited on the surface thereof with a thin metal film, tightly to another substrate and then introducing a sample into the groove. CONSTITUTION:The analytic element 1 comprises a smooth substrate 2 and another substrate 5 having a groove 4 deposited, on the surface thereof, with a thin metal film 3. The substrate 2 is made of a material having refractive index higher than that of a sample or the atmosphere and transparent in the infrared region, e.g. Al2O3 or MgO. The substrate 5 is made of silicon and provided with a groove 4 of predetermined depth, a sample introduction port 6, and an air vent 7 by photolithography and etching. The substrates 2, 5 are tightened by means of a clip 8. A sample 9 is introduced through the sample introduction port 6 into the groove 4 through capillarity using a syringe 10, for example. The air is discharged from the groove to the outside through the air vent 7. Since the depth of groove is just equal to the length of optical path length in the sample, highly accurate analysis is realized using an optical path of short length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粘性の低い液体試料の
赤外吸収スペクトルを測定する試料セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample cell for measuring an infrared absorption spectrum of a low viscosity liquid sample.

【0002】[0002]

【従来の技術】従来の透過型の液体試料セルについて
は、「赤外法による材料分析(錦田晃一,岩本令吉著、
(1986),講談社サイエンティフィク,69ページ
から71ページ)」において述べられている。ここでは
2枚の窓材の間に試料を挟み、固定ねじで厚みを調節す
るキャピラリフィルム法や窓材,スペーサ,枠が接着剤
を用いて固定されている固定密閉式液体セル,組立式の
液体セルについて述べられている。
2. Description of the Related Art A conventional transmission type liquid sample cell is described in "Material analysis by infrared method (Koichi Nishida, Reikichi Iwamoto,
(1986), Kodansha Scientific, pp. 69-71). Here, the sample is sandwiched between two window materials and the thickness is adjusted with a fixing screw, and the capillary film method is used, or the window material, spacers, and frame are fixed with an adhesive. Liquid cells are described.

【0003】また一般的な減衰全反射法の測定装置は、
上記同書「赤外法による材料分析(106ページから1
07ページ)」において述べられている。
Also, a general measuring apparatus of the attenuated total reflection method is
In the same book, “Material analysis by infrared method (from page 106
P. 07) ".

【0004】また全反射プリズムと金属を用いた高感度
赤外吸収スペクトル測定法は、「アプライド スペクト
ロスコピー(1988年)第42巻,第1296ページ
から第1302ページ」において論じられている。ここ
ではプリズム−試料−金属薄膜というオットー(Otto)
配置の構成で測定が行われている。ゲルマニウムのプリ
ズムを用い、プリズム上に試料であるポリビニルアセテ
ートの薄膜を形成し、更にその上に20nmの厚さに銀
を蒸着し測定を行っている。その結果従来の5倍のSN
比での測定が可能とされている。
A high-sensitivity infrared absorption spectrum measuring method using a total reflection prism and a metal is discussed in "Applied Spectroscopy (1988) Vol. 42, pp. 1296 to 1302". Here, the prism-sample-metal thin film Otto
The measurements are made in a configuration of placement. Using a germanium prism, a polyvinyl acetate thin film as a sample is formed on the prism, and silver is vapor-deposited thereon to a thickness of 20 nm for measurement. As a result, 5 times the SN of the conventional
It is possible to measure the ratio.

【0005】また水溶液中の分子を高感度測定した例は
「サーフェイスサイエンス(1985年)第158巻,第61
6ページから623ページ」に述べられている。ここで
は酸性水溶液中に溶解したメルカプトベンゾチアゾール
(MBT)の高感度検出を銀を蒸着した全反射プリズム
を用い、プリズム−金属−試料という構成のクレチュマ
ン(Kretschmann)配置で測定を行っている。MBTのC
=S伸縮振動のピークが消え、代わりにAg(I)MBT
のピークが増大されていることから、Kretschmann 配置
の赤外吸収増大の原因となっている局所電場は、蒸着し
た銀に吸着している分子層程度の距離にしか及ばないこ
とが示唆されている。
An example of highly sensitive measurement of a molecule in an aqueous solution is described in "Surface Science (1985), Vol. 158, Vol. 61.
Pp. 6 to 623 ". Here, high-sensitivity detection of mercaptobenzothiazole (MBT) dissolved in an acidic aqueous solution is performed using a total reflection prism on which silver is vapor-deposited, and measurement is performed in a Kretschmann arrangement of prism-metal-sample. MBT C
= S The peak of stretching vibration disappears and instead Ag (I) MBT
It is suggested that the local electric field that causes the increase in infrared absorption in the Kretschmann configuration extends only to the distance of the molecular layer adsorbed on the evaporated silver. .

【0006】[0006]

【発明が解決しようとする課題】従来液体、特に水溶液
の透過法によって測定した赤外吸収スペクトルは、試料
の厚みの制御が困難で、光路長が一定でないために測定
の再現性が悪く定量分析には使用できなかった。またセ
ルの洗浄,組み立てなどのメンテナンスが繁雑であっ
た。また従来行われてきた金属薄膜と全反射プリズムを
用いた高感度赤外吸収スペクトル測定法は、主に固体試
料を対象にしたもので、水溶液を対象とした測定例は、
Kretschmann 配置に限られていた。
The infrared absorption spectrum measured by the transmission method of a liquid, especially an aqueous solution, is difficult to control the thickness of the sample, and the optical path length is not constant, so that the reproducibility of the measurement is poor and the quantitative analysis is performed. Could not be used for. Also, maintenance such as cell cleaning and assembly was complicated. In addition, the conventional high-sensitivity infrared absorption spectrum measurement method using a metal thin film and a total reflection prism is mainly for solid samples, and an example of measurement for an aqueous solution is
Limited to Kretschmann placement.

【0007】この水溶液を試料としたKretschmann 配置
の測定での赤外吸収増大の原因は、金属薄膜を構成する
金属微粒子に光が入射することによって励起される局在
プラズモンによる表面電場の増大であるとされ、増大し
た表面電場の及ぶ距離は、数nm程度と実験結果から推測
されている。したがって水溶液中の分子が金属に対して
化学的な相互作用を持ち、局所電場が生じる金属薄膜近
傍に測定対象分子の吸着層が存在することが赤外吸収の
増大に必要であり、化学的に安定な分子の分析は出来な
かった。
The cause of the increase in infrared absorption in the measurement of the Kretschmann configuration using this aqueous solution as a sample is an increase in the surface electric field due to localized plasmons excited by the light incident on the metal fine particles constituting the metal thin film. It is estimated from the experimental results that the increased distance of the surface electric field is about several nm. Therefore, it is necessary to increase the infrared absorption that the molecules in the aqueous solution have a chemical interaction with the metal and the adsorption layer of the molecule to be measured exists near the metal thin film where a local electric field is generated. Analysis of stable molecules was not possible.

【0008】一方、Otto配置の場合は、ある一定の角度
で金属膜に光が入射した時に励起される非放射性の表面
プラズモン共鳴が赤外吸収増大の原因とされているが、
前述したように水溶液での測定例は無い。Otto配置で
は、プリズム側から試料層を介して金属薄膜に光を入射
させることが必要だが、プリズムから試料側への光のし
み出しはほんの数μm程度であるため、液体をこのよう
に薄くプリズム上に設置するのは困難であった。したが
って従来の金属とプリズムを組み合せた赤外スペクトル
測定法では、水溶液の高感度測定が行えなかった。
On the other hand, in the case of the Otto arrangement, non-radiative surface plasmon resonance, which is excited when light is incident on the metal film at a certain angle, is considered to be the cause of the increase in infrared absorption.
As mentioned above, there is no measurement example in an aqueous solution. In the Otto arrangement, it is necessary to allow light to enter the metal thin film from the prism side through the sample layer, but since the light seeps from the prism to the sample side is only a few μm, the liquid can be made into such a thin prism. It was difficult to install on top. Therefore, the conventional infrared spectrum measurement method using a combination of a metal and a prism cannot perform highly sensitive measurement of an aqueous solution.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
に、フォトリソグラフィとエッチングにより溝を形成
し、溝表面に金属薄膜を形成した基板を、別の基板に密
着させ、試料を導入するための開口部を設け、溝中に試
料を導入する構成にし、溝の深さによって試料の厚みを
制御する分析カートリッジとした。また高感度に赤外吸
収スペクトルを測定するために、溝表面に金属薄膜を形
成した。
In order to solve the above problems, a groove is formed by photolithography and etching, a substrate having a metal thin film formed on the groove surface is brought into close contact with another substrate, and a sample is introduced. The sample was introduced into the groove by providing the opening of, and the thickness of the sample was controlled by the depth of the groove. In addition, a metal thin film was formed on the groove surface in order to measure the infrared absorption spectrum with high sensitivity.

【0010】[0010]

【作用】上記手段は以下のように作用する。溝を形成し
た第二基板を第一基板に密着させ、第二基板の溝に試料
を充填するセル構成にすることによって、第一基板上に
保持される試料の厚みを第二基板の溝の深さで規定する
ことができる。また溝形成にエッチングを用いることに
よって溝の深さをμmオーダで制御でき、試料の厚さを
極薄く規定することができる。透過法における赤外吸収
スペクトル測定においては、溝の深さがそのまま試料中
での光路長となり、極短い光路長で測定を行うことによ
り水などの赤外吸収の大きい溶媒に溶けた分子の分析を
精度よく行うことが出来る。
The above means operates as follows. The thickness of the sample held on the first substrate is set to the thickness of the groove of the second substrate by bringing the second substrate in which the groove is formed into close contact with the first substrate and forming a cell configuration in which the groove of the second substrate is filled with the sample. It can be defined by depth. Further, by using etching for forming the groove, the depth of the groove can be controlled on the order of μm, and the thickness of the sample can be specified to be extremely thin. In the infrared absorption spectrum measurement by the transmission method, the depth of the groove becomes the optical path length in the sample as it is, and by measuring with an extremely short optical path length, the analysis of molecules dissolved in a solvent with large infrared absorption such as water Can be performed accurately.

【0011】また金属薄膜を用いた減衰全反射法による
高感度赤外吸収スペクトル測定では、試料層を極薄く形
成することによって光導波路用基板からしみでる光が、
試料を介して溝表面に形成された金属薄膜表面まで達
し、金属表面に表面プラズモン共鳴を励起させる。金属
表面の表面プラズモン共鳴は金属に接する試料の赤外吸
収を増大させ、高感度に赤外スペクトルを測定すること
が出来る。また本分析素子は半導体プロセス等で量産が
可能であるため、ディスポーザブルセルとして使用で
き、セルの洗浄などの繁雑なメンテナンスは不要であ
る。
Further, in the high-sensitivity infrared absorption spectrum measurement by the attenuated total reflection method using a metal thin film, the light bleeding from the optical waveguide substrate is formed by forming the sample layer extremely thin.
It reaches the surface of the metal thin film formed on the groove surface through the sample and excites surface plasmon resonance on the metal surface. The surface plasmon resonance on the metal surface increases the infrared absorption of the sample in contact with the metal, and the infrared spectrum can be measured with high sensitivity. Further, since this analytical element can be mass-produced in a semiconductor process or the like, it can be used as a disposable cell, and complicated maintenance such as cell cleaning is unnecessary.

【0012】[0012]

【実施例】図1は本発明の第一の実施例の分析素子を示
した説明図である。本分析素子1は、平滑な第一基板2
と、表面に蒸着によって金属薄膜3を形成した溝4を設
置した第二基板5の2枚の基板から構成されている。第
一基板2は、Al23,MgO,ZnSe,Si,G
e、など屈折率が試料や大気より大きく、赤外領域に透
明な材質が用いられる。第二基板5は、シリコンから構
成されており、フォトリソグラフィとエッチングにより
所定の深さ(本実施例では0.5μm)の試料設置溝4と
貫通口である試料導入口6,抜気口7を形成したもので
ある。試料設置溝4の加工にはシリコンエッチングを用
いているため、μmオーダでの深さ制御が可能である。
第一基板2と第二基板5は、クリップ8によって圧着さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an analytical element of a first embodiment of the present invention. The analysis element 1 includes a smooth first substrate 2
And a second substrate 5 having a groove 4 on the surface of which a metal thin film 3 is formed by vapor deposition. The first substrate 2 is made of Al 2 O 3 , MgO, ZnSe, Si, G.
For example, a material having a refractive index larger than that of the sample or the atmosphere and transparent in the infrared region is used. The second substrate 5 is made of silicon, and has a predetermined depth (0.5 μm in this embodiment) of the sample setting groove 4 formed by photolithography and etching, and a sample inlet 6, which is a through hole 6, and a vent 7. Is formed. Since silicon etching is used for processing the sample mounting groove 4, it is possible to control the depth on the order of μm.
The first substrate 2 and the second substrate 5 are pressure bonded by the clip 8.

【0013】試料9は、シリンジ10等で試料導入口6
から溝4中に毛細管現象によって導入される。その時溝
4中の空気は抜気口7から溝外へ排出される。
The sample 9 is a sample inlet 6 such as a syringe 10.
Is introduced into the groove 4 by capillary action. At that time, the air in the groove 4 is discharged to the outside of the groove through the air vent 7.

【0014】図2,図3は、本発明の第二,第三の実施
例の水溶液を試料とする分析素子11,12の断面図で
ある。図2に示した分析素子11は、図1に示した分析
素子1の第二基板5に蒸着した金薄膜3及び試料導入口
6表面と第一基板2の第二基板との接着面表面にイオン
スパッタによって酸化膜13を形成したものである。シ
リコン,セレン化亜鉛などの基板の材質となる物質表面
は疎水性で水を弾きやすい性質である。したがって試料
導入部表面を酸化膜によって親水性にして試料設置溝4
中に試料を速やかに展開することができる。
2 and 3 are cross-sectional views of analytical elements 11 and 12 using the aqueous solutions of the second and third embodiments of the present invention as samples. The analysis element 11 shown in FIG. 2 is formed on the surface of the bonding surface between the gold thin film 3 deposited on the second substrate 5 of the analysis element 1 shown in FIG. 1 and the sample introduction port 6 surface and the second substrate of the first substrate 2. The oxide film 13 is formed by ion sputtering. The surface of the substrate material such as silicon or zinc selenide is hydrophobic and easily repels water. Therefore, the surface of the sample introduction part is made hydrophilic by the oxide film and the sample installation groove 4
The sample can be rapidly developed therein.

【0015】図3に示した分析素子12は、図1に示し
た分析素子1の溝4部分にセルロースなどの吸水性物質
の微粒子14を充填したもので、吸水性微粒子14の働
きによって速やかに試料を溝4中に導入することができ
る。
The analytical element 12 shown in FIG. 3 is obtained by filling the grooves 4 of the analytical element 1 shown in FIG. 1 with fine particles 14 of a water-absorbing substance such as cellulose. The sample can be introduced into the groove 4.

【0016】図4は、図1に示した分析素子1を用いた
透過法による水溶液の赤外吸収スペクトルの測定形態で
ある。赤外分光計の試料室内に分析素子1をホルダ15
により溝4中の試料層9が赤外光16に対して垂直にな
るように設置する。本分析素子1の溝4の深さは0.5
μm でこの深さがそのまま試料9の厚さ、すなわち、
試料中の光路長となる。本分析素子は、半導体プロセス
等で量産することが可能なので、安価で素子間の誤差が
少ないディスポーザブル素子として使用でき従来の透過
型試料セルの様な洗浄や試料交換の煩わしさが無く測定
が行える。また試料のコンタミネーションもディスポー
ザブルにすることによって無くなる。
FIG. 4 shows a form of measurement of an infrared absorption spectrum of an aqueous solution by a transmission method using the analytical element 1 shown in FIG. Holder 15 for analytical element 1 in the sample chamber of the infrared spectrometer
Thus, the sample layer 9 in the groove 4 is installed so as to be perpendicular to the infrared light 16. The depth of the groove 4 of this analysis element 1 is 0.5.
In μm, this depth is the thickness of the sample 9 as it is, that is,
It is the optical path length in the sample. Since this analysis element can be mass-produced in the semiconductor process, etc., it can be used as a disposable element that is inexpensive and has little error between elements, and measurement can be performed without the hassle of cleaning and sample exchange like the conventional transmission type sample cell. . Also, contamination of the sample is eliminated by making it disposable.

【0017】図5は、図1に示した分析素子1を用いた
減衰全反射法による水溶液の赤外吸収スペクトルの測定
形態である。分析素子1による高感度測定には赤外吸収
の高感度化の原因となる表面プラズモン共鳴を励起する
ために充分な光量が必要なため、光学系の明るいフーリ
エ変換赤外分光計や赤外レーザを光源とした分析装置な
どに用いる。分析素子1は光源17からの赤外光16を
光導波路となる第一基板2に入射するための入射用プリ
ズム18と第一基板を伝搬してきた赤外光を検知器に出
射するための出射用プリズム19を供えたホルダ20に
設置される。本ホルダ20は、試料室内に設置され、分
析素子は、ホルダへのはめ込み式になっている。試料交
換の際は分析素子1をホルダから取外し、素子毎交換が
出来る様になっている。
FIG. 5 shows a form of measurement of an infrared absorption spectrum of an aqueous solution by the attenuated total reflection method using the analytical element 1 shown in FIG. A high-sensitivity measurement with the analysis element 1 requires a sufficient amount of light to excite surface plasmon resonance that causes high sensitivity of infrared absorption. Therefore, a bright Fourier transform infrared spectrometer or infrared laser of an optical system is required. It is used in analyzers that use a light source. The analysis element 1 emits the infrared light 16 from the light source 17 into the incident substrate 18 for entering the first substrate 2 which serves as an optical waveguide and the infrared light propagating through the first substrate to the detector. It is installed in a holder 20 provided with a prism 19 for use. The holder 20 is installed in the sample chamber, and the analysis element is of a type that can be fitted into the holder. When exchanging samples, the analytical element 1 can be removed from the holder and the elements can be exchanged.

【0018】光源17から出射した赤外光16は、偏光
子21を通してp偏光となり、プリズム18にプリズム
の臨界角付近で入射する。赤外光はプリズム18の角で
回折を起こし、プリズム18に接した分析素子1の第一
基板2に入射し、基板中を多重反射しながら出射用プリ
ズム19に達し、プリズム19によって検知器へ出射す
る。第一基板2と試料9の界面で全反射した光は、2〜
3μm程度試料中にエバネッセント波として染み込む。
The infrared light 16 emitted from the light source 17 becomes p-polarized light through the polarizer 21 and is incident on the prism 18 near the critical angle of the prism. The infrared light is diffracted at the angle of the prism 18, enters the first substrate 2 of the analysis element 1 which is in contact with the prism 18, reaches the output prism 19 while undergoing multiple reflection in the substrate, and is transmitted to the detector by the prism 19. Emit. The light totally reflected at the interface between the first substrate 2 and the sample 9 is 2 to
It penetrates into the sample as evanescent wave about 3 μm.

【0019】本分析素子の試料設置溝4の深さは0.5
μm なので金薄膜3にエバネッセント波が達し、表面
プラズモン共鳴が励起される。この表面プラズモン共鳴
によって試料中の赤外吸収が増大され、高感度に試料の
赤外吸収スペクトルを測定することが出来る。
The depth of the sample setting groove 4 of this analysis element is 0.5.
Since it is μm, an evanescent wave reaches the gold thin film 3 and surface plasmon resonance is excited. This surface plasmon resonance increases the infrared absorption in the sample, and the infrared absorption spectrum of the sample can be measured with high sensitivity.

【0020】図6は、図1に示した高感度分析素子1を
用いた全血を試料とした血糖計22の全体図である。設
置型の小型分析計で、試料を滴下する分析素子1,試料
に関するデータを入力するキーボード23,本装置で測
定した血糖値及び患者の血糖値の経時的な変動を出力す
るためのプリンタ24及びディスプレイ25を備えてい
る。
FIG. 6 is an overall view of a blood glucose meter 22 using whole blood using the high-sensitivity analysis element 1 shown in FIG. 1 as a sample. A small stationary analyzer, an analytical element for dropping a sample, a keyboard 23 for inputting data relating to the sample, a printer 24 for outputting the blood glucose level measured by this device and the blood glucose level of the patient over time, and A display 25 is provided.

【0021】図7は、図6の血糖計のブロック図であ
る。赤外光源26から出射した赤外光27は分析素子1
に入射し、素子内の血液に特定波長の光を吸収され干渉
計28に出射する。干渉計28で位相差を生じた光は、
検知器29へ導かれAD変換器30をへて、デジタル信
号31としてコンピュータ32に入力される。
FIG. 7 is a block diagram of the blood glucose meter shown in FIG. The infrared light 27 emitted from the infrared light source 26 is the analysis element 1
Light of a specific wavelength is absorbed by the blood in the device and emitted to the interferometer 28. The light with the phase difference generated by the interferometer 28 is
The signal is guided to the detector 29, passes through the AD converter 30, and is input to the computer 32 as a digital signal 31.

【0022】信号はフーリエ変換により各波数毎の吸光
度に変換される。あらかじめ血糖値と血液スペクトルの
1181−950cm-1の吸光度数列の関係を多変量解析
により計算しておいた検量式に試料の1181−950
cm-1の吸光度数列を算入して試料中の血糖値を算出す
る。算出された血糖値はディスプレイやプリンタなどの
出力機構33によって測定者に知らされる。
The signal is converted into the absorbance for each wave number by Fourier transform. The relationship between the blood glucose level and the absorbance spectrum of the blood spectrum at 1181-950 cm −1 was calculated by multivariate analysis in advance using a calibration formula of 1181-950 of the sample.
The blood glucose level in the sample is calculated by including the absorbance series of cm -1 . The calculated blood glucose level is notified to the measurer by the output mechanism 33 such as a display or a printer.

【0023】図8は本発明の血糖計で測定したグルコー
スの従来の酵素法との相関である。結果はγ=0.96
2 と良好であった。本発明では試薬レスで従来の酵素
法と同等の測定を行うことが出来る。
FIG. 8 shows the correlation between glucose measured by the blood glucose meter of the present invention and the conventional enzymatic method. The result is γ = 0.96
2 was good. In the present invention, it is possible to perform the same measurement as the conventional enzyme method without using a reagent.

【0024】[0024]

【発明の効果】本発明によれば、液体試料の赤外吸収ス
ペクトルを高精度かつ高感度に測定することができる。
According to the present invention, the infrared absorption spectrum of a liquid sample can be measured with high accuracy and high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の分析素子の説明図。FIG. 1 is an explanatory diagram of an analysis element according to a first embodiment of the present invention.

【図2】本発明の第二の実施例の分析素子の断面図。FIG. 2 is a sectional view of an analytical element according to a second embodiment of the present invention.

【図3】本発明の第三の実施例の分析素子の断面図。FIG. 3 is a sectional view of an analytical element according to a third embodiment of the present invention.

【図4】本発明の分析素子の使用例の断面図。FIG. 4 is a cross-sectional view of a usage example of the analysis element of the present invention.

【図5】本発明の分析素子の使用例の説明図。FIG. 5 is an explanatory diagram of a usage example of the analysis element of the present invention.

【図6】本発明の分析素子を使用した血糖計の説明図。FIG. 6 is an explanatory diagram of a blood glucose meter using the analysis element of the present invention.

【図7】血糖計のブロック図。FIG. 7 is a block diagram of a blood glucose meter.

【図8】本発明の効果を表すグラフ。FIG. 8 is a graph showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…分析素子、2…第一基板、3…金薄膜、4…溝、5
…第二基板、6…試料導入口、7…抜気口、8…クリッ
プ、9…試料、10…シリンジ。
1 ... Analytical element, 2 ... First substrate, 3 ... Gold thin film, 4 ... Groove, 5
... Second substrate, 6 ... Sample introduction port, 7 ... Degassing port, 8 ... Clip, 9 ... Sample, 10 ... Syringe.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】減衰全反射法もしくは透過法によって試料
の赤外吸収を測定する光学セルにおいて、第一基板と,
前記第一基板側に開口し表面に金属薄膜を形成した溝を
設けた第二基板を密着し、前記溝中に試料を充填し、前
記試料を充填した前記溝の深さによって前記試料の厚さ
を制御することを特徴とする分析素子。
1. An optical cell for measuring infrared absorption of a sample by an attenuated total reflection method or a transmission method, comprising: a first substrate;
The second substrate provided with a groove in which a metal thin film is formed on the surface of the first substrate is adhered, a sample is filled in the groove, and the thickness of the sample is determined by the depth of the groove filled with the sample. Analytical element characterized by controlling the height.
【請求項2】請求項1に記載の前記第二基板は、前記溝
の形状をフォトリソグラフィによってパターンニング
し、エッチングによって溝を形成した分析素子。
2. The analytical element according to claim 1, wherein the second substrate is formed by patterning the shape of the groove by photolithography and forming the groove by etching.
【請求項3】請求項1に記載の前記第二基板に、試料導
入口,抜気口を備えた分析素子。
3. An analysis element comprising the second substrate according to claim 1 having a sample introduction port and a degassing port.
【請求項4】請求項1において、前記金属薄膜が金,
銀,銅,アルミニウム,白金からなる分析素子。
4. The metal thin film according to claim 1,
Analytical element consisting of silver, copper, aluminum and platinum.
【請求項5】請求項1において、前記第一基板及び前記
第二基板の試料接触部分表面に水酸基,アミノ基などの
親水基もしくは酸化膜を修飾した分析素子。
5. The analytical element according to claim 1, wherein the surface of the sample contact portion of the first substrate and the second substrate is modified with a hydrophilic group such as a hydroxyl group or an amino group or an oxide film.
【請求項6】請求項1において、前記第二基板に形成さ
れた溝に、ポリエチレンオキサイド,ポリアミドなどの
吸水性微粒子が充填されている分析素子。
6. The analysis element according to claim 1, wherein the grooves formed in the second substrate are filled with water-absorbing fine particles such as polyethylene oxide and polyamide.
【請求項7】請求項1において、前記第一基板は、前記
第一基板中への赤外光の入射機構及び前記第一基板から
検出器への赤外光の出射機構を持ち、前記入出射機構が
回折格子もしくはプリズムまたは光ファイバである分析
素子。
7. The device according to claim 1, wherein the first substrate has an infrared light incident mechanism into the first substrate and an infrared light emission mechanism from the first substrate to a detector. An analysis element whose emission mechanism is a diffraction grating or prism or an optical fiber.
【請求項8】請求項1に記載の前記第二基板がシリコン
からなる分析素子。
8. The analysis element according to claim 1, wherein the second substrate is made of silicon.
【請求項9】請求項1に記載の前記第一基板はゲルマニ
ウム,セレン化亜鉛,シリコンなどの屈折率1.4 以上
で赤外領域において透明な結晶からなる分析素子。
9. The analytical element according to claim 1, wherein the first substrate is made of a crystal such as germanium, zinc selenide, or silicon which has a refractive index of 1.4 or more and is transparent in the infrared region.
【請求項10】請求項1において、赤外光源と干渉計と
検知器及び前記検知器によって検出された信号を処理す
るためのコンピュータ部をもった赤外分光計に前記分析
素子を試料セルとして使用した血液分析装置。
10. An infrared spectrometer having a computer unit for processing an infrared light source, an interferometer, a detector, and a signal detected by the detector according to claim 1, wherein the analysis element is used as a sample cell. The blood analyzer used.
JP14740694A 1994-06-29 1994-06-29 Analytic element Pending JPH0815133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14740694A JPH0815133A (en) 1994-06-29 1994-06-29 Analytic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14740694A JPH0815133A (en) 1994-06-29 1994-06-29 Analytic element

Publications (1)

Publication Number Publication Date
JPH0815133A true JPH0815133A (en) 1996-01-19

Family

ID=15429582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14740694A Pending JPH0815133A (en) 1994-06-29 1994-06-29 Analytic element

Country Status (1)

Country Link
JP (1) JPH0815133A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078391A (en) * 1996-09-04 1998-03-24 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component
US6602902B2 (en) 1996-05-22 2003-08-05 Protarga, Inc. Dha-pharmaceutical agent conjugates to improve tissue selectivity
JP2005530986A (en) * 2002-04-03 2005-10-13 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Infrared measuring device for spectroscopic methods, especially aqueous systems, preferably multicomponent systems
JP2006003217A (en) * 2004-06-17 2006-01-05 Kyoto Univ Sensor chip and sensor device using it
WO2006135097A1 (en) * 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
US7235583B1 (en) 1999-03-09 2007-06-26 Luitpold Pharmaceuticals, Inc., Fatty acid-anticancer conjugates and uses thereof
JP2012251963A (en) * 2011-06-07 2012-12-20 Okayama Univ Refractive index detection method and optical fiber sensor system
JPWO2012046412A1 (en) * 2010-10-07 2014-02-24 パナソニック株式会社 Plasmon sensor
JP2014062278A (en) * 2012-09-20 2014-04-10 Sumitomo Electric Ind Ltd Method for quantitatively determining aluminum oxide ion, method for quantitatively determining water content in molten salt, and method for producing aluminum structure
DE102014115914A1 (en) * 2014-10-31 2016-05-04 Duravit Aktiengesellschaft Device for analyzing urine
KR20160068346A (en) * 2014-12-05 2016-06-15 한국표준과학연구원 liquid sample analysis device and method using optical density
JPWO2016120951A1 (en) * 2015-01-26 2017-10-19 株式会社日立ハイテクノロジーズ Optical analyzer
JP2018028468A (en) * 2016-08-17 2018-02-22 国立研究開発法人産業技術総合研究所 Analyte analysis device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602902B2 (en) 1996-05-22 2003-08-05 Protarga, Inc. Dha-pharmaceutical agent conjugates to improve tissue selectivity
JP2000515966A (en) * 1996-07-11 2000-11-28 イーツェーベー インスティテュート ファー ヒェモ−ウント ビオゼンゾリック ミュンスター エー.ファー. Apparatus and method for performing a quantitative fluorescent mark affinity test
JPH1078391A (en) * 1996-09-04 1998-03-24 Fuji Photo Film Co Ltd Surface plasmon sensor
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
US7235583B1 (en) 1999-03-09 2007-06-26 Luitpold Pharmaceuticals, Inc., Fatty acid-anticancer conjugates and uses thereof
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component
JPWO2003021239A1 (en) * 2001-08-28 2004-12-16 松下電器産業株式会社 Information measuring device for specific components
JP2005530986A (en) * 2002-04-03 2005-10-13 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Infrared measuring device for spectroscopic methods, especially aqueous systems, preferably multicomponent systems
US7812312B2 (en) 2002-04-03 2010-10-12 Johann Wolfgang Goethe-Universitaet Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
JP2006003217A (en) * 2004-06-17 2006-01-05 Kyoto Univ Sensor chip and sensor device using it
US7643156B2 (en) 2005-06-14 2010-01-05 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
WO2006135097A1 (en) * 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
JPWO2012046412A1 (en) * 2010-10-07 2014-02-24 パナソニック株式会社 Plasmon sensor
JP5938585B2 (en) * 2010-10-07 2016-06-22 パナソニックIpマネジメント株式会社 Plasmon sensor
JP2012251963A (en) * 2011-06-07 2012-12-20 Okayama Univ Refractive index detection method and optical fiber sensor system
JP2014062278A (en) * 2012-09-20 2014-04-10 Sumitomo Electric Ind Ltd Method for quantitatively determining aluminum oxide ion, method for quantitatively determining water content in molten salt, and method for producing aluminum structure
DE102014115914A1 (en) * 2014-10-31 2016-05-04 Duravit Aktiengesellschaft Device for analyzing urine
KR20160068346A (en) * 2014-12-05 2016-06-15 한국표준과학연구원 liquid sample analysis device and method using optical density
JPWO2016120951A1 (en) * 2015-01-26 2017-10-19 株式会社日立ハイテクノロジーズ Optical analyzer
JP2018028468A (en) * 2016-08-17 2018-02-22 国立研究開発法人産業技術総合研究所 Analyte analysis device

Similar Documents

Publication Publication Date Title
US5415842A (en) Surface plasmon resonance analytical device
US5814565A (en) Integrated optic waveguide immunosensor
US6534011B1 (en) Device for detecting biochemical or chemical substances by fluorescence excitation
JPH0815133A (en) Analytic element
US6100991A (en) Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US9523637B2 (en) Thermal selectivity multivariate optical computing
EP0517777B1 (en) Sample cell for use in chemical or biochemical assays
US5434663A (en) Analytical device
JP3579321B2 (en) Two-dimensional imaging surface plasmon resonance measurement apparatus and measurement method
US6466323B1 (en) Surface plasmon resonance spectroscopy sensor and methods for using same
JP3786073B2 (en) Biochemical sensor kit and measuring device
EP0305109A1 (en) Biological sensors
WO1989009394A1 (en) Waveguide sensor
US20160161406A1 (en) Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
EP1194763A1 (en) Surface plasmon resonance detection with high angular resolution and fast response time
US5434411A (en) Infrared spectrum measuring apparatus adapted for measuring the absorption of infrared radiation by a liquid sample utilizing a total reflection phenomenon of light
US20030103208A1 (en) Surface plasmon resonance sensor having real-time referencing
US5644125A (en) Spectrometer employing a Mach Zehnder interferometer created by etching a waveguide on a substrate
JP2002357543A (en) Analyzing element and method for analyzing sample using the same
Podgorsek et al. Optical gas sensing by evaluating ATR leaky mode spectra
US6784999B1 (en) Surface plasmon resonance detection with high angular resolution and fast response time
JPH0875639A (en) Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
JP4406702B2 (en) Formaldehyde detection method and detection apparatus
JPH06281568A (en) Analyzer for liquid component
US6788415B2 (en) Turntable measuring apparatus utilizing attenuated total reflection