JPH08128441A - Bearing metal variable phase-type bearing - Google Patents

Bearing metal variable phase-type bearing

Info

Publication number
JPH08128441A
JPH08128441A JP33250494A JP33250494A JPH08128441A JP H08128441 A JPH08128441 A JP H08128441A JP 33250494 A JP33250494 A JP 33250494A JP 33250494 A JP33250494 A JP 33250494A JP H08128441 A JPH08128441 A JP H08128441A
Authority
JP
Japan
Prior art keywords
bearing
bearing metal
metal
housing
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33250494A
Other languages
Japanese (ja)
Other versions
JP3095650B2 (en
Inventor
Iwao Matsumoto
岩男 松本
Hitoaki Ezaki
仁朗 江崎
Toyoaki Furukawa
豊秋 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06332504A priority Critical patent/JP3095650B2/en
Publication of JPH08128441A publication Critical patent/JPH08128441A/en
Application granted granted Critical
Publication of JP3095650B2 publication Critical patent/JP3095650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE: To provide a high performance bearing metal variable phase-type bearing for exhibiting oil film properties most suitable for vibrational properties of a rotary shaft, and achieving stability of a shaft system through a process of changing the critical speed and unbalanced response characteristics in relation to the change of the operational condition of the rotary shaft. CONSTITUTION: A bearing metal 03 is inserted into a bearing housing 10 so as to be turned around its axis. In a slide bearing such as a cylindrical bearing, two circular-arc bearing, and a tilting pad bearing provided with a structure for rotating the bearing metal 03 to the optional phase in the circumferential direction, teeth 05 notched on a part of the outer periphery or on the whole periphery of the bearing metal 03 and a phase adjusting means 06 of the bearing metal 03 supported to the bearing housing 10, and on which teeth to be meshed with the teeth 05 of the bearing metal 05 are projectingly provided are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軸受メタル可変位相型
軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing metal variable phase type bearing.

【0002】[0002]

【従来の技術】回転機械に慣用されている種々のすべり
軸受は、図13に示すように、回転軸01が軸受ハウジ
ング10の軸受孔に嵌着固定された軸受メタル03に環
状すきま02を存して軸支され、環状すきま02は潤滑
油にて充填されている。この種のすべり軸受では環状軸
受メタル03は固定されているので、回転軸01の回転
中にその油膜係数を変更するようなことはできない。
2. Description of the Related Art As shown in FIG. 13, various slide bearings commonly used in rotary machines have an annular clearance 02 in a bearing metal 03 in which a rotary shaft 01 is fitted and fixed in a bearing hole of a bearing housing 10. And the annular clearance 02 is filled with lubricating oil. Since the annular bearing metal 03 is fixed in this type of slide bearing, the oil film coefficient cannot be changed during rotation of the rotary shaft 01.

【0003】[0003]

【発明が解決しようとする課題】ところで、通常、回転
軸系の振動特性は、図14に示すように、軸系諸元及び
軸受の油膜特性で定まる。通常の回転機械においては、
軸系諸元は回転機械の種類,出力,性能が定まればほぼ
定まってくるのであるが、その種類によって高圧タービ
ン等ではローターの自重のみならず、部分負荷条件で無
視できない蒸気反力を受け、またコンプレッサーでは負
荷に応じた歯合反力を受けるので、軸荷重方向が変化す
るものもある。一方、軸受の油膜特性は軸受の型式によ
って大きく異なるだけでなく、軸受幅,軸受すきまなど
の軸受諸元によっても大きく異なる。しかしながら、前
記したように、従来の軸受では回転機械の運転中に油膜
係数を変更できないので、あらかじめ回転数,負荷など
運転条件の変化に対して、危険速度,不釣り合い応答特
性及び軸系安定性などを考慮して軸受を設計しておかな
ければならない。このため、一般に軸受は過剰品質にな
るのみならず、条件によっては振動特性が必ずしも最適
に設計されていない場合が生ずる。
By the way, normally, the vibration characteristics of the rotary shaft system are determined by the specifications of the shaft system and the oil film characteristics of the bearing, as shown in FIG. In a normal rotating machine,
The specifications of the shaft system will be almost determined if the type, output, and performance of the rotating machine are determined. Depending on the type, not only the weight of the rotor in a high-pressure turbine, but also the steam reaction force that cannot be ignored under partial load conditions is In addition, since the compressor receives a tooth reaction force corresponding to the load, the axial load direction may change in some compressors. On the other hand, the oil film characteristics of the bearing vary greatly not only with the type of bearing, but also with the bearing specifications such as bearing width and bearing clearance. However, as described above, in the conventional bearing, the oil film coefficient cannot be changed during the operation of the rotating machine. Bearings must be designed in consideration of such factors. For this reason, in general, not only the quality of the bearing becomes excessive, but also the vibration characteristics may not always be optimally designed depending on the conditions.

【0004】本発明はこのような事情に鑑みて提案され
たもので、回転軸の振動特性に最適の油膜特性を発揮
し、回転軸の運転条件の変化に対して危険速度,不釣り
合い応答特性を変えて軸系の安定性を図る高性能の軸受
メタル可変位相型軸受を提供することを目的とする。
The present invention has been proposed in view of such circumstances, and exhibits optimum oil film characteristics for the vibration characteristics of the rotating shaft, and has a critical speed and unbalanced response characteristics with respect to changes in the operating conditions of the rotating shaft. It is an object of the present invention to provide a high-performance bearing metal variable phase type bearing in which the stability of the shaft system is improved by changing the above.

【0005】[0005]

【課題を解決するための手段】そのために請求項1の発
明は、軸受ハウジングに軸受メタルをその軸線の周りに
回動可能に内挿してなり、上記軸受メタルを円周方向の
任意の位相に回動しうる構造を有する真円軸受,2円弧
軸受,ティルティングパッド軸受等のすべり軸受におい
て、その軸受メタルの外周の一部又は全周に沿って刻設
された歯と、その軸受ハウジングに軸支され上記軸受メ
タルの歯に歯合する歯が突設された軸受メタルの位相調
整手段とを具えたことを特徴とする。
To this end, the invention according to claim 1 is characterized in that a bearing metal is inserted into a bearing housing so as to be rotatable about its axis, and the bearing metal is arranged in an arbitrary phase in the circumferential direction. In a sliding bearing such as a perfect circular bearing, a two-circle bearing, a tilting pad bearing, etc. having a rotatable structure, a tooth formed along a part or the whole outer circumference of the bearing metal and a bearing housing thereof. It is characterized by further comprising: a bearing metal phase adjusting means that is axially supported and has teeth that mesh with the teeth of the bearing metal.

【0006】また、請求項2は、請求項1において、そ
の軸受メタルの外周の一部又は全周に沿って刻設された
歯の代わりに、軸受メタルの一端の一部又は全周に沿っ
て刻設された歯を具えたことを特徴とする。
According to a second aspect of the present invention, instead of the teeth engraved along a part or the entire circumference of the bearing metal in the first aspect, a part or the entire circumference of one end of the bearing metal is used. It is characterized by having teeth engraved on it.

【0007】さらに、請求項3は、請求項1又は請求項
2において、その軸受メタルに半径方向に穿設された給
油孔と、そのハウジングと上記軸受メタルとの間に形成
されたスクイズ油膜とを具えたことを特徴とする。
Further, a third aspect of the present invention is that, in the first or second aspect, an oil supply hole formed in the bearing metal in a radial direction and a squeeze oil film formed between the housing and the bearing metal. It is characterized by having.

【0008】また、請求項4は、軸受ハウジングに軸受
メタルをその軸線の周りに回動可能に内挿してなり、上
記軸受メタルを円周方向の任意の位相に回動しうる構造
を有する真円軸受,2円弧軸受,ティルティングパッド
軸受等のすべり軸受において、その軸受メタルと軸受ハ
ウジングの間に設けられ同軸受ハウジングに対する同軸
受メタルの位相の変化に伴って容積が変化する2種類の
油圧室と、同軸受ハウジングに対する同軸受メタルの位
相検出手段と、同位相検出手段からの信号に基づいて上
記2種類の油圧室にそれぞれ適正な油圧を与える手段と
を具えたことを特徴とする。
According to a fourth aspect of the present invention, a bearing metal is inserted into a bearing housing so as to be rotatable about its axis, and the bearing metal has a structure capable of rotating in any phase in the circumferential direction. In sliding bearings such as circular bearings, two-circle bearings and tilting pad bearings, two types of hydraulic pressure are provided between the bearing metal and the bearing housing, and the volume changes with the phase change of the bearing metal with respect to the bearing housing. The present invention is characterized by including a chamber, a phase detecting means of the same bearing metal for the same bearing housing, and a means for applying appropriate hydraulic pressures to the two types of hydraulic chambers based on signals from the same phase detecting means.

【0009】[0009]

【作用】このような構成によれば、軸受メタルを円周方
向に移動することで軸受の有効負荷面に作用する軸受荷
重の方向が相対的に変化するので、軸受油膜特性が変化
する。 その結果、図5力学的等価モデル図に示すよう
に、軸受の油膜特性(ばね及び減衰係数)が変化するこ
とで、軸系諸元と軸受油膜特性により定まる危険速度,
不釣り合い応答特性,軸系安定性を変化させることがで
きる。これにより、回転機械の運転状況に応じて最適な
軸受性能を利用できる位相に軸受メタルを移動して支持
することで使用軸受の性能を最大限に活かし、最適な振
動特性を得ることができる。
According to this structure, the bearing oil film characteristics are changed because the direction of the bearing load acting on the effective load surface of the bearing is relatively changed by moving the bearing metal in the circumferential direction. As a result, as shown in the mechanical equivalent model diagram of FIG. 5, the oil film characteristics (spring and damping coefficient) of the bearing change, so that the critical speed determined by the specifications of the shaft system and the bearing oil film characteristics,
Unbalanced response characteristics and shaft system stability can be changed. As a result, by moving and supporting the bearing metal in a phase in which the optimum bearing performance can be utilized according to the operating conditions of the rotating machine, the performance of the used bearing can be maximized and optimum vibration characteristics can be obtained.

【0010】[0010]

【実施例】本発明の一実施例を図面について説明する
と、図1,図2,図3はそれぞれその第1実施例,第2
実施例,第3実施例を示す縦断面図及びその横断面図、
図4はその第4実施例を示す横断面図、図5,図6はそ
れぞれ図1〜図2に示した第1実施例,第2実施例の油
膜特性を示す力学的等価モデル図、図3に示す第3実施
例の油膜特性を示す力学的モデル図、図7,図8,図
9,図10,図11はそれぞれ本発明を給油溝付き真円
軸受に適用した場合、2円弧軸受に適用した場合、オフ
セット軸受に適用した場合、4TP軸受に適用した場
合、5TP軸受に適用した場合の静動特性等高線図、図
12は図7〜図11の各軸受型式による軸系振動特性の
比較を示す一覧図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3, respectively.
Example, a longitudinal sectional view showing the third embodiment and its transverse sectional view,
FIG. 4 is a transverse sectional view showing the fourth embodiment, and FIGS. 5 and 6 are mechanical equivalent model diagrams showing the oil film characteristics of the first and second embodiments shown in FIGS. 1 and 2, respectively. A mechanical model diagram showing the oil film characteristic of the third embodiment shown in FIG. 3, FIG. 7, FIG. 8, FIG. 9, FIG. 10, and FIG. 11 are two circular arc bearings when the present invention is applied to a perfect circular bearing with an oil groove. Applied to the offset bearing, applied to the 4TP bearing, applied to the 5TP bearing, a static and dynamic characteristic contour map, and FIG. 12 shows the vibration characteristics of the shaft system according to each bearing type of FIGS. It is a list figure which shows a comparison.

【0011】上図において、図13と同一の符号はそれ
ぞれ同図と同一の部材を示し、まず、図1に示す第1実
施例は、軸受メタル03の外周の一部に又は全周にそれ
ぞれ沿って歯05を付設し、モーター07により駆動さ
れるピニオン06を歯05に歯合することにより、回転
軸01の回転中でも軸受メタル03を円周方向に若干移
動することによりその位相を調整可能としている。ここ
で、10は軸受メタル03の外周を回動自在に支持する
ハウジングである。
In the above drawing, the same reference numerals as those in FIG. 13 indicate the same members as those in the same drawing. First, in the first embodiment shown in FIG. 1, a part of the outer circumference of the bearing metal 03 or the entire circumference thereof is shown. The tooth 05 is attached along with the pinion 06, which is driven by the motor 07, meshes with the tooth 05, so that the phase can be adjusted by slightly moving the bearing metal 03 in the circumferential direction even when the rotary shaft 01 is rotating. I am trying. Here, 10 is a housing that rotatably supports the outer periphery of the bearing metal 03.

【0012】次に図2に示す第2実施例において、軸受
メタル03を回動可能とするために、軸受メタル03の
軸方向の一端に部分的に又は全周に沿って歯08を付設
し、歯08にモーター07で駆動されるピニオン06を
歯合することにより、回転軸01の回転中でも軸受メタ
ル03の位相を可変にしている。このような第1,第2
実施例によれば、軸受の有効負荷面に作用する軸受荷重
の方向が相対的に変化するので、軸受油膜特性(ばね係
数及び減衰係数)が変化し、これにより軸系諸元と軸受
油膜特性により定まる危険速度,不釣り合い応答特性及
び軸系安定性を変え、最適の振動特性を発揮する。
Next, in the second embodiment shown in FIG. 2, in order to make the bearing metal 03 rotatable, a tooth 08 is attached to one end in the axial direction of the bearing metal 03 partially or along the entire circumference. By engaging the pinion 06 driven by the motor 07 with the tooth 08, the phase of the bearing metal 03 is made variable even during rotation of the rotary shaft 01. Such first and second
According to the embodiment, since the direction of the bearing load acting on the effective load surface of the bearing is relatively changed, the bearing oil film characteristics (spring coefficient and damping coefficient) are changed, whereby the shaft system specifications and the bearing oil film characteristics are changed. The optimum vibration characteristics are exhibited by changing the critical speed, the unbalanced response characteristics, and the shaft system stability determined by.

【0013】さらに、図3に示す第3実施例において
は、図2の第2実施例において、軸受メタル03を環状
すきま09を存して囲繞するハウジング010の半径方
向の給油孔06から潤滑油を供給して環状すきま09に
スクイズ圧を発生させる。このような構造によれば、図
6力学的等価モデル図に示すように、回転軸01は潤滑
油02に基づく無数のバネ係数Kxx,Kxy,Ky
x,Kyyと減衰係数ωCxx,ωCxy,ωCyx,
ωCyyにより軸受メタル03に支持され、軸受メタル
03は環状すきま09のスクイズ油圧に基づく無数のバ
ネ係数Kpx,減衰係数WCpxによりハウジング10
に支持される。その結果、第3実施例では可動軸受と、
ダンパー構造の油膜特性の剛性化を変化させることで、
油膜係数に連成項がなくなり、本質的に軸系の振動特性
に好影響を与えるダンパ−構造の油膜特性の軸系振動特
性への寄与度を高めて当価支持剛性ZE は図示の形で表
わされ、より高度の軸受特性の最適化が可能となる。
Further, in the third embodiment shown in FIG. 3, in the second embodiment of FIG. 2, the lubricating oil is supplied from the oil supply hole 06 in the radial direction of the housing 010 which surrounds the bearing metal 03 with the annular clearance 09. Is supplied to generate a squeeze pressure in the annular clearance 09. According to such a structure, as shown in the mechanical equivalent model diagram of FIG. 6, the rotating shaft 01 has innumerable spring coefficients Kxx, Kxy, Ky based on the lubricating oil 02.
x, Kyy and damping coefficients ωCxx, ωCxy, ωCyx,
The bearing metal 03 is supported by ωCyy, and the bearing metal 03 has an infinite spring coefficient Kpx and damping coefficient WCpx based on the squeeze oil pressure of the annular clearance 09.
Supported by. As a result, in the third embodiment, the movable bearing,
By changing the rigidity of the oil film characteristics of the damper structure,
There is no communication Naruko oil film coefficient, essentially Shaft damper a positive impact on the vibration characteristics of - shafting those valence support rigidity Z E to enhance the contribution to the vibration characteristics in the form of the illustrated oil film characteristics of structure It is possible to optimize the bearing characteristics at a higher level.

【0014】また、図4に示す第4実施例においては、
軸受メタル21と軸受ハウジング13の間の環状空間に軸
受ハウジング13の内向き半径方向に突設された仕切り
堰と、軸受メタル21の外向き半径方向に突設された仕
切り堰との間に形成された扇形断面の油圧室14,15
を設け、油圧源19より供給した油圧を油圧切換回路1
8により配管16又は配管17へと切り換えることによ
り軸受メタル21を回動させるようにする。ここで、回
転軸1と軸受メタル21との間の潤滑油の給油は軸受ハ
ウジング13に設けた扇形断面の油溝11,軸受メタル21
に設けた油孔12を通して行う。また、軸受メタル21
の位相の調整は軸回転速度計20の信号にて油圧切換回
路18を制御して油圧源20の圧油の油圧室14,15
への供給量を制御することにより行うのである。
Further, in the fourth embodiment shown in FIG.
Formed between a partition weir projecting radially inward of the bearing housing 13 and a partition weir projecting radially outward of the bearing metal 21 in an annular space between the bearing metal 21 and the bearing housing 13. Hydraulic chambers 14 and 15 with a fan-shaped cross section
Is provided and the hydraulic pressure supplied from the hydraulic pressure source 19 is applied to the hydraulic pressure switching circuit 1
The bearing metal 21 is rotated by switching to the pipe 16 or the pipe 17 by 8. Here, the lubricating oil is supplied between the rotary shaft 1 and the bearing metal 21 by means of an oil groove 11 having a fan-shaped cross section provided in the bearing housing 13 and the bearing metal 21.
Through the oil hole 12 provided in the. Also, the bearing metal 21
The phase of the oil is controlled by controlling the hydraulic pressure switching circuit 18 by the signal of the shaft tachometer 20 to control the hydraulic pressure chambers 14 and 15 for the hydraulic oil of the hydraulic power source 20.
This is done by controlling the supply amount to the.

【0015】その結果、次に述べるように本発明を種々
の構造のすべり軸受に適用した場合、後記するように、
それぞれ図13に示した慣用のすべり軸受とは比較にな
らない程、優れた静特性及び動特性が得られる。
As a result, when the present invention is applied to sliding bearings of various structures as described below, as will be described later,
Excellent static characteristics and dynamic characteristics can be obtained to the extent that they cannot be compared with the conventional plain bearings shown in FIG. 13, respectively.

【0016】まず、図7は本発明を給油溝付真円軸受に
適用した場合を示しており、同図(A)は油圧係数計算
メッシュ図,同図(B)は軸心浮上特性図,同図(C)
はゾンマーフェルト数の等高線図,同図(D)は固有振
動数の等高線図,同図(E)は減衰比の等高線図,同図
(F)は同図(B)と同図(E)とを重ねた減衰比の等
高線図である。例えば、同図(F)により軸系安定性に
対する本発明第3実施例の効果を説明すると次のように
なる。まず、軸の回転数が低く十分な負荷能力が無い場
合には、軸受荷重角θw =0°と通常の設置を行うこと
で十分な負荷能力が得られる。ここで、回転数が上昇
し、軸心が軸受すきま02の中心に近づくと、通常の軸
受の設置角度θw =0°では減衰比が負となる不安定領
域が大きいことが分かる。これに対して、軸受メタルの
設置角度を時計方向に30°回転させた場合には、軸心
は給油溝の影響により安定性が改善された領域を通過す
るので、θw =0°に対してθw =30°では不安定域
が非常に狭い。このように、軸受の設置角度を変えるこ
とで、軸系の振動特性を変えることが可能であり、従来
の軸受では考えられなかった回転機械の運転状況におけ
る軸系の振動特性の最適化が可能となる。
First, FIG. 7 shows a case where the present invention is applied to a true circular bearing with an oil supply groove. FIG. 7A shows a hydraulic coefficient calculation mesh diagram, FIG. 7B shows a shaft center levitation characteristic diagram, The same figure (C)
Is the contour map of Sommerfeld number, (D) is the contour diagram of natural frequency, (E) is the contour diagram of damping ratio, (F) is the same diagram as (B) and (E). 3] is a contour map of the damping ratio superimposed with FIG. For example, the effect of the third embodiment of the present invention on the stability of the shaft system will be described with reference to FIG. First, in the case where the rotation speed of the shaft is low and there is not sufficient load capacity, the bearing load angle θ w = 0 ° and normal installation is performed to obtain sufficient load capacity. Here, it is understood that when the rotational speed increases and the shaft center approaches the center of the bearing clearance 02, the unstable region where the damping ratio becomes negative is large at a normal bearing installation angle θ w = 0 °. On the other hand, when the installation angle of the bearing metal is rotated clockwise by 30 °, the shaft center passes through the region where the stability is improved due to the influence of the oil supply groove, so for θ w = 0 ° At θ w = 30 °, the unstable region is very narrow. In this way, it is possible to change the vibration characteristics of the shaft system by changing the bearing installation angle, and it is possible to optimize the vibration characteristics of the shaft system in the operating conditions of rotating machinery, which was not possible with conventional bearings. Becomes

【0017】図8は本発明を2円弧軸受に適用した場合
の静・動特性を示している。ここで、図の基本的な見方
は図11まで真円軸受の場合と同様であるが、図8は真
円軸受に比べて各特性図が単純である。これは、左右方
向のすきまの広い、換言すれば油膜圧力の発生しにくい
位置からの給油で、給油溝の影響が小さいためである。
2円弧軸受における任意平衡点と軸系振動特性との関係
で特徴的な事柄をまとめると次のようになる。 (1)通常の2円弧軸受の使用状態(θw =0°)では
軸回転数の上昇とともに減衰比は大きくなるが、偏心率
εb <0.5程度を過ぎるころから逆に減衰比が小さく
なり、εb <0.2程度では減衰比が負となり不安定に
なる。 (2)また、2円弧軸受では軸心の平衡位置が軸受すき
ま領域のεb ≒0.7付近で上半分と下半分に減衰比が
大きい領域が分断されてできている。 (3)このため、荷重θw を大きくすると軸の回転数上
昇に伴う軸心の移動軌跡は徐々に減衰比の小さい領域側
にずれることになるが、60°以上ではまた安定性が改
善される。 (4)つまり、2円弧軸受では軸受荷重の向きと下方軸
受メタルの位置関係で安定性が大きく変化するので、こ
の特性を利用すれば安定性を改善できる可能性がある。
FIG. 8 shows static / dynamic characteristics when the present invention is applied to a two-arc bearing. Here, the basic view of the drawing is the same as in the case of the true circular bearing up to FIG. 11, but FIG. 8 is simpler in each characteristic diagram than the true circular bearing. This is because the refueling is performed from a position where the clearance in the left-right direction is wide, in other words, the position where oil film pressure is hard to occur, and the influence of the refueling groove is small.
The characteristic points of the relationship between the arbitrary equilibrium point and the shaft system vibration characteristics in a two-circle bearing are summarized as follows. (1) In a normal two-circle bearing operating condition (θ w = 0 °), the damping ratio increases as the shaft speed increases, but the damping ratio increases from the point where the eccentricity ε b <0.5 is exceeded. When it becomes smaller and ε b <0.2, the damping ratio becomes negative and becomes unstable. (2) In the two-circle bearing, the equilibrium position of the shaft center is near the bearing clearance region ε b ≈0.7, and the region with a large damping ratio is divided into the upper half and the lower half. (3) For this reason, when the load θ w is increased, the movement locus of the shaft center due to the increase of the rotation speed of the shaft gradually shifts to the region where the damping ratio is small, but at 60 ° or more, the stability is improved again. It (4) That is, in the two-arc bearing, the stability greatly changes depending on the bearing load direction and the positional relationship of the lower bearing metal, and therefore there is a possibility that the stability can be improved by utilizing this characteristic.

【0018】図9は本発明を2オフセット軸受に適用し
た場合を示し、同図(A)〜同図(E)は2オフセット
軸受の任意平衡点と軸系振動特性との関係を示す。特徴
は次のとおりである。 (1)真円軸受,2円弧軸受に比べてεb <0.1程度
の領域でも減衰比はプラスであり、安定性の良いことが
わかる。 (2)減衰比が大きく安定性の良い領域が目玉模様のよ
うに右上方と左下方に分割されて分布している。 (3)したがって、2オフセット軸受でも2円弧軸受と
同様に軸受荷重方向と軸受の設置角度を適切に選定すれ
ば軸系安定性が改善できる。
FIG. 9 shows the case in which the present invention is applied to a two-offset bearing, and FIGS. 9A to 9E show the relationship between the arbitrary balance point of the two-offset bearing and the vibration characteristic of the shaft system. The features are as follows. (1) The damping ratio is positive even in the region of ε b <0.1 as compared with the perfect circular bearing and the two-circle bearing, and it is understood that the stability is good. (2) A region having a large damping ratio and good stability is divided into upper right and lower left regions and distributed like an eyeball pattern. (3) Therefore, even in the two-offset bearing, similarly to the two-arc bearing, the shaft system stability can be improved by appropriately selecting the bearing load direction and the bearing installation angle.

【0019】図10は本発明を4ティルティングパッド
軸受(以下4T.P.軸受という)に適用した場合を示
し、任意平衡点での軸系振動特性の特徴は次の通りであ
る。 (1)同図(B)より、4T.P.軸受の使用状態にお
いて、L.O.P.(Load on pad)とL.
B.P.(Load between pads)では
軸心は直線的に軸受中心方向に浮き上がるが、荷重方向
がずれると浮き上がり特性が曲線状を示す。 (2)同図(C)より、4T.P.軸受ではゾンマーフ
ェルト数の等高線図は軸受すきま形状に沿って変化す
る。このことは、4T.P.軸受では荷重の大きさが一
定のとき、荷重方向によらず軸受すきまはほぼ一定にな
ることを示している。 (3)同図(D)より、4T.P.軸受の固有振動数は
L.B.P.では荷重方向の変化に対して固有振動数の
変化は小さいが、L.O.P.及びその状態に近い荷重
方向では固有振動数が大きく変化するので注意が必要で
ある。 (4)同図(E)より、安定余裕度についても固有振動
数の場合と同様に、4T.P.軸受は従来の知見通り
L.B.P.で使用するのが良いことを定量的に確認で
きる。
FIG. 10 shows the case where the present invention is applied to a 4-tilting pad bearing (hereinafter referred to as 4TP bearing), and the characteristics of the shaft system vibration characteristic at an arbitrary equilibrium point are as follows. (1) From FIG. P. When the bearing is in use, L. O. P. (Load on pad) and L.A.
B. P. In (Load between pads), the shaft center linearly floats toward the bearing center, but when the load direction shifts, the floating characteristic shows a curved shape. (2) 4T. P. In the bearing, the contour map of Sommerfeld number changes along with the bearing clearance shape. This is 4T. P. It is shown that the bearing clearance is almost constant regardless of the load direction when the load magnitude is constant. (3) From FIG. P. The natural frequency of the bearing is L. B. P. The change in natural frequency is small with respect to the change in the load direction, but L. O. P. It should be noted that the natural frequency greatly changes in the load direction close to that state. (4) From FIG. 7E, the stability margin is 4T. P. Bearings are L.O.L. B. P. You can quantitatively confirm that it is better to use in.

【0020】図11は本発明を5ティルティングパッド
軸受(以下5T.P.軸受という)に適用した場合を示
し、その特徴は下記のとおりである。 (1)4T.P.軸受に比べL.B.P.とL.O.
P.における振動特性の変化が小さい。5T.P.軸受
では常に複数パッドが荷重を分担することになるため、
振動特性が連続的に変化するものと考えられる。 (2)真円軸受,2円弧軸受及び2オフセット軸受が軸
受中心では不安定となるのに対して、4T.P.軸受を
含めて5T.P.軸受では軸受中心で最も安定余裕度が
大きい。 (3)したがって、T.P.軸受を使用する場合におい
ても軸受諸元を適切に選定し、偏心率を小さくした方が
安定余裕度を大きくできる。 (4)L.O.P.で0.7<εb <0.85付近は、
非常に減衰比の大きい安定域があるがこの部分を狙った
設計は、領域が狭く、かつ減衰比の変化幅が大きいので
注意が必要である。
FIG. 11 shows a case where the present invention is applied to a 5-tilting pad bearing (hereinafter referred to as 5TP bearing), and its features are as follows. (1) 4T. P. L.L. B. P. And L.A. O.
P. The change in the vibration characteristics is small. 5T. P. In the bearing, multiple pads will always share the load,
It is considered that the vibration characteristics change continuously. (2) While the perfect circular bearing, the two circular arc bearings, and the two offset bearings are unstable at the bearing center, 4T. P. 5T including bearing P. The bearing has the largest stability margin at the center of the bearing. (3) Therefore, T. P. Even when a bearing is used, it is possible to increase the stability margin by properly selecting the bearing specifications and reducing the eccentricity. (4) L. O. P. In the vicinity of 0.7 <ε b <0.85,
Although there is a stable region with a very large damping ratio, attention must be paid to the design aiming at this part because the region is narrow and the variation range of the damping ratio is large.

【0021】上記の5種類の軸受の特性を図示すると、
図12に示すように、一般的な安定性の傾向は従来の知見
通りであるが、特に2オフセット軸受では、軸受荷重角
θwと軸受の設置角度で大きく安定性が変化することが
判明した。また、真円軸受では荷重方向と給油溝の位置
関係は安定性に大きな影響を与えることが判明した。
The characteristics of the above-mentioned five types of bearings are illustrated as follows.
As shown in Fig. 12, the general stability tendency is as in the conventional findings, but it was found that the stability greatly changes with the bearing load angle θ w and the bearing installation angle, especially for the two-offset bearing. . Also, it has been found that in a perfect circular bearing, the positional relationship between the load direction and the oil supply groove greatly affects stability.

【0022】[0022]

【発明の効果】このような実施例によれば、下記の効果
が奏せられる。 (1)危険速度の共振倍率の最小化 軸受の油膜特性が軸心の平衡点によって異なることを利
用して、事前に解析的に求めておいた最適の軸受角度に
軸受メタルを移動させることで、危険速度通過時の共振
倍率を最小化できる。 (2)定格回転数での振動特性の最適化 定格回転数など特定の回転数で不釣り合い応答振幅及び
軸系安定性などを最良とする軸受角度を設定することが
できる。 (3)運転条件の変化が大きい軸系の振動特性の最適化 負荷変化及びその他外的要因により、振動特性が変化す
る軸系において、各条件に対して最適の振動特性となる
軸受角度に設定することができる。以上、(1)〜
(3)において、一般には軸受の最適角度は一致しない
のが普通であり、その意味で従来のものはどこかの特性
を犠牲にして設計されているが、本発明ではその条件に
応じた最適な軸系振動特性を実現できる。
According to such an embodiment, the following effects can be obtained. (1) Minimization of resonance ratio of critical speed By utilizing the fact that the oil film characteristics of the bearing differ depending on the equilibrium point of the shaft center, the bearing metal can be moved to the optimum bearing angle that has been analytically obtained in advance. , It is possible to minimize the resonance magnification when passing a critical speed. (2) Optimization of vibration characteristics at rated rotation speed A bearing angle that maximizes the unbalanced response amplitude and shaft system stability at a specific rotation speed such as the rated rotation speed can be set. (3) Optimization of vibration characteristics of shaft system with large changes in operating conditions In a shaft system where vibration characteristics change due to load changes and other external factors, set the bearing angle that provides optimum vibration characteristics for each condition. can do. Above, (1) ~
In (3), in general, the optimum angles of the bearings do not generally match, and in that sense the conventional ones are designed at the expense of some characteristics. It is possible to realize various shaft vibration characteristics.

【0023】要するに、請求項1の発明によれば、軸受
ハウジングに軸受メタルをその軸線の周りに回動可能に
内挿してなり、上記軸受メタルを円周方向の任意の位相
に回動しうる構造を有する真円軸受,2円弧軸受,ティ
ルティングパッド軸受等のすべり軸受において、その軸
受メタルの外周の一部又は全周に沿って刻設された歯
と、その軸受ハウジングに軸支され上記軸受メタルの歯
に歯合する歯が突設された軸受メタルの位相調整手段と
を具えたことにより、回転軸の振動特性に最適の油膜特
性を発揮し、回転軸の運転条件の変化に対して危険速
度,不釣り合い応答特性を変えて軸系の安定性を図る高
性能の軸受メタル可変位相型軸受を得るから、本発明は
産業上極めて有益なものである。
In short, according to the first aspect of the present invention, the bearing metal is inserted in the bearing housing so as to be rotatable about its axis, and the bearing metal can be rotated in any phase in the circumferential direction. In a plain bearing, a two-circle bearing, a tilting pad bearing, or other plain bearing having a structure, teeth engraved along a part or the whole circumference of the bearing metal and the bearing supported axially by the bearing housing By providing the phase adjustment means of the bearing metal in which the teeth that mesh with the teeth of the bearing metal are provided, the optimum oil film characteristics for the vibration characteristics of the rotating shaft are exhibited, and against the changes in the operating conditions of the rotating shaft. Therefore, the present invention is extremely useful in industry because a high-performance bearing metal variable phase type bearing is obtained which changes the critical speed and unbalance response characteristics to stabilize the shaft system.

【0024】また、請求項2の発明によれば、請求項1
において、その軸受メタルの外周の一部又は全周に沿っ
て刻設された歯の代わりに、軸受メタルの一端の一部又
は全周に沿って刻設された歯を具えたことにより、回転
軸の振動特性に最適の油膜特性を発揮し、回転軸の運転
条件の変化に対して危険速度,不釣り合い応答特性を変
えて軸系の安定性を図る高性能の軸受メタル可変位相型
軸受を得るから、本発明は産業上極めて有益なものであ
る。
According to the invention of claim 2, claim 1
In this case, in place of the teeth engraved along a part or the entire circumference of the bearing metal, the teeth are engraved along a part or the entire circumference of one end of the bearing metal, so that A high-performance bearing metal variable phase type bearing that exhibits optimum oil film characteristics for shaft vibration characteristics and changes the critical speed and unbalance response characteristics in response to changes in the operating conditions of the rotating shaft to stabilize the shaft system. Therefore, the present invention is extremely useful in industry.

【0025】さらに、請求項3の発明によれば、請求項
1又は請求項2において、その軸受メタルに半径方向に
穿設された給油孔と、そのハウジングと上記軸受メタル
との間に形成されたスクイズ油膜とを具えたことによ
り、請求項1,2による効果のほか、可動軸受メタルの
スクイズ圧による減衰効果が大きく現れ、請求項1,2
に比べてより高度の軸受特性の最適化が可能となる。
Further, according to the invention of claim 3, in claim 1 or 2, the bearing metal is formed between the housing and the bearing metal, which is formed in the bearing metal in the radial direction. By providing the squeeze oil film, the damping effect due to the squeeze pressure of the movable bearing metal appears significantly in addition to the effects according to claims 1 and 2.
It is possible to optimize the bearing characteristics to a higher degree than in.

【0026】請求項4の発明によれば、軸受ハウジング
に軸受メタルをその軸線の周りに回動可能に内挿してな
り、上記軸受メタルを円周方向の任意の位相に回動しう
る構造を有する真円軸受,2円弧軸受,ティルティング
パッド軸受等のすべり軸受において、その軸受メタルと
軸受ハウジングの間に設けられ同軸受ハウジングに対す
る同軸受メタルの位相の変化に伴って容積が変化する2
種類の油圧室と、同軸受ハウジングに対する同軸受メタ
ルの位相検出手段と、同位相検出手段からの信号に基づ
いて上記2種類の油圧室にそれぞれ適正な油圧を与える
手段とを具えたことにより、軸の回転数の大小に応じて
回転軸の振動特性に最適の油膜特性を発揮し、回転軸の
運転条件の変化に対して危険速度,不釣り合い応答特性
を変えて軸系の安定性を図る高性能の軸受メタル可変位
相型軸受を得るから、本発明は産業上極めて有益なもの
である。
According to the invention of claim 4, a bearing metal is inserted into the bearing housing so as to be rotatable about its axis, and the bearing metal is rotatable in any phase in the circumferential direction. In a plain bearing, a two-circle bearing, a tilting pad bearing, and other sliding bearings that are provided, the volume changes with the phase change of the bearing metal provided between the bearing metal and the bearing housing.
By providing different types of hydraulic chambers, phase detecting means for the same bearing metal with respect to the same bearing housing, and means for applying appropriate hydraulic pressures to the two types of hydraulic chambers based on signals from the same phase detecting means, Optimum oil film characteristics are exhibited for the vibration characteristics of the rotating shaft depending on the number of rotations of the rotating shaft, and the stability of the shaft system is improved by changing the critical speed and unbalance response characteristics in response to changes in the operating conditions of the rotating shaft. The present invention is extremely useful industrially because a high-performance bearing metal variable phase bearing is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す縦断面図及びその横
断面図である。
FIG. 1 is a longitudinal sectional view and a lateral sectional view showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す縦断面図及びその横
断面図である。
FIG. 2 is a longitudinal sectional view and a lateral sectional view showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す縦断面図及びその横
断面図である。
FIG. 3 is a vertical sectional view and a lateral sectional view showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す横断面図である。FIG. 4 is a transverse sectional view showing a fourth embodiment of the present invention.

【図5】図1〜図2に示した第1実施例,第2実施例の
油膜特性を示す等価力学的モデル図である。
5 is an equivalent mechanical model diagram showing the oil film characteristics of the first and second embodiments shown in FIGS. 1 and 2. FIG.

【図6】図3に示した第3実施例の油膜特性を示す等価
力学的モデル図である。
FIG. 6 is an equivalent mechanical model diagram showing the oil film characteristics of the third embodiment shown in FIG.

【図7】本発明を給油溝付真円軸受に適用した場合の静
・動特性等高図である。
FIG. 7 is a contour map of static and dynamic characteristics when the present invention is applied to a perfect circular bearing with an oil groove.

【図8】本発明を2円弧軸受に適用した場合の静・動特
性等高図である。
FIG. 8 is a contour map of static and dynamic characteristics when the present invention is applied to a two-arc bearing.

【図9】本発明を2オフセット軸受に適用した場合の静
・動特性等高図である。
FIG. 9 is a contour map of static and dynamic characteristics when the present invention is applied to a two-offset bearing.

【図10】本発明を4ティルティングパッド軸受に適用
した場合の静・動特性等高図である。
FIG. 10 is a contour map of static and dynamic characteristics when the present invention is applied to a 4 tilting pad bearing.

【図11】本発明を5ティルティングパッド軸受に適用
した場合の静・動特性等高図である。
FIG. 11 is a contour map of static and dynamic characteristics when the present invention is applied to a 5-tilting pad bearing.

【図12】図7〜図11の各軸受型式による軸系振動特
性の比較を示す図である。
FIG. 12 is a diagram showing a comparison of shaft system vibration characteristics according to the bearing types of FIGS. 7 to 11;

【図13】慣用のすべり軸受を示す縦断面図及びその横
断面図である。
FIG. 13 is a longitudinal sectional view and a transverse sectional view showing a conventional plain bearing.

【図14】回転機械の一般的な加速度応答特性図であ
る。
FIG. 14 is a general acceleration response characteristic diagram of a rotating machine.

【符号の説明】[Explanation of symbols]

01 回転軸 02 潤滑油(環状すきま) 03 軸受メタル 04 給油ポケット 05 歯 06 ピニオン 07 モーター 08 歯 09 環状すきま 10 ハウジング 11 油溝 12 油孔 13 軸受ハウジング 14 油圧室 15 油圧室 16 配管 17 配管 18 油圧回路 19 油圧源 20 軸回転速度計 21 軸受メタル S ゾンマーフェルト数 θW 荷重角 εb 偏心率 ζ 減衰比 L.O.P. エル・オー・ピー(Load on pad ) L.B.P. エル・ビー・ピー(Load between pad) T.P. ティルティングパッド01 Rotating shaft 02 Lubricating oil (annular clearance) 03 Bearing metal 04 Oil supply pocket 05 Teeth 06 Pinion 07 Motor 08 Teeth 09 Annular clearance 10 Housing 11 Oil groove 12 Oil hole 13 Bearing housing 14 Hydraulic chamber 15 Hydraulic chamber 16 Piping 17 Piping 18 Hydraulic Circuit 19 Hydraulic power source 20 Axis tachometer 21 Bearing metal S Sommerfeld number θ W Load angle ε b Eccentricity ζ Damping ratio L. O. P. LOP (Load on pad) L.H. B. P. LBP (Load between pad) T.P. P. Tilting pad

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軸受ハウジングに軸受メタルをその軸線
の周りに回動可能に内挿してなり、上記軸受メタルを円
周方向の任意の位相に回動しうる構造を有する真円軸
受,2円弧軸受,ティルティングパッド軸受等のすべり
軸受において、その軸受メタルの外周の一部又は全周に
沿って刻設された歯と、その軸受ハウジングに軸支され
上記軸受メタルの歯に歯合する歯が突設された軸受メタ
ルの位相調整手段とを具えたことを特徴とする軸受メタ
ル可変位相型軸受。
1. A true circular bearing having a structure in which a bearing metal is rotatably inserted around an axis of the bearing housing so that the bearing metal can be rotated in an arbitrary phase in a circumferential direction, two circular arcs. In plain bearings such as bearings and tilting pad bearings, teeth engraved along part or all of the outer circumference of the bearing metal and teeth that are axially supported by the bearing housing and mesh with the teeth of the bearing metal. A bearing metal variable phase type bearing characterized in that the bearing metal phase adjusting means is provided.
【請求項2】 請求項1において、その軸受メタルの外
周の一部又は全周に沿って刻設された歯の代わりに、軸
受メタルの一端の一部又は全周に沿って刻設された歯を
具えたことを特徴とする軸受メタル可変位相型軸受。
2. The bearing metal according to claim 1, wherein the bearing metal is carved along a part or the whole circumference of one end of the bearing metal instead of the teeth carved along the part or the whole circumference of the bearing metal. Bearing metal variable phase type bearing characterized by having teeth.
【請求項3】 請求項1又は請求項2において、その軸
受メタルに半径方向に穿設された給油孔と、そのハウジ
ングと上記軸受メタルとの間に形成されたスクイズ油膜
とを具えたことを特徴とする軸受メタル可変位相型軸
受。
3. The bearing metal according to claim 1 or 2, further comprising: an oil supply hole formed in the bearing metal in a radial direction, and a squeeze oil film formed between the housing and the bearing metal. Characteristic bearing metal variable phase type bearing.
【請求項4】 軸受ハウジングに軸受メタルをその軸線
の周りに回動可能に内挿してなり、上記軸受メタルを円
周方向の任意の位相に回動しうる構造を有する真円軸
受,2円弧軸受,ティルティングパッド軸受等のすべり
軸受において、その軸受メタルと軸受ハウジングの間に
設けられ同軸受ハウジングに対する同軸受メタルの位相
の変化に伴って容積が変化する2種類の油圧室と、同軸
受ハウジングに対する同軸受メタルの位相検出手段と、
同位相検出手段からの信号に基づいて上記2種類の油圧
室にそれぞれ適正な油圧を与える手段とを具えたことを
特徴とする軸受メタル可変位相型軸受。
4. A true circular bearing having a structure in which a bearing metal is rotatably inserted around an axis of the bearing housing so that the bearing metal can be rotated in an arbitrary phase in a circumferential direction, two circular arcs. In sliding bearings such as bearings and tilting pad bearings, two types of hydraulic chambers, which are provided between the bearing metal and the bearing housing and whose volume changes as the phase of the bearing metal with respect to the bearing housing changes, Phase detecting means of the bearing metal for the housing,
A bearing metal variable phase type bearing, comprising: means for applying proper hydraulic pressure to the two types of hydraulic chambers based on a signal from the same phase detecting means.
JP06332504A 1994-02-28 1994-12-13 Bearing metal variable phase type bearing Expired - Fee Related JP3095650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06332504A JP3095650B2 (en) 1994-02-28 1994-12-13 Bearing metal variable phase type bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5461094 1994-02-28
JP6-54610 1994-02-28
JP06332504A JP3095650B2 (en) 1994-02-28 1994-12-13 Bearing metal variable phase type bearing

Publications (2)

Publication Number Publication Date
JPH08128441A true JPH08128441A (en) 1996-05-21
JP3095650B2 JP3095650B2 (en) 2000-10-10

Family

ID=26395387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06332504A Expired - Fee Related JP3095650B2 (en) 1994-02-28 1994-12-13 Bearing metal variable phase type bearing

Country Status (1)

Country Link
JP (1) JP3095650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004959A (en) * 2018-07-05 2020-01-15 두산중공업 주식회사 Tilting pad journal bearing having dynamic characteristics adjustment function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004959A (en) * 2018-07-05 2020-01-15 두산중공업 주식회사 Tilting pad journal bearing having dynamic characteristics adjustment function

Also Published As

Publication number Publication date
JP3095650B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP2709735B2 (en) High-speed rotating shaft fluid compression membrane damper
US6135639A (en) Fixed arc squeeze film bearing damper
US4175803A (en) Bearing assembly between inner and outer shafts having two roller bearings and two hydrodynamic or squeeze film bearings
JPH0676806B2 (en) Support assembly for rotating shaft
JPS61262222A (en) Bearing supporter
JPS60263723A (en) Compression film damper
RU2736894C1 (en) Damping element of bearing, bearing and element of compressor, equipped with such damping element of bearing, and method of manufacturing of such damping element of bearing
KR0185739B1 (en) Dynamic pressure gas bearing structure
EP0333200B1 (en) Turbo-molecular pump
JPH10131955A (en) Journal bearing device
USRE30210E (en) Damped intershaft bearing and stabilizer
JPH08128441A (en) Bearing metal variable phase-type bearing
JPH07293553A (en) Tilting pad type bearing
JP3099291B2 (en) Automotive power plant mounting bush
JPH11190329A (en) Peripheral flow type dynamic pressure bearing
JP4299625B2 (en) Foil type hydrodynamic bearing
JP2002213248A (en) Bearing device of turbocharger
JP2895415B2 (en) Variable clearance type plain bearings
CN105422732A (en) Composite damping vibration attenuation expansion rod structure for thin and long rotary shaft
JP2659829B2 (en) Bearings for vibration suppression
JPS6215773B2 (en)
KR20190114087A (en) Bearing with adjustable clearance and shape
KR20240061050A (en) Rotating machine with adaptive bearing journal
KR100487861B1 (en) Balancer structure of the compressor
US2832652A (en) Journal bearing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000627

LAPS Cancellation because of no payment of annual fees