JPS61262222A - Bearing supporter - Google Patents

Bearing supporter

Info

Publication number
JPS61262222A
JPS61262222A JP61068886A JP6888686A JPS61262222A JP S61262222 A JPS61262222 A JP S61262222A JP 61068886 A JP61068886 A JP 61068886A JP 6888686 A JP6888686 A JP 6888686A JP S61262222 A JPS61262222 A JP S61262222A
Authority
JP
Japan
Prior art keywords
bearing support
circumferential
shell
spring
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61068886A
Other languages
Japanese (ja)
Inventor
マルコム・ハバート・ナツプ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS61262222A publication Critical patent/JPS61262222A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • F16C27/045Ball or roller bearings, e.g. with resilient rolling bodies with a fluid film, e.g. squeeze film damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の分野 この発明はロータリー・エンジンに対する軸受支持体、
更に具体的に云えば、ガスタービン機関の振動動力を制
御する為の一体の流体制動能力を持つ、軸方向並びに半
径方向に小形の半径方向に弾力的な軸受支持体に関する 発明の背景 今日の高速機関又は原動機は、その回転子の回転速度が
高く、動作温度が高い為に、振動の励振を受ける。これ
は航空機用ガスタービン機関では特に問題であった。こ
ういう機関では、回転子の振動を制御する為のばね取付
は部により、回転子が機関の不動ハウジング又は枠から
支持される場合が多い。各々のばね取付は部は減摩軸受
及び軸受支持体を含んでいるのが普通である。取付は部
の半径方向のばね率及び減衰特性が、軸受及び軸からな
るシステムの機関の高速に於ける正しい運転が行なわれ
る様にする為には重要な因子である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a bearing support for a rotary engine;
More specifically, Background of the Invention relates to axially and radially compact radially resilient bearing supports with integral fluid motion capabilities for controlling the vibratory power of gas turbine engines. An engine or prime mover is subjected to vibrational excitation due to the high rotational speed of its rotor and high operating temperature. This has been a particular problem in aircraft gas turbine engines. In such engines, the rotor is often supported from a stationary housing or frame of the engine by means of spring mounts to control rotor vibration. Each spring mount typically includes an anti-friction bearing and a bearing support. The radial spring rate and damping characteristics of the mounting section are important factors in ensuring correct operation of the bearing and shaft system at high speeds of the engine.

ガスタービン機関では、回転子速度、褪んだ回転子の形
及び若干の不平衡により、回転子軸は幾つかの共振振動
ピークを持つことが多い。その結果、機関の許容し得る
振動限界を得る為に、軸の若干の半径方向の動きをもた
らす様にしなければならない。しかし、隣接する不動及
び回転部分の接触による機関の内部損傷を防止する為に
、この動きを制御し且つ緩衝しなければならない。従っ
て、軸受支持体は、軸が若干の半径方向の振動による振
れをすることが出来る様にしなければならないが、軸の
極度の動きは防止しなければならない。典型的には、ガ
スタービン機関のこの様な軸受支持体に対する緩衝用の
好ましいばね率は変位1吋当り30,000−150.
000ポンド程度の力である。
In gas turbine engines, the rotor shaft often has several resonant vibration peaks due to rotor speed, rotor profile and some unbalance. As a result, some radial movement of the shaft must be provided in order to obtain acceptable vibration limits for the engine. However, this movement must be controlled and damped to prevent internal damage to the engine due to contact between adjacent stationary and rotating parts. Therefore, the bearing support must allow the shaft to undergo some radial vibrational run-out, but must prevent extreme movement of the shaft. Typically, the preferred spring rate for damping such bearing supports in gas turbine engines is 30,000-150.
The force is about 1,000 pounds.

従来の1形式の弾性回転子軸受支持体は、軸の軸受を支
持し且つ緩衝する為に、軸方向に伸びる片持ちスポーク
形円筒又は円錐で構成される。この支持体は、普通「か
ご形」軸受支持体と呼ばれるが、回転子軸を支持する為
に用いられてよい結果を収めている。更に、この様な軸
受支持体は、振動による望ましくない共振振動数を、機
関の正常の運転速度の上下の回転子速度へ移す様に設計
されている。これによって、機関がかなりの振動共振に
さらされる時間の長さを最低限に短縮する。
One conventional type of resilient rotor bearing support consists of an axially extending cantilevered spoke-shaped cylinder or cone to support and cushion the shaft bearing. This support, commonly referred to as a "squirrel cage" bearing support, has been used with good success to support rotor shafts. Additionally, such bearing supports are designed to transfer unwanted resonant frequencies due to vibrations to rotor speeds above and below the normal operating speed of the engine. This minimizes the amount of time the engine is exposed to significant vibrational resonance.

こういう種類の支持体では、ばね取付は部に制動作用を
取入れることが役に立つ。典型的には、軸受支持体と機
関の枠の間の空所に油を供給することにより、制動効果
が発生される。場合によっては、この為に、油充填室を
持つ別の制動集成体と、軸受支持体及び機関の枠の間の
制動シムを使う。この様な制動集成体の1例が米国特許
第4゜289.360号に記載されている。
In these types of supports, it is useful to incorporate a damping action into the spring mounting section. Typically, the braking effect is generated by supplying oil to the cavity between the bearing support and the frame of the engine. In some cases, a separate brake assembly with an oil-filled chamber and a brake shim between the bearing support and the frame of the engine are used for this purpose. An example of such a damping assembly is described in U.S. Pat. No. 4,289,360.

制動形弾性軸受支持体装置は今日のガスタービン機関の
振動動力を制御する上で、使って成功を収めたが、ある
形式の機関に使うには必ずしも受入れることが出来ない
。例えば、普通のがご形軸受支持体は、その長い片持ち
スポークに対し、相当の軸方向空間を必要とする。この
軸方向空間は必ずしも容易に利用し得るものではなく、
かご形軸受支持体の配置が、機関の好ましいガス流路の
妨げとなったり、或いは機関の長さ及び重量を増加する
ことがある。更に、軸受がかご形支持体の片持ち軸方向
スポークの端に保持されているがら、機関の枠に対して
軸受支持体の整合外れがあると、軸受の荷重が不均一に
なり、軸受の有効寿命が短くなることがある。
Although damped elastomeric bearing support systems have been used with success in controlling the vibrational power of modern gas turbine engines, they are not always acceptable for use in some types of engines. For example, a common squirrel bearing support requires considerable axial space for its long cantilevered spokes. This axial space is not always easily available;
The arrangement of squirrel cage bearing supports can interfere with the engine's preferred gas flow path or add to the length and weight of the engine. Furthermore, while the bearing is held at the ends of the cantilevered axial spokes of the squirrel cage support, misalignment of the bearing support with respect to the engine frame will result in uneven loading of the bearing and The useful life may be shortened.

最後に、かご形支持体は、この支持体及びそれに関連し
た枠の特徴を作る為に多数の精密度の高い加工を必要と
する為に、かなり割高になることに注意されたい。
Finally, it should be noted that cage supports are considerably more expensive due to the numerous precision machining operations required to create the features of the support and its associated frame.

比較的小形で低置な別の形式の普通の軸受支持体は、円
周方向に交互の内側及び外側のローブ(離隔パッド)を
持つ平坦な単一層の円形ばね支持体であり、普通「リン
グばね」と呼ばれる。リングばねはかご形軸受支持体よ
りも安いが、不規則的な性能を持つ。これは、そのばね
率がその半径方向の変位と共に変化する為、即ち非線形
装置である為である。更に、そのリング・ローブとその
周囲の機関の枠の間には本質的にある程度の摺動接触が
存在する。この摺動接触がローブの望ましくない疲労の
原因となり、それが支持体のばね率を変えることがある
。その為、回転子の共振振動数が変化し、それが振動の
問題を招く慣れがある。更に、リング・ローブが軸受の
円周に沿っ−て点荷重を加え、それが望ましくない応力
及び撓みを誘起することがある。最後に、こういう装置
は基本的に平坦で比較的薄い円形条片であるがら、軸受
及び機関の回転子に対して軸方向の支持をすることが出
来ず、従って軸方向のスラスト荷重に対処することが出
来ない。
Another type of common bearing support, which is relatively small and low-lying, is a flat single-layer circular spring support with circumferentially alternating inner and outer lobes (spaced pads), usually in the form of a "ring". called "spring". Ring springs are cheaper than squirrel cage bearing supports, but have irregular performance. This is because its spring rate changes with its radial displacement, ie it is a non-linear device. Additionally, there is inherently some sliding contact between the ring lobe and the surrounding engine frame. This sliding contact can cause undesirable fatigue of the lobes, which can change the spring rate of the support. As a result, the resonant frequency of the rotor changes, which tends to lead to vibration problems. Furthermore, the ring lobes apply point loads along the circumference of the bearing, which can induce undesirable stresses and deflections. Finally, although such devices are essentially flat, relatively thin circular strips, they do not provide axial support for the bearings and engine rotor, and therefore cannot handle axial thrust loads. I can't do that.

従って、半径方向に弾力性を持ち、軸方向のスラスト荷
重に対する軸受支持をすることが出来、且つ点の近くの
摺動なしに、半径方向の振動を制御並びに減衰させるこ
とが出来る低置で小形の軸受支持体に対する要望がある
Therefore, it is radially elastic, can provide bearing support for axial thrust loads, and is low-lying and compact, capable of controlling and damping radial vibrations without sliding near points. There is a demand for bearing supports.

発明の要約 従って、この発明の目的は、振動を受ける回転子軸に対
する半径方向の弾力性を持つ軸受支持体を提供すること
である。
SUMMARY OF THE INVENTION Accordingly, it is an object of the invention to provide a radially resilient bearing support for a rotor shaft subjected to vibrations.

この発明の別の目的は、軸方向に比較的小形である軸受
支持体を提供することである。
Another object of the invention is to provide a bearing support that is relatively compact in the axial direction.

この発明の別の目的は、回転子の軸方向スラスト荷重に
対処する為に軸方向の剛性を持つ軸受支持体を提供する
ことである。
Another object of the invention is to provide a bearing support with axial stiffness to handle rotor axial thrust loads.

この発明の別の目的は、半径方向の縮小した寸法の中に
一層強めた半径方向の剛性を持つ軸受支持体を提供する
ことである。
Another object of the invention is to provide a bearing support with increased radial stiffness in a reduced radial dimension.

この発明の別の目的は、軸受を弾力的に支持する様に作
用すると共に、別個の摺動集成体を必要とせずに、一体
の内部制動を行なう軸受支持体を提供することである。
Another object of the invention is to provide a bearing support that acts to resiliently support the bearing and provides integral internal damping without the need for a separate sliding assembly.

簡単に云うと、上に述べた目的並びに以下の説明から明
らかになるその他の目的が、回転子軸に対する改良され
た軸受支持体をこの発明で提供することによって達成さ
れる。支持体が、機関の枠と回転子軸の間に軸受を取付
ける為の外側及び内側殻体の間に接続された細長い弓形
の円周方向ばね要素を含む。円周方向ばねは半径方向に
弾力性を持ち、軸方向に剛性である。
Briefly, the objects set forth above, as well as others that will become apparent from the following description, are achieved by the present invention providing an improved bearing support for a rotor shaft. A support includes an elongated arcuate circumferential spring element connected between the outer and inner shells for mounting the bearing between the engine frame and the rotor shaft. Circumferential springs are radially resilient and axially rigid.

この支持体は、共振振動数を通過する機関の回転子軸の
半径方向の振動を制御するのに、並びに回転子の軸方向
のスラスト荷重による、機関の枠に対する回転子の軸方
向の移動を防止するのに特に有効である。
This support is used to control radial vibrations of the engine rotor shaft through resonant frequencies, as well as to control axial movement of the rotor relative to the engine frame due to rotor axial thrust loads. It is particularly effective in preventing

この発明の上記並びにその他の目的並びに利点は、以下
図面についてこの発明の好ましい実施例を更に具体的に
説明する所から明らかになろう。
The above and other objects and advantages of the present invention will become apparent from the following detailed description of preferred embodiments of the invention with reference to the drawings.

図面全体にわたり、同じ部分には同じ参照記号を用いて
いる。この図面は必ずしも寸法通りではなく、この発明
の考えを例示する為に一部分を強調しである。
The same reference symbols are used throughout the drawings to refer to the same parts. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the concepts of the invention.

詳しい説明 この説明では、この発明をガスタービン機関に用いた場
合を述べるが、第1図にはこのガスタービン機関の一部
分しか示してなく、こ−での説明もその部分に限る。然
し、この発明が振動に対処し、その振動を制御する為に
半径方向に弾力性を持つ回転子支持手段を必要とする他
のあらゆる形式の原動機及び機関に用い得ることは明ら
かである。
DETAILED DESCRIPTION In this description, a case will be described in which the present invention is applied to a gas turbine engine, but FIG. 1 only shows a portion of this gas turbine engine, and the explanation here will be limited to that portion. However, it is clear that the invention may be used in all other types of prime movers and engines requiring radially resilient rotor support means to accommodate and control vibrations.

第1図に全体を10で示したガスタービン機関の部分が
、回転子軸12を持ち、これは全体を16で示した普通
の円形玉軸受集成体により、機関の枠14の内側に回転
自在に装着されている。軸受集成体16及びそれに取囲
まれた軸12が、この発明の1実施例による、全体を1
8で示した軸受支持体により、枠14の内側に支持され
ている。
A portion of a gas turbine engine, generally indicated at 10 in FIG. is installed on. The bearing assembly 16 and the shaft 12 surrounded by it are assembled into an overall structure according to one embodiment of the invention.
It is supported inside the frame 14 by a bearing support indicated at 8.

更に具体的に云うと、枠14が内側環状ウェブ20を持
ち、それが軸方向中孔又は通路22を持つていて、この
通路が軸受集成体16及び支持体18を受入れる。通路
22は軸受支持体18を坐着させる為に24の所が皿形
になっている。軸受支持体18が皿孔24の中に外ねじ
を持つ環状止めナツト26によってしっかりと保持され
る。止めナツト26は、皿孔24の口にある内ねじ付き
延長部28の中に廻して入れる。
More specifically, the frame 14 has an inner annular web 20 having an axial bore or passageway 22 that receives the bearing assembly 16 and support 18. The passage 22 is dish-shaped at 24 for seating the bearing support 18. The bearing support 18 is held securely in the countersunk hole 24 by an annular locking nut 26 having external threads. The locking nut 26 is turned into an internally threaded extension 28 at the mouth of the countersunk hole 24.

軸受集成体16が、軸12に形成された半径方向の肩3
2に接して適当に取付けた内レース30を有する。内レ
ース30が玉軸受34の配列を支持しており、この配列
がケージ36によって相隔てて保持されている。軸受1
6の外レース38が、これから説明する様に、軸受支持
体18の内周に適当に取付けられる。第1図には、機関
の主空気流を枠14の流路に差向ける為に使われる典型
的な案内W40の一部分も示されている。
A bearing assembly 16 is attached to a radial shoulder 3 formed on the shaft 12.
2 and has an inner race 30 suitably attached thereto. An inner race 30 supports an array of ball bearings 34 which are held apart by a cage 36. Bearing 1
6 outer races 38 are suitably attached to the inner periphery of the bearing support 18, as will now be described. Also shown in FIG. 1 is a portion of a typical guide W40 used to direct the engine's main airflow into the flow path of the frame 14.

この発明の1実施例では、軸受支持体18が機関の枠1
4に対する軸12の半径方向の移動を制御する。第1図
及び第2図の両方について説明すると、軸受支持体18
が円筒形の第1の外側殻体42)及びそれから半径方向
内側に隔たっていて、それと同心で、環状空間又はすき
間46を構成する第2の内側殻体44とを含む。2つの
殻体の間の環状空間46には1つ又は更に多くの弓形板
ばね48が配置されており、これらの板ばねははV円周
方向に伸び(この為これを円周方向ばねと呼ぶ)、第1
及び第2の殻体42,44の両方に対してほり平行で且
つ同心に隔たっている。図示の実施例の支持体では、軸
受支持体の軸方向中心軸線の周りに円周方向に分布した
はソ同一の4つの円周方向ばね48がある。各々の円周
方向ばね48が両側の第1及び第2の端50.52を持
ち、第1の端50は例えばそれと一体に形成することに
より、第1の殻体42に適当に固着される。各々の円周
方向ばね48の反対側の第2の端52が、例えばそれと
一体に形成することにより、第2の殻体44に適当に固
着される。
In one embodiment of the invention, the bearing support 18 is mounted on the frame 1 of the engine.
controlling the radial movement of shaft 12 relative to 4; Referring to both FIGS. 1 and 2, bearing support 18
includes a first cylindrical outer shell 42 ) and a second inner shell 44 radially inwardly spaced therefrom and concentric therewith defining an annular space or gap 46 . One or more arcuate leaf springs 48 are arranged in the annular space 46 between the two shells, and these leaf springs extend in the V-circumferential direction (this is why they are referred to as circumferential springs). call), 1st
and the second shells 42, 44 and are spaced apart from each other in a concentric manner and parallel to each other. In the illustrated embodiment of the support, there are four identical circumferential springs 48 distributed circumferentially around the axial center axis of the bearing support. Each circumferential spring 48 has opposite first and second ends 50, 52, the first end 50 being suitably secured to the first shell 42, such as by being integrally formed therewith. . The opposite second end 52 of each circumferential spring 48 is suitably secured to the second shell 44, such as by being integrally formed therewith.

円周方向ばねの第1及び第2の端50.52を夫々第1
及び第2の殻体42.44に固着することは、第1及び
第2の一体の支持突起54.56によって行なうことが
出来る。突起54.56は、円周方向ばね48が第1及
び第2の殻体42,44と同心に配置されて、それらか
らはV等間隔になる様な寸法にする。円周方向ばね48
が渦巻きの形をしていたとすれば、振動運動の際、第1
及び第2の殻体42,44の間に、渦巻きによる望まし
くない相対的な回転が起こり、それが軸受16の転がり
面に滑りを生ずる惧れがある。
The first and second ends 50,52 of the circumferential spring are respectively
The fastening to the second shell 42.44 can be done by first and second integral support projections 54.56. The protrusions 54,56 are dimensioned such that the circumferential spring 48 is disposed concentrically with the first and second shells 42, 44 and equidistantly spaced V therefrom. Circumferential spring 48
If it has the shape of a spiral, then during vibrational motion, the first
There is a risk that an undesirable relative rotation due to swirling may occur between the second shells 42 and 44, which may cause slippage on the rolling surface of the bearing 16.

必ずしも必要ではないが、殻体42.44、円周方向ば
ね48及び支持突起54.56が何れも一体に形成され
ることが好ましい。ある用途では、円周方向ばね48の
端50.52は殻体42,44に適当に溶接することが
出来る。
Although not required, it is preferred that the shell 42, 44, circumferential spring 48 and support projection 54, 56 are all integrally formed. In some applications, the ends 50.52 of the circumferential spring 48 can be suitably welded to the shells 42,44.

第1図に示す様に、各々の円周方向ばね48の軸方向の
幅Wは半径方向の厚さTよりもずっと大きくして、軸方
向のスラスト軸受として働くことが出来る様にすること
が好ましい。ガスタービン機関で適当なスラスト荷重に
対する支持能力を持たせる為には、幅と厚さとの比W/
Tを少なくとも4:1にするのが1例であるが、これよ
り小さい比を用いてもよい。
As shown in FIG. 1, the axial width W of each circumferential spring 48 can be much larger than the radial thickness T, so that it can act as an axial thrust bearing. preferable. In order for a gas turbine engine to have an appropriate support capacity for thrust loads, the width to thickness ratio W/
One example is for T to be at least 4:1, although smaller ratios may be used.

更に、円周方向ばねの第1及び第2の端50゜52の両
方が夫々第1及び第2の殻体42,44に夫々固着にな
っているから、円周方向ばね48の軸方向の撓み及び捩
れに対する抵抗力が増加するが、これは両端50.52
が固着されていない場合、又は一端しか固着されていな
い場合には得られないことである。
Furthermore, since both the first and second ends 50° 52 of the circumferential spring are fixed to the first and second shells 42, 44, respectively, the axial direction of the circumferential spring 48 is The resistance to deflection and torsion increases, but this
This cannot be achieved if the wire is not fixed or if only one end is fixed.

従って、軸受支持体18を第1図に示す機関10に取入
れる時、円周方向ばね48は機関の枠14に対し、軸受
集成体16及び軸12が予定量だけ半径方向に移動出来
る様にすると共に、軸12を機関の縦方向中心軸線上の
中立位置にノくイアスする。例えば、典型的な軸受支持
体18は、変位1吋当り50,000ボンド程度の復元
力を発生することが出来る。他方、支持体は軸方向には
非常に剛性が強く、その為、軸方向のスラストが軸12
に上って軸受集成体16、支持体18及び枠14に伝達
された時、軸12が軸方向に有意の移動をしない様に拘
束する。
Thus, when the bearing support 18 is installed in the engine 10 shown in FIG. At the same time, the shaft 12 is moved to a neutral position on the longitudinal center axis of the engine. For example, a typical bearing support 18 can generate a restoring force on the order of 50,000 bonds per inch of displacement. On the other hand, the support is very rigid in the axial direction, so that the axial thrust
The shaft 12 is restrained from significant axial movement when transferred onto the bearing assembly 16, support 18, and frame 14.

更に具体的に云うと、軸方向のスラストに対処する為、
第1図は適当に形成された軸受支持体18の1実施例を
示している。第1の殻体42が止めナツト26によって
枠の皿孔24に締付けられる。第2の殻体44は一端に
半径方向内向きに伸びるフランジ58を持ち、これに対
して軸受の外レース38の一端が接する。ワッシャ60
が外レース38の第2の端に当てて配置され、普通の抑
えリング62が、第2の殻体44の第2の端の内面に形
成された溝64に適当に固定されて、外レース3Bを第
2の殻体44に固定する。
More specifically, in order to deal with axial thrust,
FIG. 1 shows one embodiment of a suitably formed bearing support 18. A first shell 42 is tightened by a locking nut 26 into a countersink 24 in the frame. The second shell 44 has a radially inwardly extending flange 58 at one end against which one end of the outer race 38 of the bearing abuts. washer 60
is positioned against the second end of the outer race 38, and a conventional retaining ring 62 is suitably secured in a groove 64 formed in the inner surface of the second end of the second shell 44 to hold the outer race 38 against the outer race. 3B is fixed to the second shell 44.

この為、軸方向のスラスト荷重が軸12を介して軸受集
成体16に伝達された時、この荷重は外レース38を介
してフランジ58に、そして円周方向ばね48を介して
第1の殻体42へ、そしてその後枠14へ伝達される。
Thus, when an axial thrust load is transferred to the bearing assembly 16 via the shaft 12, this load is transferred via the outer race 38 to the flange 58 and via the circumferential spring 48 to the first shell. to the body 42 and thereafter to the frame 14.

軸受支持体18によって得られる軸方向の剛性は、軸方
向のスラスト荷重に対処する拘束力を発生する。
The axial stiffness provided by the bearing support 18 generates a restraining force to cope with axial thrust loads.

更に、軸受支持体18は比較的小さな軸方向及び半径方
向の寸法の中に、許容し得る比較的太きな半径方向の剛
性を作る様に作用する。これは、1つには、第1及び第
2の端50.52を固着したことによるものである。勿
論、これは円周方向ばね48の曲げによって剛性に影響
を与える円周方向ばね48の半径方向の厚さ及び軸方向
の幅にもよることである。ある部材の曲げ剛性は普通判
っている。然し、この発明では、余分の半径方向の剛性
が得られる。
Furthermore, the bearing support 18 serves to create an acceptable relatively large radial stiffness within relatively small axial and radial dimensions. This is due in part to the securing of the first and second ends 50,52. Of course, this also depends on the radial thickness and axial width of the circumferential spring 48, which affect the stiffness due to the bending of the circumferential spring 48. The bending stiffness of a certain member is usually known. However, with this invention, extra radial stiffness is provided.

更に具体的に云うと、第3図はこの発明の別の実施例を
示しており、この場合、円周方向に相隔たる3つの円周
方向ばね48が何れも、半径方向の寸法を最小限に抑え
る為に、互いに円周方向に整合して1つの半径R1の所
に配置されていて、半径方向にまとまりのよい軸受支持
体が得られる様にしている。更に、動作中、軸受支持体
18に加えられることがある合成の半径方向の力Fが示
されているが、これはこの発明によって実現し得る増大
した半径方向の剛性を説明する為に記入しである。力F
が、この力Fが向けられている、円周方向ばね48a中
心位置66に曲げ応力を誘起する。円周方向ばね48a
は主に曲げによって半径方向のばね抵抗を持つ。然し、
全般的に力Fの横方向に配置された2つの円周方向ばね
48bでは、全体的に力Fと平行に伸びる位置68で曲
げが生ずるだけでなく、力Fと全体的に平行に伸びる位
置70で円周方向ばね48bの圧縮も起こる。
More specifically, FIG. 3 shows another embodiment of the invention in which three circumferentially spaced circumferential springs 48 all have a minimum radial dimension. In order to keep the bearing support in the radial direction, they are arranged circumferentially aligned with each other at one radius R1, so as to obtain a radially coherent bearing support. Additionally, the resultant radial force F that may be applied to the bearing support 18 during operation is shown and is included to illustrate the increased radial stiffness that can be achieved with the present invention. It is. Force F
induces a bending stress at the center location 66 of the circumferential spring 48a, where this force F is directed. Circumferential spring 48a
has a radial spring resistance mainly due to bending. However,
With two circumferential springs 48b placed generally transverse to force F, bending occurs not only at a location 68 extending generally parallel to force F, but also at a location 68 extending generally parallel to force F. Compression of circumferential spring 48b also occurs at 70.

位置70に於ける円周方向ばね48bの縦方向の圧縮及
び位置68に於ける横方向の曲げが、円周方向ばね48
aの位置66に於ける曲げだけに比べた時、半径方向の
剛性を強める。
Vertical compression of circumferential spring 48b at position 70 and lateral bending at position 68 causes circumferential spring 48
Increases radial stiffness when compared to bending only at position 66 of a.

勿論、第2図に示す以外の実施例からも、軸受支持体1
Bの増大した半径方向の剛性が得られる。
Of course, the bearing support 1 can also be used from embodiments other than that shown in FIG.
An increased radial stiffness of B is obtained.

上に述べたのは、1実施例に於ける軸受支持体18の動
作様式を説明する為だけであり、こういう動作はこの発
明の他の実施例でも同様に起こる。
The foregoing is merely to illustrate the manner in which bearing support 18 operates in one embodiment; such operation occurs in other embodiments of the invention as well.

円周方向ばね4Bが、殻体42,44に対する固定支持
部54.56と組合さって、かなりの捩れ剛性をも生ず
る。これは、主に上に述べた様な円周方向ばね48の圧
縮及び曲げだけによるものと、同心に配置された円周方
向ばね48とによるものとである。渦巻き形ばねは捩れ
剛性が比較的小さく、望ましくない捩れ変位が起こり得
るので、望ましくない。
The circumferential spring 4B, in combination with the fixed supports 54, 56 to the shells 42, 44, also provides considerable torsional stiffness. This is mainly due to the compression and bending of the circumferential springs 48 as described above, and also due to the circumferential springs 48 being concentrically arranged. Spiral springs are undesirable because they have relatively low torsional stiffness and can cause unwanted torsional displacement.

最初に述べた様に、ガスタービン機関の軸受支持体では
、機関の共振振動を減衰させることが望ましい。第1図
に示す実施例は、この為の流体制動手段72を取入れて
いる。第1図及び第2図に示す様に、油又はその他の制
動流体が枠のウェブ20内にある導管74に適当に供給
される。この導管が第1の殻体42にある1つ又は更に
多くの小さな孔76と連通して、制動流体を殻体42゜
44の間の環状空間46及び円周方向ばね48の周りに
通す。
As mentioned at the outset, it is desirable for bearing supports for gas turbine engines to dampen resonant vibrations of the engine. The embodiment shown in FIG. 1 incorporates fluid movement means 72 for this purpose. As shown in FIGS. 1 and 2, oil or other damping fluid is suitably supplied to a conduit 74 within the web 20 of the frame. This conduit communicates with one or more small holes 76 in the first shell 42 to pass damping fluid around the annular space 46 between the shells 42 and 44 and around the circumferential spring 48.

第1図に示す様に、止めナツト26の内側端の一部分が
円周方向ばね48の側面から隔たっているので、油は円
周方向ばね48の周りを自由に流れて、第2の殻体44
に隣接する空間に入ることが出来る。夫々止めナツト2
6の内壁及び中孔22の内面に設けられた溝に適当な封
じ78が坐着している。封じ78が第2の殻体44の軸
方向のフランジ80.82と係合して、制動流体を軸受
支持体18内に収容する。
As shown in FIG. 1, a portion of the inner end of lock nut 26 is spaced from the side of circumferential spring 48 so that oil can flow freely around circumferential spring 48 and into the second shell. 44
You can enter the space adjacent to . Each locking nut 2
A suitable seal 78 seats in a groove provided in the inner wall of 6 and the inner surface of bore 22. A seal 78 engages an axial flange 80 . 82 of the second shell 44 to contain damping fluid within the bearing support 18 .

円周方向ばね48の表面積が制動流体と協働することに
より、制動が行なわれる。特に、撓む円周方向ばね48
が局部的に制動流体に対してポンプ作用を持ち、エネル
ギを散逸する。円周方向ばね48自体が従来公知の制動
シムとして作用することに注意されたい。従って、円周
方向ばね48は必要とする半径方向の弾力性及び軸方向
の剛性を作るだけでなく、その他に制動作用もし、こう
して幾つかの機能を持つ比較的簡単な構造になる。
Braking is provided by the surface area of circumferential spring 48 cooperating with the braking fluid. In particular, the deflecting circumferential spring 48
locally pumps the braking fluid and dissipates energy. Note that the circumferential spring 48 itself acts as a braking shim as is known in the art. Therefore, the circumferential spring 48 not only provides the necessary radial resiliency and axial stiffness, but also provides a braking function, thus resulting in a relatively simple structure with several functions.

円周方向ばね48の寸法及び形は、支持体18の円周に
沿って一様な又は一様でない、並びに/又は線形の又は
非線形のばね率が得られる様にすることが出来る。この
ばね率は、機関の運転中の共振を避ける為に、軸受支持
体18を予定の固有共振振動数に同調させる為に普通に
使うことも出来る。軸受支持体18のばね率は、例えば
円周方向ばね48の数、その円周方向の位置、これらの
要素の厚さ又は長さ、又は軸受支持体を作る材料を変え
ることによって、変更することが出来る。
The size and shape of the circumferential spring 48 may be such that a uniform or non-uniform and/or linear or non-linear spring rate is achieved along the circumference of the support 18. This spring rate can also be commonly used to tune the bearing support 18 to a predetermined natural resonant frequency to avoid resonance during engine operation. The spring rate of the bearing support 18 can be varied, for example, by changing the number of circumferential springs 48, their circumferential position, the thickness or length of these elements, or the material from which the bearing support is made. I can do it.

長さ及び厚さが一様な3つ又は更に多くの円周方向ばね
を使い、それら軸受支持体1Bの円周に沿って等間隔に
設けることにより、一層一様で一層線形のばね率が得ら
れる。逆に、厚さ及び長さが変化する円周方向ばね48
を一様でない間隔で用いることにより、一様でない並び
に/又は非線形の予定のばね率が得られる。例えば、軸
受け16に於ける軸12の死重に対処する為に非一様性
が望ましいことがある。例えば、比較的短い並びに/又
は厚い円周方向ばね48を支持体18の頂部並びに/又
は頂部の近くに配置して、軸12が最初は枠14と同軸
に整合する様に、軸12の重量をずらすことにより、垂
直方向の初期のばねの力を適当に導入することが出来る
By using three or more circumferential springs of uniform length and thickness and equally spaced them around the circumference of the bearing support 1B, a more uniform and more linear spring rate is achieved. can get. Conversely, a circumferential spring 48 of varying thickness and length
By using non-uniform spacing, non-uniform and/or non-linear predetermined spring rates can be obtained. For example, non-uniformity may be desirable to accommodate dead weight of shaft 12 in bearing 16. For example, a relatively short and/or thick circumferential spring 48 may be placed at and/or near the top of the support 18 so that the weight of the shaft 12 is initially aligned coaxially with the frame 14. By shifting , the initial spring force in the vertical direction can be appropriately introduced.

円周方向ばね48は軸受支持体18の中で種々の配置に
することが出来る。第1図及び第2図は、軸受支持体1
8の第1及び第2の殻体42,44の間で主に1層とし
て配置された4つの円周方向ばね48を持つ支持体18
を示している。別の機関又は用途では、この層内により
多くの数の一層短い円周方向ばね48を設けることが望
ましいことがある。
The circumferential spring 48 can be arranged in various ways within the bearing support 18. 1 and 2 show the bearing support 1
a support 18 with four circumferential springs 48 arranged primarily in one layer between eight first and second shells 42, 44;
It shows. In other engines or applications, it may be desirable to have a greater number of shorter circumferential springs 48 within this layer.

非常に軟らかい半径方向のコンプライアンスを特徴とす
る特定の用途では、2つの殻体42,44の間の環状空
間46のはV全体にわたって伸びる1個の円周方向ばね
48によって、所望のばね率が得られることがある。更
に、1つの半径で円周方向に整合した一様の間隔の3つ
の円周方向ばね48を、第3図の実施例に示す様に使う
ことが出来る。
In certain applications characterized by very soft radial compliance, the desired spring rate can be achieved by a single circumferential spring 48 extending over the entire V of the annular space 46 between the two shells 42, 44. There are things you can get. Additionally, three uniformly spaced circumferential springs 48 aligned circumferentially at one radius may be used as shown in the embodiment of FIG.

全ての円周方向ばね48が、軸受支持体28の第1及び
第2の殻体42.44の間に1層として配置することは
必要ではない。例えば、第4図はこの発明の別の実施例
の軸受支持体84を示しているが、第1及び第2の殻体
42,44の間の環状空間46に相異なる2つの同心層
として円周方向ばね86が配置されている。この実施例
は4つのばね86を示しており、その各々が環状空間4
6の円周の1/4よりも長く伸び、この為円周方向ばね
86が互いに重なり合う。
It is not necessary that all circumferential springs 48 be arranged in one layer between the first and second shells 42,44 of the bearing support 28. For example, FIG. 4 shows another embodiment of the bearing support 84 of the present invention, which has two different concentric layers in the annular space 46 between the first and second shells 42, 44. A circumferential spring 86 is arranged. This example shows four springs 86, each of which is connected to the annular space 4.
6, so that the circumferential springs 86 overlap each other.

各々の円周方向ばね86が第1及び第2の弓形部分88
.90を持ち、それらが好ましくは一体のコの字形又は
階段形部分92によって相互接続されており、この為第
1及び第2の部分88.90が異なる半径R2,R3を
有する。第2の部分90が隣接する円周方向ばね86の
第1の部分88と重なり且つそれから隔たっていて、(
コの字 ・形部分92を除いて)はり弓形のままであっ
て、第1及び第2の円周方向ばね部分88.90が殻体
42,44と同心のままで止どまる様に保証し、こうし
て円周方向ばね86に渦巻きが出来ることを避けている
Each circumferential spring 86 has first and second arcuate portions 88 .
.. 90, which are preferably interconnected by an integral U-shaped or stepped portion 92, so that the first and second portions 88.90 have different radii R2, R3. A second portion 90 overlaps and is spaced from the first portion 88 of an adjacent circumferential spring 86;
The U-shape (with the exception of the U-shaped portion 92) remains arcuate, ensuring that the first and second circumferential spring portions 88,90 remain concentric with the shells 42, 44. However, the formation of a swirl in the circumferential spring 86 is thus avoided.

重なり合う円周方向ばね86の配置により、軸受支持体
84は、曲げを受ける円周方向ばね86の長さが一層長
い為に、支持体の全円周に沿って一層一様な半径方向の
ばね率を持つことが出来る。
Due to the arrangement of the overlapping circumferential springs 86, the bearing support 84 has a more uniform radial spring along the entire circumference of the support due to the longer length of the circumferential springs 86 undergoing bending. It is possible to have a rate.

言換えれば、第2の殻体44が半径方向のどちら向きに
撓んでも、円周方向ばね86の復元力ははy一様である
。勿論、円周方向ばね86は一層長いので、軸受支持体
の半径方向の剛性を減少する。
In other words, no matter which direction in the radial direction the second shell body 44 is bent, the restoring force of the circumferential spring 86 is uniform. Of course, the circumferential spring 86 is longer, reducing the radial stiffness of the bearing support.

第1図の機関に取入れた時、軸受支持体84は、支持体
28よりもより強く制動作用を行なう、これは、円周方
向に一層長い円周方向ばね86が制動流体に露出する表
面積が一層大きいからである。
When installed in the engine of FIG. 1, the bearing support 84 provides a stronger braking action than the support 28 because the circumferentially longer circumferential spring 86 has less surface area exposed to the braking fluid. This is because it is even larger.

この発明のどの実施例でも、例えば第4図に示す様に、
隣合う円周方向ばね86の間の空間内に薄い金属又は箔
の挿着体94を含めることにより、制動作用を一層強め
ることが出来る。こういう薄い挿着体94は軸受支持体
86のばね定数に実質的に影響しないが、制動流体に露
出する表面積を大きくする。
In any embodiment of the invention, for example, as shown in FIG.
By including a thin metal or foil insert 94 in the space between adjacent circumferential springs 86, further braking action can be achieved. Although such a thin insert 94 does not substantially affect the spring rate of the bearing support 86, it increases the surface area exposed to the damping fluid.

特定の用途に対する所望のばね及び制動特性を達成する
為に、軸受支持体の円周方向ばねの形状をこの他いろい
ろと変えることが出来る。例えば、第5図はこの発明の
別の実施例の軸受支持体96を示しているが、これは第
2の殻体44の半径方向内側に隔たる追加の第3の環状
殻体98を持っている。第1図に示すのと同様な複数個
の第1の円周方向ばね48が、第1及び第2の殻体42
゜44に同じ様に固着される。同様に、第2及び第3の
殻体44,98には、その間の第2の環状空間又はすき
間101内で複数個の第2の円周方向ばね100が固着
される。この実施例では、第1及び第2の殻体42,4
4の間の第1の環状空間内に配置された4個の第1の円
周方向ばね48からなる層がある。第2及び第3の殻体
44,98の間の第2の環状空間内には、3つの第2の
円周方向ばね100からなる第2の層が配置されている
。この為、軸受支持体96は円周方向ばね48゜100
の二重層を持ち、これは支持体の円周に沿って一層一様
なばね率を持つ。
Many other variations in the shape of the circumferential springs of the bearing support can be made to achieve the desired spring and damping characteristics for a particular application. For example, FIG. 5 shows another embodiment of a bearing support 96 of the invention having an additional third annular shell 98 spaced radially inwardly from the second shell 44. ing. A plurality of first circumferential springs 48 similar to that shown in FIG.
44 in the same way. Similarly, a plurality of second circumferential springs 100 are secured to the second and third shells 44, 98 within a second annular space or gap 101 therebetween. In this embodiment, the first and second shells 42, 4
There is a layer of four first circumferential springs 48 disposed in a first annular space between four springs. A second layer of three second circumferential springs 100 is arranged within the second annular space between the second and third shells 44, 98. For this reason, the bearing support 96 has a circumferential spring of 48°100
, which has a more uniform spring rate along the circumference of the support.

更に、第5図に示す実施例では、第1の円周方向ばね4
8が第1の、反時計廻りの円周方向に第1の殻体42か
ら第2の殻体44まで伸び、第2の円周方向ばね100
が反対の時計廻りの第2の円周方向に第2の殻体44か
ら第3の殻体まで伸びる。この配置は、円周方向ばね4
8,100の半径方向の変位によって悪影響が生じても
、それを除く助けにすることが出来る。例えば、撓みに
よって第2の殻体44が回転する傾向があれば、円周方
向ばね4g、100が反対向きである為、第3の殻体9
8が反対向きに回転する傾向によって打消すことが出来
る。
Furthermore, in the embodiment shown in FIG.
8 extends in a first, counterclockwise circumferential direction from the first shell 42 to the second shell 44 and a second circumferential spring 100
extends in an opposite clockwise second circumferential direction from the second shell 44 to the third shell. This arrangement allows the circumferential spring 4
8,100 can help eliminate any negative effects caused by radial displacement. For example, if the second shell 44 tends to rotate due to deflection, the third shell 9
8 can be counteracted by the tendency to rotate in the opposite direction.

更に、第1の円周方向ばね48は過負荷に対する保護の
為に比較的剛性の強いものに設計することが出来、これ
に対して第2の円周方向ばね1゜Oは軸12の普通の動
作に対する剛性に設計することが出来る。
Furthermore, the first circumferential spring 48 can be designed to be relatively stiff for protection against overloads, whereas the second circumferential spring 1° It can be designed to be rigid against the movements of

更に、第1及び第2の円周方向ばね48.100が直列
に配置されているが、この結果、単純な算術加算による
ものよりも全体として相対的に一層軟らかいばね率を持
つ実施例が得られる。
Furthermore, the first and second circumferential springs 48.100 are arranged in series, resulting in an embodiment having a relatively softer overall spring rate than by simple arithmetic addition. It will be done.

これまで説明した軸受支持体では、軸受支持体の各層に
ある円周方向ばねが全体的に同様である。
In the bearing supports described so far, the circumferential springs in each layer of the bearing support are generally similar.

用途によっては、軸受集成体の円周に沿って異なるばね
率を軸受支持体が持つ様に、一様でないばね要素を使う
ことが出来る。例えば、所定の支持体は、横方向の撓み
よりも垂直方向の撓みに対して一層大きな剛性を持つ様
に設計することが出来る。即ち、この様に垂直方向の剛
性を強くすれば、前に述べた様に、静止している時の軸
12に対する重力の影響を補償することが出来る。この
様な一様でないばね率は、機関の回転子の広帯域の振動
共振の同調を外す為にも使うことが出来る。
Depending on the application, non-uniform spring elements may be used so that the bearing support has different spring rates along the circumference of the bearing assembly. For example, a given support can be designed to have greater stiffness in vertical deflection than in lateral deflection. That is, by increasing the stiffness in the vertical direction in this manner, it is possible to compensate for the effect of gravity on the shaft 12 when the shaft 12 is at rest, as described above. Such non-uniform spring rates can also be used to detune broadband vibrational resonances of the engine rotor.

この軸受支持体は、第1図に示す以外の種々の相異なる
普通の方法で、機関の枠14に取付けることも出来、そ
れに応じて支持体の構成部品の具 ・体内な形を変える
ことが出来る。
This bearing support can also be attached to the engine frame 14 in a variety of different conventional ways than that shown in FIG. 1, and the internal shape of the components of the support can be changed accordingly. I can do it.

第6図に示すこの発明の実施例は、玉軸受以外の普通の
軸受、即ちころ軸受集成体102を使うことが出来るこ
とを示している。この実施例は、図示の軸受支持体10
6の第2の殻体104が、ころ軸受集成体102に対す
る一体の外レースとしても作用し得ることをも示してい
る。この形式の支持体では制動作用が必要でないことが
あり、この為油供給部又は封じは図面に示してない。他
の全ての点で、この軸受支持体は前に述べたものと同じ
にすることが出来るが、ころ軸受が軸方向の荷重を枠に
伝達しない点は別である。
The embodiment of the invention shown in FIG. 6 shows that conventional bearings other than ball bearings, ie, roller bearing assembly 102, can be used. In this embodiment, the illustrated bearing support 10
It is also shown that the second shell 104 of 6 can also act as an integral outer race for the roller bearing assembly 102. With this type of support, a braking action may not be necessary, so no oil supply or seal is shown in the drawings. In all other respects, this bearing support can be the same as previously described, except that the roller bearings do not transfer axial loads to the frame.

この発明の別の実施例による軸受支持体は、今日の機関
に導入されつつある新しい材料に関連して使うことも出
来る。例えば、機関の高い温度が予想される時、セラミ
ック軸受並びに/又はセラミック軸を利用する機関に最
も役立つ。
Bearing supports according to other embodiments of the present invention may also be used in conjunction with new materials being introduced into today's engines. For example, engines that utilize ceramic bearings and/or shafts are most useful when high engine temperatures are expected.

第7図及び第8図は、セラミック軸112の半径方向の
振動を制御する為に、玉軸受集成体110の内側に取付
けた軸受支持体108の断面図である。この場合、軸受
集成体110が機関の枠14に直接的に適当に取付けら
れ、前に第1図の支持体18について述べたのと同様に
止めナツト26によって固定される。支持体10gの金
属の外側殻体114が軸受集成体110の内レース11
6となり、支持体108の内側殻体118が、第1図に
示すのと同様に、止めナツト120によって軸112に
固定される。円周方向ばね48が殻体114,118に
適当に取付けられる。軸受支持体108がこうして軸1
12と共に回転し、軸112と軸受集成体110の温度
に対する不釣合に対処する様に設計されている。
7 and 8 are cross-sectional views of the bearing support 108 mounted inside the ball bearing assembly 110 to control radial vibration of the ceramic shaft 112. In this case, the bearing assembly 110 is suitably mounted directly to the engine frame 14 and secured by a locking nut 26 in the same manner as previously described for the support 18 of FIG. The metal outer shell 114 of the support 10g is attached to the inner race 11 of the bearing assembly 110.
6, and the inner shell 118 of the support 108 is secured to the shaft 112 by a locking nut 120 in the same manner as shown in FIG. A circumferential spring 48 is suitably attached to the shells 114,118. The bearing support 108 is thus
12 and is designed to accommodate the temperature imbalance between shaft 112 and bearing assembly 110.

更に具体的に云うと、内側殻体118は途切れており、
又は少なくとも1つの軸方向に伸びるすき間122が形
成されている。図示の実施例では、4つの円周方向ばね
48及び円周方向に相隔たる4つのすき間122が示さ
れている。これらの軸方向のすき間122は、軸112
)支持体108の外側殻体114又は軸受集成体110
の何れをも拘束せずに、内側殻体118が軸112と共
に膨張又は収縮すること6が出来る様にしている。この
為、金属の内側殻体118とそれに接するセラミック軸
112の間の熱膨張及び収縮の差に対処し、軸112の
破損を防止することが出来る。
More specifically, the inner shell 118 is interrupted;
Alternatively, at least one axially extending gap 122 is formed. In the illustrated embodiment, four circumferential springs 48 and four circumferentially spaced gaps 122 are shown. These axial gaps 122 are defined by the shaft 112
) Outer shell 114 or bearing assembly 110 of support 108
The inner shell 118 is allowed to expand or contract 6 with the shaft 112 without constraining any of the shafts 112. Therefore, the difference in thermal expansion and contraction between the metal inner shell 118 and the ceramic shaft 112 in contact therewith can be accommodated, and damage to the shaft 112 can be prevented.

支持体108の内側殻体118は分割されているが、そ
れが軸112と突合せ接触している為、ばねとしては作
用しない。内側殻体118及び外側殻体114に固着し
た円周方向ばね48だけが、支持体108に半径方向の
弾力性を持たせる。独立の円周方向ばね48を使ってい
る為、内側殻体118を分割しても、軸受支持体108
の完全さ及び性能に悪影響はない。
Although the inner shell 118 of the support 108 is split, it does not act as a spring because it is in abutting contact with the shaft 112. Only the circumferential spring 48, which is secured to the inner shell 118 and outer shell 114, renders the support 108 radially resilient. Because an independent circumferential spring 48 is used, even if the inner shell 118 is divided, the bearing support 108
There is no adverse effect on the integrity and performance of the

これまで説明した全ての支持体の実施例の通常の動作で
は、支持体と機関の枠の間の摺動面に目立った疲労はな
い。支持体の相異なる部分の間に間欠的に接触が起こる
ことも予想されない。従って、支持体の予想寿命は、こ
の様な疲労機構又は間欠的な接触によって短くならない
In normal operation of all support embodiments described so far, there is no noticeable fatigue of the sliding surfaces between the support and the engine frame. It is also not expected that intermittent contact will occur between different parts of the support. Therefore, the expected life of the support is not shortened by such fatigue mechanisms or intermittent contact.

第1図乃至第8図からはっきりと判る様に、この発明を
実施した軸受支持体は、いろいろな異なる回転子及び機
関の枠の形状に対し、好ましいばね率及び制動作用が得
られる様に、容易に変えることが出来る。更に、制動作
用が支持体の円周方向ばねと一体であるから、かご形軸
受支持体に時によって用いられる隣接する油を充填した
空所又はシムを省略することが出来る。この結果、半径
方向の空間がかなり節約され、更に制動作用の能力を高
めることが出来る。
As can be clearly seen from FIGS. 1-8, bearing supports embodying the invention are designed to provide favorable spring rates and braking properties for a variety of different rotor and engine frame geometries. Can be easily changed. Furthermore, since the braking action is integral with the circumferential spring of the support, the adjacent oil-filled cavities or shims sometimes used in squirrel cage bearing supports can be omitted. This results in considerable radial space savings and further increases the braking capacity.

更に重要なことは、従来のかご形軸受支持体に見られる
長い軸方向の片持ちスポークを省略したことである。こ
ういうスポークが軸方向のかなりの場所を取り、その為
に機関の長さを長くしている。この為に、機関の重量及
びコスト力< t@7J[l する。
More importantly, the long axial cantilever spokes found in conventional squirrel cage bearing supports are eliminated. These spokes take up a considerable amount of space in the axial direction, making the engine longer. For this reason, the weight and cost of the engine <t@7J[l.

こ−で説明したまとまりのよい軸受支持(本(よ、イ也
の場合に必要となる様な機関の重量、材料及び加工を節
約することが出来る。更に、軸方向及び半径方向にまと
まりのよい軸受支持体及びこれまで説明した簡単な枠の
形状により、従来の力)ご形支持体ニ比べて、コストを
かなり節約すること力(出来る。この発明の軸受支持体
は組立ても簡単であり、隣接する機関の支持部及び制動
構造を簡単シこすることが出来る。
The coherent bearing support described here saves engine weight, material and machining that would otherwise be required. The bearing support and the simple frame shape described above result in considerable cost savings compared to conventional square supports.The bearing support of the present invention is easy to assemble; The support part and braking structure of the adjacent engine can be easily removed.

この発明を実施した軸受支持体は、従来の1ノングif
ねよりも一層一様な復元力を発生する。・ノングばねは
、外レースが取付けられて0ると仮定すると、各々の内
側ローブの所で軸受レース之こ半径方向の点荷重を加え
る。これと対照的(こ、この発明の軸受支持体は一般的
に円周方向(こ半径方向荷重の変動がない。これは、溝
形の内レース及び滑′かな薄い外レース(第6図のころ
軸受102の逆)を持つころ軸受の様に、薄い軸受レー
スを使うn5、最も価値がある。この様な軸受ては、半
径方向荷重が不均一であると、外レースが撓み、ころと
レースの間に不均一な荷重を生ずるが、これは軸受の破
損に寄与する因子である。
The bearing support body embodying this invention is different from the conventional one-length if
It generates a more uniform restoring force than the conventional one. - The long spring applies a radial point load on the bearing race at each inner lobe, assuming the outer race is installed and zero. In contrast, the bearing support of the present invention generally has no variation in circumferential (or radial) loads. It is most valuable to use thin bearing races, such as roller bearings with roller bearings (the opposite of roller bearings 102).In such bearings, uneven radial loads will cause the outer race to flex and cause the rollers to flex. This creates uneven loading between the races, which is a contributing factor to bearing failure.

この発明を好ましい実施例について具体的に説明したが
、当業者であれば、特許請求の範囲によって定められた
この発明の範囲内で種々の変更を加えることが出来るこ
とが理解されよう。例えば、いろいろな形の原動機、機
関及び機械に使う為、この軸受支持体をいろいろな相異
なる形式の軸受集成体に合せることが出来る。更に、支
持体に制動流体を供給する手段も、流体源に対する接近
の容易さに応じて変更することが出来る。
Although the invention has been described with particular reference to preferred embodiments, those skilled in the art will recognize that various modifications can be made within the scope of the invention as defined by the claims. For example, the bearing support can be adapted to a variety of different types of bearing assemblies for use in various types of prime movers, engines, and machines. Additionally, the means for supplying damping fluid to the support can also vary depending on the ease of access to the fluid source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施した1実施例の軸受支持体を示
す、ガスタービン機関の一部分の軸断面図、第2図は第
1図の切断線2−2で切った拡大断面図で、機関の軸受
支持体を更に詳しく示している。第3図は第1図の機関
で使われる別の実施例の軸受支持体の断面図で、円周方
向に整合する3つの円周方向ばねを用いている。第4図
は更に別の実施例の軸受支持体の断面図で、これは制動
作用を強める為の箔挿着体と共に重なり合う円周方向ば
ねを用いている。第5図は第1図の機関に使われる更に
別の実施例の軸受支持体の断面図で、3つの同心の殻体
があり、二組の円周方向ばねがそれらの間に形成された
内側及び外側の環状のすき間内に配置されている。第6
図は第1図の機関に用いられる別の実施例の軸受支持体
の部分的な横断面図で、ころ軸受集成体とその半径方向
外側ノこ取付けられた軸受支持体を示す。第7図は更に
別の実施例の軸受支持体を第2図と同様に示す断面図で
、支持体は軸受集成体よりも半径方向内側に度付けられ
ていて、セラミック軸を支持している。第8図は第7図
の切断線8−8で切った断面図である。 主な符号の説明 42.44:殻体 48二円周方向ばね 50.52:端
FIG. 1 is an axial sectional view of a portion of a gas turbine engine showing a bearing support according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view taken along section line 2-2 in FIG. The bearing support of the engine is shown in more detail. FIG. 3 is a cross-sectional view of an alternative embodiment of the bearing support for use in the engine of FIG. 1, using three circumferentially aligned springs. FIG. 4 is a cross-sectional view of a further embodiment of the bearing support, which uses overlapping circumferential springs with foil inserts to enhance the braking action. FIG. 5 is a cross-sectional view of a further embodiment of a bearing support for use in the engine of FIG. 1, having three concentric shells with two sets of circumferential springs formed therebetween. It is located within the inner and outer annular gaps. 6th
The figure is a partial cross-sectional view of an alternative embodiment of a bearing support for use in the engine of FIG. 1, showing the roller bearing assembly and its radially outer sawn-mounted bearing support. Figure 7 is a cross-sectional view similar to Figure 2 of a further embodiment of the bearing support, the support being angled radially inwardly than the bearing assembly and supporting a ceramic shaft; . FIG. 8 is a cross-sectional view taken along section line 8--8 in FIG. 7. Explanation of main symbols 42.44: Shell body 48 Two circumferential springs 50.52: End

Claims (1)

【特許請求の範囲】 1)環状の第1の殻体と、該第1の殻体と同軸であって
、それから隔たっていて、その間に環状空間を作る環状
の第2の殻体と、前記環状空間内に配置されていて、前
記第1及び第2の殻体とほゞ同心である少なくとも1つ
の細長い弓形の円周方向ばねとを有し、該円周方向ばね
の両側の第1及び第2の端が前記第1及び第2の殻体に
夫々固着されている軸受支持体。 2)特許請求の範囲1)に記載した軸受支持体に於て、
円周方向に相隔たる3つの円周方向ばねを有する軸受支
持体。 3)特許請求の範囲2)に記載した軸受支持体に於て、
前記3つの円周方向ばねが円周方向に1つの半径で整合
している軸受支持体。 4)特許請求の範囲2)に記載した軸受支持体に於て、
前記第2の殻体より半径方向内側に配置された軸受手段
を有し、前記第1の殻体を機関の枠に取付けることが出
来る様にした軸受支持体。 5)特許請求の範囲2)に記載した軸受支持体に於て、
前記第1の殻体より半径方向外側で機関の枠より半径方
向内側に配置された軸受手段を有し、前記第2の殻体を
機関の軸に取付けることが出来る様にした軸受支持体。 6)特許請求の範囲2)に記載した軸受支持体に於て、
前記円周方向ばねの寸法及び形は、支持体の円周に沿っ
てほゞ一様な半径方向の復元力を発生する様になってい
る軸受支持体。 7)特許請求の範囲2)に記載した軸受支持体に於て、
前記円周方向ばねの寸法及び形は支持体の円周に沿って
一様でない半径方向の復元力を発生する様になっている
軸受支持体。 8)特許請求の範囲2)に記載した軸受支持体に於て、
前記第2の殻体を軸方向にすき間が通り抜けていて、該
第2の殻体と突合せ接触する様に配置された環状部材と
の差別的な熱による膨張及び収縮に対処出来る様にした
軸受支持体。 9)特許請求の範囲8)に記載した軸受支持体に於て、
前記環状部材が前記第2の殻体の半径方向内側にそれと
同軸に配置されたセラミック軸で構成される軸受支持体
。 10)特許請求の範囲2)に記載した軸受支持体に於て
、各々の円周方向ばねが半径方向の厚さ及び軸方向の幅
を持ち、該幅が前記厚さよりも大きく、軸方向のスラス
ト軸受として働くことが出来る様にした軸受支持体。 11)特許請求の範囲10)に記載した軸受支持体に於
て、前記円周方向ばねの幅と厚さの比が少なくとも4:
1である軸受支持体。 12)特許請求の範囲2)に記載した軸受支持体に於て
、各々の円周方向ばねがコの字形部分で相互接続された
第1及び第2の部分で構成されていて、第1及び第2の
円周方向ばね部分が異なる半径を持ち、円周方向ばねの
第2の部分が隣接する円周方向ばねの第1の部分と重な
る軸受支持体。 13)特許請求の範囲12)に記載した軸受支持体に於
て、前記円周方向ばねの重なり合う第1及び第2の部分
の間の環状空間に油を通す様に作用する手段を含む制動
手段を有し、この為、前記円周方向ばねが軸受支持体に
対する半径方向のばねの力を発生すると共に、前記油と
協働して振動を減衰させるのに有効な表面積を持つ様に
した軸受支持体。 14)特許請求の範囲13)に記載した軸受支持体に於
て、前記円周方向ばねの間の環状空間に配置されて、制
動を強める為の追加の表面積を持つ様にした箔挿着体を
有する軸受支持体。 15)特許請求の範囲1)に記載した軸受支持体に於て
、複数個の前記第1の円周方向ばねが前記第1及び第2
の殻体の間に配置され、第3の環状の殻体が前記第2の
殻体から半径方向に隔たってそれと同軸に配置されてい
て、その間に第2の環状空間を作り、複数個の第2の円
周方向ばねが前記第2及び第3の環状殻体に固着されて
いる軸受支持体。 16)特許請求の範囲15)に記載した軸受支持体に於
て、4個の第1の円周方向ばね及び3個の第2の円周方
向ばねを有する軸受支持体。 17)特許請求の範囲15)に記載した軸受支持体に於
て、前記第1の円周方向ばねが第1の円周方向に前記第
1の殻体から前記第2の殻体まで伸び、前記第2の円周
方向ばねが反対の第2の円周方向に前記第2の殻体から
前記第3の殻体まで伸びる軸受支持体。 18)ガスタービン機関の軸受支持体に於て、第1の環
状の殻体と、該第1の環状の殻体と同軸であるがそれか
ら隔たっていて、その間に環状空間を作る第2の環状の
殻体と、前記環状空間内に円周方向に隔たって、前記第
1及び第2の殻体とほゞ同心に配置された少なくとも3
個の細長い弓形の円周方向ばねとを有し、各々の円周方
向ばねは夫々前記第1及び第2の殻体に固着した両側の
第1及び第2の端を持ち、各々の円周方向ばねは半径方
向の厚さ及び軸方向の幅を持ち、該幅が前記厚さよりも
大きくて軸方向のスラスト軸受として働くことが出来る
様になっており、更に、前記円周方向ばねの間の環状空
間に油を通す手段を含む制動手段を有し、この為、前記
円周方向ばねが軸受支持体に対する半径方向のばねの力
を発生すると共に、前記油と協働して振動を減衰させる
のに有効な表面積を持つ様にした軸受支持体。 19)特許請求の範囲18)に記載した軸受支持体に於
て、各々の円周方向ばねがコの字形部分で相互接続され
た第1及び第2の部分を持ち、第1及び第2の円周方向
ばねの部分が異なる半径を持っており、該円周方向ばね
の第2の部分が隣接する円周方向ばねの第1の部分と重
なる様にした軸受支持体。
[Scope of Claims] 1) an annular first shell; a second annular shell coaxial with and separated from the first shell, and creating an annular space therebetween; at least one elongated arcuate circumferential spring disposed within the annular space and substantially concentric with the first and second shells, the first and second shells on either side of the circumferential spring; A bearing support having second ends secured to said first and second shells, respectively. 2) In the bearing support described in claim 1),
A bearing support having three circumferentially spaced circumferential springs. 3) In the bearing support described in claim 2),
A bearing support in which the three circumferential springs are circumferentially aligned at one radius. 4) In the bearing support described in claim 2),
A bearing support having bearing means disposed radially inward from the second shell, the first shell being able to be attached to a frame of an engine. 5) In the bearing support described in claim 2),
A bearing support having bearing means disposed radially outside the first shell and radially inside the engine frame, the second shell being able to be attached to the engine shaft. 6) In the bearing support described in claim 2),
A bearing support wherein the circumferential spring is sized and shaped to produce a substantially uniform radial restoring force along the circumference of the support. 7) In the bearing support described in claim 2),
A bearing support, wherein the size and shape of the circumferential spring is such that it produces a radial restoring force that is not uniform along the circumference of the support. 8) In the bearing support described in claim 2),
A bearing having a gap passing through the second shell in the axial direction and capable of coping with differential thermal expansion and contraction between the annular member and the annular member disposed in butt contact with the second shell. support. 9) In the bearing support described in claim 8),
A bearing support in which the annular member comprises a ceramic shaft disposed radially inside and coaxially with the second shell. 10) In the bearing support according to claim 2), each circumferential spring has a radial thickness and an axial width, the width being greater than the thickness and an axial width. A bearing support that can function as a thrust bearing. 11) In the bearing support according to claim 10), the width to thickness ratio of the circumferential spring is at least 4:
1. 12) In the bearing support according to claim 2), each circumferential spring is composed of first and second parts interconnected by a U-shaped part; A bearing support in which the second circumferential spring portions have different radii and the second portion of the circumferential spring overlaps the first portion of an adjacent circumferential spring. 13) In the bearing support according to claim 12), braking means includes means for acting to pass oil into the annular space between the overlapping first and second portions of the circumferential spring. and for this purpose the circumferential spring has a surface area effective to generate a radial spring force on the bearing support and to cooperate with the oil to damp vibrations. support. 14) In the bearing support according to claim 13), a foil insert is arranged in the annular space between the circumferential springs and has an additional surface area for increasing damping. A bearing support having: 15) In the bearing support according to claim 1), a plurality of the first circumferential springs are connected to the first and second circumferential springs.
a third annular shell is disposed between said second shells and is disposed radially spaced from said second shell and coaxial therewith defining a second annular space therebetween; A bearing support in which a second circumferential spring is secured to said second and third annular shells. 16) A bearing support according to claim 15) having four first circumferential springs and three second circumferential springs. 17) The bearing support according to claim 15), wherein the first circumferential spring extends in a first circumferential direction from the first shell to the second shell; A bearing support in which the second circumferential spring extends in an opposite second circumferential direction from the second shell to the third shell. 18) In a bearing support for a gas turbine engine, a first annular shell and a second annular shell coaxial with but spaced apart from the first annular shell creating an annular space therebetween. a shell, and at least three shells disposed within the annular space, circumferentially spaced apart and substantially concentric with the first and second shells.
elongated arcuate circumferential springs, each circumferential spring having opposing first and second ends secured to the first and second shells, respectively; The directional spring has a radial thickness and an axial width, the width being greater than the thickness to enable it to act as an axial thrust bearing; damping means including means for passing oil through the annular space of the bearing so that the circumferential spring generates a radial spring force on the bearing support and cooperates with the oil to damp vibrations. A bearing support having an effective surface area to 19) A bearing support according to claim 18), wherein each circumferential spring has first and second portions interconnected by a U-shaped portion; A bearing support wherein portions of the circumferential spring have different radii such that a second portion of the circumferential spring overlaps a first portion of an adjacent circumferential spring.
JP61068886A 1985-04-03 1986-03-28 Bearing supporter Pending JPS61262222A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US719606 1985-04-03
US06/719,606 US4872767A (en) 1985-04-03 1985-04-03 Bearing support

Publications (1)

Publication Number Publication Date
JPS61262222A true JPS61262222A (en) 1986-11-20

Family

ID=24890665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068886A Pending JPS61262222A (en) 1985-04-03 1986-03-28 Bearing supporter

Country Status (7)

Country Link
US (1) US4872767A (en)
JP (1) JPS61262222A (en)
CA (1) CA1292494C (en)
DE (1) DE3609618A1 (en)
FR (1) FR2580044A1 (en)
GB (1) GB2173867B (en)
IT (1) IT1191707B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038222A (en) * 2004-07-20 2006-02-09 Varian Spa Annular support member for rolling bearing
JP2008542628A (en) * 2005-06-10 2008-11-27 エドワーズ リミテッド Vacuum pump
JP2010504465A (en) * 2006-09-22 2010-02-12 エドワーズ リミテッド Vacuum pump
JP2010203504A (en) * 2009-03-03 2010-09-16 Ihi Corp Squeeze film damper bearing
CN110566614A (en) * 2019-09-11 2019-12-13 哈尔滨工业大学(深圳) One-way plane torsional spring
JP2020041636A (en) * 2018-09-12 2020-03-19 川崎重工業株式会社 Damper bearing and damper
JP2021515157A (en) * 2018-03-06 2021-06-17 レイボルド ゲーエムベーハー Vacuum pump
WO2021256372A1 (en) * 2020-06-15 2021-12-23 川崎重工業株式会社 Damper

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421655A (en) * 1987-05-29 1995-06-06 Kmc, Inc. Fluid dampened support having variable stiffness and damping
US5425584A (en) * 1987-05-29 1995-06-20 Ide; Russell D. Fluid dampened support for rolling element bearings
US5603574A (en) * 1987-05-29 1997-02-18 Kmc, Inc. Fluid dampened support having variable stiffness and damping
US5531522A (en) * 1987-05-29 1996-07-02 Kmc, Inc. Fluid dampened support having variable stiffness and damping
DE3728039A1 (en) * 1987-08-22 1989-03-02 Kloeckner Humboldt Deutz Ag Spring suspension element for a bearing
EP0349829B1 (en) * 1988-06-30 1996-04-17 Maschinenfabrik Rieter Ag Roller with a large rotating speed range
US4900165A (en) * 1988-08-15 1990-02-13 Union Carbide Corporation Bearing support system
US4971457A (en) * 1989-10-04 1990-11-20 United Technologies Corporation Fluid damper
US4971458A (en) * 1989-10-04 1990-11-20 United Technologies Corporation Fluid damper and spring
US4992024A (en) * 1989-12-13 1991-02-12 Allied-Signal Inc. Multi-film fluid bearing damper
SE465177B (en) * 1989-12-15 1991-08-05 Abb Stal Ab HYDROSTATICALLY STORED SQUEEZE FILM MOVERS
US5067825A (en) * 1990-06-18 1991-11-26 Vance John M Aircraft engine rotor squeeze film damper
US5219144A (en) * 1990-07-20 1993-06-15 General Motors Corporation Mass impact damper for rotors
US5044781A (en) * 1990-07-26 1991-09-03 United Technologies Corporation Spring supported damping system
CA2068584C (en) * 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
JPH0560133A (en) * 1991-08-23 1993-03-09 Nippon Thompson Co Ltd Vibration-proof direct acting guide sliding unit
JPH0560129A (en) * 1991-08-23 1993-03-09 Nippon Thompson Co Ltd Vibration-proof direct acting guide sliding unit
EP0595410B1 (en) * 1992-10-30 1996-08-21 Koninklijke Philips Electronics N.V. Electric motor and apparatus comprising the electric motor
JP2675986B2 (en) * 1994-02-18 1997-11-12 インターナショナル・ビジネス・マシーンズ・コーポレイション Direct access storage device having composite actuator bearing system and method thereof
DE4424640A1 (en) * 1994-07-13 1996-01-18 Abb Management Ag Storage of an exhaust gas turbocharger
US6116389A (en) 1995-08-07 2000-09-12 Quality Research, Development & Consulting, Inc. Apparatus and method for confinement and damping of vibration energy
US6032552A (en) * 1995-08-07 2000-03-07 Quality Research Development & Consulting, Inc. Vibration control by confinement of vibration energy
US20060106500A1 (en) * 1995-08-07 2006-05-18 Quality Research, Development & Consulting, Inc. Vibration control by confinement of vibration energy
DE19613471A1 (en) * 1996-04-04 1997-10-09 Asea Brown Boveri Bearing support for high-speed rotors
DE19834111A1 (en) * 1998-07-29 2000-02-03 Asea Brown Boveri Radial bearing
US6196721B1 (en) * 1998-09-11 2001-03-06 Stephen J. Farkaly Sinusoidal viscous interface for attenuation of vibration for ball and roller bearings
FR2789459A1 (en) * 1999-02-10 2000-08-11 Nadella Needle bearing structure and layout for placing steering column in car has inner sections defining external needle bearing path and outer sections linked to inner sections forming radial thrust spring
FR2817289B1 (en) * 2000-11-30 2003-01-31 Snecma Moteurs DEVICE FOR CENTERING A TUBE IN A TURBINE SHAFT
US6413046B1 (en) * 2001-01-26 2002-07-02 General Electric Company Method and apparatus for centering rotor assembly damper bearings
US6443698B1 (en) * 2001-01-26 2002-09-03 General Electric Company Method and apparatus for centering rotor assembly damper bearings
DE10136023A1 (en) * 2001-07-24 2003-02-20 Bosch Gmbh Robert Flexible bearing suspension for a sintered plain bearing
US6540483B2 (en) 2001-08-27 2003-04-01 General Electric Company Methods and apparatus for bearing outer race axial retention
US7066653B2 (en) * 2001-10-03 2006-06-27 Dresser-Rand Company Bearing assembly and method
DE10211484A1 (en) * 2002-03-15 2003-10-09 Kirschey Centa Antriebe clutch
US6682219B2 (en) 2002-04-03 2004-01-27 Honeywell International Inc. Anisotropic support damper for gas turbine bearing
US6910863B2 (en) * 2002-12-11 2005-06-28 General Electric Company Methods and apparatus for assembling a bearing assembly
US6939052B1 (en) 2003-01-27 2005-09-06 Precision Components, Inc. Bearing with integrated mounting features
EP1777378A3 (en) * 2003-07-29 2011-03-09 Pratt & Whitney Canada Corp. Turbofan case and method of making
US7370467B2 (en) * 2003-07-29 2008-05-13 Pratt & Whitney Canada Corp. Turbofan case and method of making
FR2864995B1 (en) * 2004-01-12 2008-01-04 Snecma Moteurs DOUBLE RAIDEUR BEARING SUPPORT
US7182519B2 (en) * 2004-06-24 2007-02-27 General Electric Company Methods and apparatus for assembling a bearing assembly
US7384199B2 (en) * 2004-08-27 2008-06-10 General Electric Company Apparatus for centering rotor assembly bearings
US20060120854A1 (en) * 2004-12-08 2006-06-08 Wakeman Thomas G Gas turbine engine assembly and method of assembling same
US7500788B2 (en) * 2004-12-31 2009-03-10 Dana Automotive Systems Group, Llc Center bearing assembly having an adjustable pneumatic support member
US20060204153A1 (en) * 2005-03-10 2006-09-14 Honeywell International Inc. Compact resilient anisotropic support for bearing
JP2007056976A (en) * 2005-08-24 2007-03-08 Ishikawajima Harima Heavy Ind Co Ltd Damper element of bearing, its manufacturing method and gas turbine engine
US7625121B2 (en) * 2005-09-28 2009-12-01 Elliott Company Bearing assembly and centering support structure therefor
WO2007047976A1 (en) * 2005-10-20 2007-04-26 Dresser-Rand Company Support device for bearing assemblies
US7430926B2 (en) * 2006-02-13 2008-10-07 General Electric Company Apparatus for measuring bearing thrust load
DE102006037187A1 (en) 2006-08-09 2008-02-21 Pfeiffer Vacuum Gmbh Arrangement for supporting a shaft of a vacuum pump
US7789567B2 (en) * 2006-08-30 2010-09-07 Honeywell International Inc. Bearing with fluid flow bypass
JP2008067207A (en) * 2006-09-08 2008-03-21 Sony Corp Record reproducer, display control method, and program
US8267592B2 (en) * 2006-12-22 2012-09-18 Rolls-Royce North American Technologies, Inc. Bearing support
US7648278B2 (en) * 2007-01-05 2010-01-19 Honeywell International Inc. High speed aerospace generator resilient mount, combined centering spring and squeeze film damper
GB0701609D0 (en) * 2007-01-29 2007-03-07 Boc Group Plc Vacuum pump
US7699526B2 (en) * 2007-03-27 2010-04-20 Honeywell International Inc. Support dampers for bearing assemblies and methods of manufacture
DE202007012052U1 (en) * 2007-08-29 2009-01-08 Oerlikon Leybold Vacuum Gmbh Turbo molecular pump
US8342796B2 (en) * 2008-04-29 2013-01-01 Honeywell International Inc. Damping systems for use in engines
DE102008040673B4 (en) 2008-06-24 2018-07-26 Robert Bosch Automotive Steering Gmbh Shaft bearing in a steering system and thus equipped steering gear and manufacturing method therefor
US8182156B2 (en) * 2008-07-31 2012-05-22 General Electric Company Nested bearing cages
US8272786B2 (en) * 2009-02-18 2012-09-25 Honeywell International Inc. Vibration isolation mounting assembly
US8256750B2 (en) * 2009-02-18 2012-09-04 Honeywell International Inc. Vibration isolation mounting assembly
US8167314B2 (en) * 2009-03-31 2012-05-01 United Technologies Corporation Distortion resistant face seal counterface system
US8282285B2 (en) * 2009-05-04 2012-10-09 Pratt & Whitney Canada Corp. Bearing support
US8545106B2 (en) * 2009-07-08 2013-10-01 Williams International Co., L.L.C. System and method for isolating a rolling-element bearing
US8727033B2 (en) * 2009-08-07 2014-05-20 Cnh Industrial America Llc Apparatus for providing support of a cantilevered component mounted to a rigid frame
US8465207B2 (en) * 2009-10-09 2013-06-18 Dresser-Rand Company Auxiliary bearing system with oil reservoir for magnetically supported rotor system
US8408806B2 (en) * 2009-10-09 2013-04-02 Dresser-Rand Company Auxiliary bearing system with oil ring for magnetically supported rotor system
US8308364B2 (en) * 2009-10-09 2012-11-13 Dresser-Rand Company Auxiliary bearing system for magnetically supported rotor system
EP2486293B1 (en) * 2009-10-09 2018-02-21 Dresser-Rand Company Auxiliary bearing system with plurality of inertia rings for magnetically supported rotor system
DE102009054655A1 (en) 2009-12-15 2011-06-16 Zf Lenksysteme Gmbh Steering gear with fixed bearing and floating bearing for screw pinion
US8727699B2 (en) * 2009-12-29 2014-05-20 Rolls-Royce Corporation Rotating machinery with damping system
WO2011088004A2 (en) 2010-01-15 2011-07-21 Dresser-Rand Company Bearing assembly support and adjustment system
US8702377B2 (en) 2010-06-23 2014-04-22 Honeywell International Inc. Gas turbine engine rotor tip clearance and shaft dynamics system and method
DE102011005761A1 (en) * 2011-03-18 2012-09-20 Schaeffler Technologies Gmbh & Co. Kg Bearing arrangement with a fishing camp
US8834095B2 (en) * 2011-06-24 2014-09-16 United Technologies Corporation Integral bearing support and centering spring assembly for a gas turbine engine
BRPI1103647A2 (en) * 2011-07-07 2013-07-02 Whirlpool Sa arrangement between linear compressor components
BRPI1103447A2 (en) * 2011-07-19 2013-07-09 Whirlpool Sa spring bundle for compressor and spring bundled compressor
US8992161B2 (en) 2011-08-26 2015-03-31 Honeywell International Inc. Gas turbine engines including broadband damping systems and methods for producing the same
US9046001B2 (en) 2011-08-29 2015-06-02 Honeywell International Inc. Annular bearing support dampers, gas turbine engines including the same, and methods for the manufacture thereof
BRPI1104172A2 (en) * 2011-08-31 2015-10-13 Whirlpool Sa linear compressor based on resonant oscillating mechanism
US8727632B2 (en) 2011-11-01 2014-05-20 General Electric Company Bearing support apparatus for a gas turbine engine
US9297438B2 (en) 2012-01-25 2016-03-29 Honeywell International Inc. Three parameter damper anisotropic vibration isolation mounting assembly
US9476320B2 (en) 2012-01-31 2016-10-25 United Technologies Corporation Gas turbine engine aft bearing arrangement
US10001028B2 (en) 2012-04-23 2018-06-19 General Electric Company Dual spring bearing support housing
HUE042603T2 (en) 2012-04-30 2019-07-29 Saint Gobain Performance Plastics Rencol Ltd Tolerance ring with perforated waves
WO2013164608A1 (en) 2012-04-30 2013-11-07 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring with slotted sidewall
EP2662572A1 (en) * 2012-05-09 2013-11-13 Sulzer Pumpen Ag Sealing arrangement for the lubricant of a ball bearing in a flow machine
DE102012221369A1 (en) * 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg roller bearing
EP2738393A1 (en) 2012-11-30 2014-06-04 Agilent Technologies, Inc. Support for rolling bearings
EP3011194B1 (en) * 2013-06-21 2021-08-25 Raytheon Technologies Corporation Nonlinear rolling bearing radial support stiffness
DE102013213172A1 (en) * 2013-07-04 2015-01-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbocharger
EP3049655B1 (en) * 2013-09-23 2021-12-01 Raytheon Technologies Corporation Gas turbine engine bearing arrangement translating radial vibrations into axial vibrations
WO2015060900A1 (en) * 2013-10-25 2015-04-30 United Technologies Corporation Bearing race removal
US9850814B2 (en) * 2014-02-19 2017-12-26 United Technologies Corporation Annular spring for a bearing assembly of a gas turbine engine
CN104295600A (en) * 2014-09-18 2015-01-21 浙江大学 Elastic rolling bearing with wavy foil
US20160102724A1 (en) * 2014-10-09 2016-04-14 Rethink Motion Inc. Concentric Arc Spline Rotational Spring
US9416820B2 (en) * 2014-12-11 2016-08-16 General Electric Company Bearing having integrally formed components
US9714584B2 (en) 2015-06-18 2017-07-25 United Technologies Corporation Bearing support damping
US9909451B2 (en) 2015-07-09 2018-03-06 General Electric Company Bearing assembly for supporting a rotor shaft of a gas turbine engine
US9702404B2 (en) 2015-10-28 2017-07-11 United Technologies Corporation Integral centering spring and bearing support and method of supporting multiple damped bearings
US10001166B2 (en) 2016-04-18 2018-06-19 General Electric Company Gas distribution labyrinth for bearing pad
US10914195B2 (en) 2016-04-18 2021-02-09 General Electric Company Rotary machine with gas bearings
US9746029B1 (en) 2016-04-18 2017-08-29 General Electric Company Bearing
US9951811B2 (en) 2016-04-18 2018-04-24 General Electric Company Bearing
US10036279B2 (en) 2016-04-18 2018-07-31 General Electric Company Thrust bearing
US11193385B2 (en) 2016-04-18 2021-12-07 General Electric Company Gas bearing seal
US10066505B2 (en) 2016-04-18 2018-09-04 General Electric Company Fluid-filled damper for gas bearing assembly
DE102016108748B4 (en) * 2016-05-11 2021-11-04 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Holder for a component
RU2627625C1 (en) * 2016-09-07 2017-08-09 Публичное Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Пао "Умпо") Radial intershaft turbomachine rotor support
FR3063310B1 (en) * 2017-02-28 2019-04-26 Safran Aircraft Engines AIRCRAFT ENGINE COMPRISING A BEARING BETWEEN TWO CONCENTRIC TREES
GB201706179D0 (en) * 2017-04-19 2017-05-31 Rolls Royce Plc Bearing arrangement
US10364705B2 (en) 2017-05-04 2019-07-30 United Technologies Corporation Strut assembly for bearing compartment
RU2660107C1 (en) * 2017-08-22 2018-07-04 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") Turbomachine rotor elastic damper support
US10494950B2 (en) 2017-12-22 2019-12-03 United Technologies Corporation Bearing centering spring
CN108808401B (en) * 2018-05-03 2019-10-18 同济大学 A kind of conducting heavy current rotary joint for the transmission of solar energy submatrix electric energy
CN111005937B (en) * 2018-10-04 2021-11-19 三菱重工业株式会社 Squeeze film damper and rotary machine
US11125110B2 (en) 2019-03-18 2021-09-21 Pratt & Whitney Canada Corp. Method and system to supply oil to a multi-film oil damper
DE102020210331A1 (en) * 2019-12-11 2021-06-17 Efficient Energy Gmbh Bearing holder for receiving a bearing
FR3106622B1 (en) * 2020-01-28 2022-05-13 Safran Aircraft Engines DAMPING SYSTEM FOR A GUIDE BEARING OF A SHAFT OF AN AIRCRAFT TURBOMACHINE
CN115750093A (en) 2021-09-02 2023-03-07 通用电气公司 Bearing support assembly

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR777312A (en) * 1933-11-10 1935-02-16 Alsthom Cgee New elastic mounting for very high speed shafts or spindles
NL62637C (en) * 1944-05-26
GB612768A (en) * 1946-06-03 1948-11-17 Willie Hodgson Improvements in or relating to spring-mounted bearings for trucks or other wheeled vehicles, castors and the like
US2614896A (en) * 1950-05-06 1952-10-21 Pierce Mary Brush Adjustable dampening bearing support
NL88909C (en) * 1953-09-28
US2897023A (en) * 1954-04-05 1959-07-28 Dana Corp Midship bearing support
US2874008A (en) * 1956-02-23 1959-02-17 Skf Svenska Kullagerfab Ab Bearing mounting for silent running rotating machine parts
US3053590A (en) * 1957-06-24 1962-09-11 Shaft seal
GB960852A (en) * 1961-10-03 1964-06-17 Atomic Energy Authority Uk Improvements in or relating to mountings for journal bearings
GB979599A (en) * 1962-11-27 1965-01-06 Metalastik Ltd Improvements in or relating to flexible mountings for shaft bearings
FR1380813A (en) * 1963-11-14 1964-12-04 Cem Comp Electro Mec Shock absorber bearing
GB1120426A (en) * 1965-07-28 1968-07-17 Licentia Gmbh Bearing bracket for fractional horse power electric
US3554619A (en) * 1968-11-22 1971-01-12 Trw Inc Bearing support
JPS4934206B1 (en) * 1970-08-04 1974-09-12
US3709570A (en) * 1970-12-28 1973-01-09 Trw Inc Anti-friction bearing housing
DE2122813B1 (en) * 1971-05-08 1972-09-14 Man Damping bearings
SU406048A1 (en) * 1971-12-24 1973-11-05 ELASTIC SUPPORT
US3950964A (en) * 1973-05-14 1976-04-20 Natalia Ilinichna Alexeeva Support assembly of vertical rotor
FR2234808A5 (en) * 1973-06-19 1975-01-17 Ut Khim Mashinost
US4027931A (en) * 1975-10-03 1977-06-07 Carrier Corporation Flexible damped bearing support
GB1528057A (en) * 1976-01-20 1978-10-11 Westland Aircraft Ltd Vibration absorbers
US4044628A (en) * 1976-03-24 1977-08-30 U.S. Manufacturing Corporation Torsional damper
US4134309A (en) * 1976-11-05 1979-01-16 Textron Inc. Flange spring reservoir for a vibration damper
US4084861A (en) * 1976-11-11 1978-04-18 United Technologies Corporation Thrust bearing damping means
DE2712304A1 (en) * 1977-03-21 1978-09-28 Budapesti Radiotechnikai Gyar Flexible self-adjusting FHP motor bearing assembly - has bearing supported on leaf springs enclosed by inner and outer rings
US4133585A (en) * 1977-08-04 1979-01-09 United Technologies Corporation Resilient foil journal bearing
US4213661A (en) * 1978-05-08 1980-07-22 United Technologies Corporation Bearing support structure combining fluid damping and spring damping apparatus
US4289360A (en) * 1979-08-23 1981-09-15 General Electric Company Bearing damper system
JPS5666094U (en) * 1979-10-26 1981-06-02
FR2504980B1 (en) * 1981-04-29 1985-06-14 Snecma BEARING ASSEMBLY, PARTICULARLY FOR TURBOMACHINES

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038222A (en) * 2004-07-20 2006-02-09 Varian Spa Annular support member for rolling bearing
JP2008542628A (en) * 2005-06-10 2008-11-27 エドワーズ リミテッド Vacuum pump
JP2010504465A (en) * 2006-09-22 2010-02-12 エドワーズ リミテッド Vacuum pump
JP2010203504A (en) * 2009-03-03 2010-09-16 Ihi Corp Squeeze film damper bearing
JP2021515157A (en) * 2018-03-06 2021-06-17 レイボルド ゲーエムベーハー Vacuum pump
JP2020041636A (en) * 2018-09-12 2020-03-19 川崎重工業株式会社 Damper bearing and damper
WO2020054133A1 (en) * 2018-09-12 2020-03-19 川崎重工業株式会社 Damper bearing and damper
CN110566614A (en) * 2019-09-11 2019-12-13 哈尔滨工业大学(深圳) One-way plane torsional spring
WO2021256372A1 (en) * 2020-06-15 2021-12-23 川崎重工業株式会社 Damper

Also Published As

Publication number Publication date
IT8619877A0 (en) 1986-03-26
CA1292494C (en) 1991-11-26
IT1191707B (en) 1988-03-23
GB8606630D0 (en) 1986-04-23
IT8619877A1 (en) 1987-09-26
DE3609618A1 (en) 1986-10-09
FR2580044A1 (en) 1986-10-10
GB2173867A (en) 1986-10-22
US4872767A (en) 1989-10-10
GB2173867B (en) 1990-03-14

Similar Documents

Publication Publication Date Title
JPS61262222A (en) Bearing supporter
US6135639A (en) Fixed arc squeeze film bearing damper
US8726503B2 (en) Method of positioning a bearing assembly and centering support structure therefor
JP4082755B2 (en) Bearing support for high-speed rotor
US4496252A (en) Resilient support arrangement for shaft bearings of highspeed rotors, in particular rotors of turbo machines
EP1957758B1 (en) Assembly comprising a turbocharger bearing housing and a semi-floating bearing
US7611286B2 (en) Journal bearing arrangement
US5201585A (en) Fluid film journal bearing with squeeze film damper for turbomachinery
US7517155B2 (en) Resilient mount of uniform stiffness
US4767222A (en) Compliant hydrodynamic gas lubricated bearing
US7367713B2 (en) Journal bearing arrangement
JP2000055036A (en) Radial bearing
JPS6148611A (en) Bearing assembly and damper spring composite
US4343203A (en) Rotor structure for gyroscopic apparatus
GB2033024A (en) Bearing assembly with resilient support means
US4600317A (en) Pad type journal bearing device with a constant bearing clearance
USRE30210E (en) Damped intershaft bearing and stabilizer
JPS6238570B2 (en)
JP3900599B2 (en) Turbocharger bearing structure
JPH0520606B2 (en)
JPH1182498A (en) Bearing device
JP3009619B2 (en) Elastic support bearing
KR20190114087A (en) Bearing with adjustable clearance and shape
KR102626148B1 (en) Compressor device with bearing damper and device with bearing damper
JPH0453458Y2 (en)