JPH0734601B2 - Controller for linear motor type electric vehicle - Google Patents

Controller for linear motor type electric vehicle

Info

Publication number
JPH0734601B2
JPH0734601B2 JP60070970A JP7097085A JPH0734601B2 JP H0734601 B2 JPH0734601 B2 JP H0734601B2 JP 60070970 A JP60070970 A JP 60070970A JP 7097085 A JP7097085 A JP 7097085A JP H0734601 B2 JPH0734601 B2 JP H0734601B2
Authority
JP
Japan
Prior art keywords
frequency
speed
linear motor
output
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60070970A
Other languages
Japanese (ja)
Other versions
JPS61231805A (en
Inventor
正彦 射場本
三次 宮城
克明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60070970A priority Critical patent/JPH0734601B2/en
Publication of JPS61231805A publication Critical patent/JPS61231805A/en
Publication of JPH0734601B2 publication Critical patent/JPH0734601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Linear Motors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気車推進用リニアモータの周波数制御方式に
係り、特にリニア誘導モータ式電気車に好適な同期速度
検出車輪の直径誤差補正装置を備えたリニアモータ式電
気車の周波数制御方式に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency control system for a linear motor for electric vehicle propulsion, and in particular, it is equipped with a synchronous speed detection wheel diameter error correction device suitable for a linear induction motor type electric vehicle. And a frequency control method for a linear motor type electric vehicle.

〔発明の背景〕[Background of the Invention]

リニア誘導モータは、原理的には回転形の誘導モータを
直線に展開しただけのものであり、制御方法も全く同じ
でよい。誘導モータ式の電気車の周波数制御について
は、モータ軸の回転数を検出して同期周波数を知り、そ
れにすべり周波数を加え(回生制動時は減算し)た周波
数でインバータ等の電力変換装置を運転するのが一般的
である。しかしモータ軸回転数は、車輪が空転した時に
車体速度に関係なく上昇するので、これを基準に周波数
制御を行うと益々周波数を高めて大空転に至るという欠
点がある。これを解決する一方法として特開56−107707
号公報に示したように、非駆動車輪の回転数を周波数基
準に用いる方法がある。この場合駆動車輪と速度検出車
輪の直径の差による誤差を補正する事が必要であり、そ
の具体的な方法が上記公開公報に述べられている。
In principle, the linear induction motor is a rotary induction motor linearly developed, and the control method may be exactly the same. Regarding the frequency control of an induction motor type electric vehicle, the inverter and other power converters are operated at a frequency that detects the number of rotations of the motor shaft and knows the synchronous frequency, and then adds the slip frequency to it (subtracts during regenerative braking). It is common to do. However, when the wheel spins, the motor shaft speed increases regardless of the vehicle body speed. Therefore, if frequency control is performed on the basis of this, there is a drawback that the frequency is further increased and a large slip occurs. As one method for solving this, JP-A-56-107707
As shown in the publication, there is a method of using the rotation speed of non-driving wheels as a frequency reference. In this case, it is necessary to correct the error due to the difference in diameter between the drive wheel and the speed detection wheel, and a specific method thereof is described in the above-mentioned publication.

ところでリニア誘導モータを制御するには、車輪(この
場合全て非駆動車輪である)の回転数を基準に周波数制
御すればよいが、車輪径が磨耗により変化した場合の補
正については、回転形モータのように容易ではない。
By the way, in order to control the linear induction motor, frequency control may be performed based on the rotation speed of the wheels (all of which are non-driving wheels in this case). However, regarding the correction when the wheel diameter changes due to wear, the rotary motor Not as easy as.

〔発明の目的〕[Object of the Invention]

本発明の目的は、リニア誘導モータ式電気車に適した周
波数制御方式を提供することである。
An object of the present invention is to provide a frequency control method suitable for a linear induction motor type electric vehicle.

〔発明の概要〕[Outline of Invention]

このため本発明においては所定のレール位置に車体絶対
速度を測定するための地上子を設置する。リニア誘導モ
ータの同期周波数f0(Hz)は、車体速度をv(m/s)ボ
ールピツチをτ(m)とすると f0=v/2τ ……(1) で表わされるので車体速度を直接測れば求められる。こ
のため所定の間隔をおいて設置した複数の地上子間を通
過する時間から車体速度を測定することにする。
Therefore, in the present invention, a ground element for measuring the absolute vehicle speed is installed at a predetermined rail position. The synchronous frequency f 0 (Hz) of the linear induction motor is expressed as f 0 = v / 2τ (1) when the vehicle speed is v (m / s) and the ball pitch is τ (m), so the vehicle speed can be directly measured. Required. For this reason, the vehicle body speed is measured from the time it takes to pass between a plurality of ground elements installed at a predetermined interval.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、リニア誘導モータ1はリアクシヨンプ
レート2と所定の空隙を保つよう台車3に装着されてい
る。車輪4は車体5の荷重を支えるのが主な目的で、駆
動力を伝える役目はしない。車輪4の軸端には速度検出
器としてのパルスエンコーダ6が設けられ、速度に比例
した周波数のパルスを発生する。
In FIG. 1, a linear induction motor 1 is mounted on a trolley 3 so as to maintain a predetermined gap with a reaction plate 2. The main purpose of the wheels 4 is to support the load of the vehicle body 5, and does not serve to transmit the driving force. A pulse encoder 6 as a speed detector is provided at the shaft end of the wheel 4 to generate a pulse having a frequency proportional to the speed.

またレール近くに地上子7,7′を所定の間隔lだけ離し
て設置する。この地上子に対向して車体に車上子8を設
けておく。
Further, the ground elements 7, 7'are installed near the rail with a predetermined distance l. A car upper member 8 is provided on the vehicle body so as to face the ground member.

なおリニア誘導モータ1は車体に取付けられたインバー
タ又はサイクロコンバータ等の電力変換装置9で付勢さ
れる。
The linear induction motor 1 is energized by a power conversion device 9 such as an inverter or a cycloconverter attached to the vehicle body.

このような構成のものにおいて、周波数制御に関する信
号は第2図のようなブロックダイアグラムの周波数制御
装置10で処理される。パルスエンコーダ6より得られる
パルス列の周波数は車体速度すなわちリニアモータの移
動速度を表わしている。車輪4の直径が設計値通りであ
れば正確に移動速度を表わしており、その移動速度に対
する周波数をfpとすると、fpはその時の速度における同
期周波数f0に等しく作ることができる。しかし車輪4は
磨耗するし、特にブレーキが効きすぎて滑走したりする
と踏面に局所的フラツトが出来るので時々研削が行われ
直径が小さくなる。そうするともはやパルスエンコーダ
出力fpは同期周波数f0と正確には対応しなくなる。
In such a configuration, the frequency control signal is processed by the frequency control device 10 of the block diagram as shown in FIG. The frequency of the pulse train obtained from the pulse encoder 6 represents the vehicle speed, that is, the moving speed of the linear motor. If the diameter of the wheel 4 is as designed, the moving speed is accurately represented. If the frequency corresponding to the moving speed is fp, then fp can be made equal to the synchronous frequency f 0 at that speed. However, the wheels 4 wear, and when the brakes are applied too much and the wheels slide, a local flat surface is formed on the tread surface, so that the wheels are sometimes ground to reduce the diameter. Then, the pulse encoder output fp no longer corresponds exactly to the synchronization frequency f 0 .

このため運転中は常時、周波数補正回路11で車輪径変化
による誤差を補正し、正確な同期周波数f0に直すことが
必要になる。補正係数kは記憶回路12に収納されており
時々書換えられる。
For this reason, it is necessary to correct the error due to the change in the wheel diameter by the frequency correction circuit 11 at all times during operation to restore the accurate synchronization frequency f 0 . The correction coefficient k is stored in the memory circuit 12 and is rewritten from time to time.

同期周波数f0が得られると、それにすべり周波数fsを加
減算してインバータ周波数fとしゲート制御装置13に与
える。ゲート制御装置13はこの他に電流指令、電圧指
令、ノツチ止指令などが入力され、インバータのサイリ
スタのゲート信号を制御する。
When the synchronous frequency f 0 is obtained, the slip frequency fs is added / subtracted to give the inverter frequency f, which is given to the gate controller 13. In addition to this, the gate control device 13 receives a current command, a voltage command, a notch command, etc., and controls the gate signal of the thyristor of the inverter.

これらの構成は回転型誘導モータの制御としてはよく知
られており、リニアモータも同じ原理で動くので容易に
理解されよう。
These configurations are well known for controlling rotary induction motors, and it will be easily understood that linear motors also operate on the same principle.

さて記憶回路12に格納された補正係数kを書換える方法
について説明する。
Now, a method of rewriting the correction coefficient k stored in the memory circuit 12 will be described.

車上子8は地上子7の上を通過する時にパルスを発生
し、さらに地上子7′の上を通過する時にもパルスを発
生する。このパルス間かくt(s)より車体速度v(m/
s)は次のようになる。
The train child 8 generates a pulse when passing over the ground child 7, and also generates a pulse when passing over the ground child 7 ′. From this pulse interval t (s), the vehicle speed v (m /
s) is as follows.

v=l/t(m/s) ……(2) 但しl(m)は地上子の間隔である。v = l / t (m / s) (2) where l (m) is the distance between the ground elements.

これを(1)式に代入すれば同期周波数f0が求まるが、
このようにパルス間かくtから同期周波数f0を求める回
路を同期周波数演算回路14と呼ぶことにする。
Substituting this into equation (1) gives the synchronization frequency f 0 ,
A circuit for obtaining the synchronous frequency f 0 from the pulse interval t as described above is called a synchronous frequency calculation circuit 14.

この同期周波数演算回路14の出力f0と、パルスエンコー
ダ6の出力周波数fpとを比較すると、車輪4の直径が設
計値通りであれば両者は等しい筈である。しかし車輪径
に誤差があると、fpとf0は多少異なるので、その比 k=f0/fp ……(3) を計算することができる。このkを補正係数、(3)式
の演算を行う部分を補正係数演算回路15と呼ぶことにす
る。
Comparing the output f 0 of the synchronous frequency calculation circuit 14 with the output frequency fp of the pulse encoder 6, if the diameter of the wheel 4 is as designed, they should be the same. However, if there is an error in the wheel diameter, fp and f 0 are slightly different, so the ratio k = f 0 / fp (3) can be calculated. This k is referred to as a correction coefficient, and a portion for performing the calculation of the equation (3) is referred to as a correction coefficient calculation circuit 15.

一度補正係数kが定まると、しばらくの間はそのkを使
つて周波数補正部11では f0=kfp ……(4) の計算を常に行い、入力するfpをf0に変換する。
Once the correction coefficient k is determined, the k is used for a while and the frequency correction unit 11 always calculates f 0 = kfp ... (4) to convert the input fp to f 0 .

以上本説明の一実施例を原理的に述べ各部の構成を回路
として説明したが、マイクロコンピユータを用いてソフ
トウエアで処理する方が便利である。以下第2の実施例
として第3図により説明する。第3図は第2図の周波数
制御装置10に相当する部分だけを示したもので、同じ機
能をもつ部分には同一符号をつけてある。
Although one embodiment of the present description has been described in principle and the configuration of each unit has been described as a circuit, it is more convenient to perform processing by software using a microcomputer. A second embodiment will be described below with reference to FIG. FIG. 3 shows only a portion corresponding to the frequency control device 10 of FIG. 2, and portions having the same function are designated by the same reference numerals.

パルスエンコーダ6より得られるパルス列を、F/D変換
器16に通し、パルス列のもつ周波数fpに比例したデイジ
タル量Fpに変換し、マイクロコンピユータ17に与える。
通常走行中はソフトウエアで構成した補正演算ルーチン
11により、デイジタル量Fpは補正係数Kを用いて補正演
算を施され、同期周波数と正しく対応するデイジタル量
F0に変換される。このゲート制御装置13(図示しない)
から与えられるすべり周波数fsに対応したデイジタル量
Fsを加減算し、その演算結果FをDF変換回路18でFに対
応した周波数fのパルス列に変換してゲート制御装置13
に与える。
The pulse train obtained from the pulse encoder 6 is passed through the F / D converter 16 to be converted into a digital amount Fp proportional to the frequency fp of the pulse train, and given to the microcomputer 17.
Corrective calculation routine composed of software during normal driving
According to 11, the digital amount Fp is corrected using the correction coefficient K, and the digital amount Fp corresponds to the synchronization frequency correctly.
Converted to F 0 . This gate controller 13 (not shown)
The digital amount corresponding to the slip frequency fs given by
Fs is added and subtracted, the operation result F is converted into a pulse train of frequency f corresponding to F by the DF conversion circuit 18, and the gate control device 13
Give to.

このように通常は決められた補正係数Kを用いていれば
よいが、これは車輪の磨耗,研削等で直径が変わると違
つた値になるので、時々補正係数の修正を行わなければ
ならない。この較正は次のようにして行う。
As described above, it is usually necessary to use the determined correction coefficient K, but since this has a different value when the diameter changes due to wheel wear, grinding, etc., the correction coefficient must be corrected from time to time. This calibration is performed as follows.

前述のごとく車上子8から出たパルスの間かくはt
(s)である。このパルス間かくより速度を演算する速
度演算ルーチン19により車体速度vに対応したデイジタ
ル量Vが求められる。速度vとポールピツチτより
(1)式の関係を用いて、現在の速度にあるべき同期周
波数が求まるので、その演算を行う同期周波数演算ルー
チン20によりF0を算出する。この出力F0と前述のFpとの
違いは、車輪径の変動による誤差を表わすので補正係数
を計算することができる。最も単純な演算式は、較正時
に補正係数演算ルーチン15を通して、 K=F0/Fp ……(5) としてKを求めてメモリ12に格納しておき、走行時は入
力したFpとメモリ12から取出したKにより F0=KFp ……(6) としてFpに補正を施す方法である。
As described above, the pulse output from the car top 8 is t
(S). The digital amount V corresponding to the vehicle body speed v is obtained by the speed calculation routine 19 for calculating the speed between the pulses. From the speed v and the pole pitch τ, the synchronization frequency that should be at the current speed can be obtained using the relationship of the equation (1), and therefore F 0 is calculated by the synchronization frequency calculation routine 20 that performs the calculation. The difference between this output F 0 and the above-mentioned F p represents the error due to the fluctuation of the wheel diameter, and therefore the correction coefficient can be calculated. The simplest calculation formula is to calculate K as K = F 0 / Fp (5) through the correction coefficient calculation routine 15 at the time of calibration and store it in the memory 12, and from the input Fp and the memory 12 during traveling. This is a method of correcting Fp by taking out K and setting F 0 = KFp (6).

実際には精度良く補正するために単なる割算・掛算では
なく、差分を取出してそれに割算を施す方法が用いられ
るが、原理的には(5),(6)式で充分であるので省
略する。
Actually, in order to correct with high accuracy, not a mere division / multiplication, but a method of extracting a difference and performing division on it is used, but in principle, the formulas (5) and (6) are sufficient, so it is omitted. To do.

この較正を何時行うかが問題である。メモリ16の書換を
行うから出力周波数fは突然変化することになるので、
インバータが停止している惰行中がよい。さらに車上子
8の出すパルスの間かくは比較的大きいので、その間に
車体速度の変化があつてはならない。従つて等速惰行す
るような平坦路線が望ましい。このようなところに地上
子を設置しておくと、運転台のマスターコントローラ
(図示しない)からの惰行信号と、地上子7を通過した
パルス信号をとらえて条件が整つたことを判断する較正
指令ルーチン21から較正信号が出され、補正係数の演算
およびメモリ12の書換が行われる。
The problem is when to perform this calibration. Since the memory 16 is rewritten, the output frequency f suddenly changes.
Inverter is stopped It is good during coasting. Further, since the pulse generated by the upper body 8 is relatively large, the change in the vehicle body speed must not occur during that period. Therefore, it is desirable to use a flat line that coasts at a constant speed. If the ground element is installed in such a place, a calibration command for determining that the condition is satisfied by capturing the coasting signal from the master controller (not shown) of the cab and the pulse signal that has passed through the ground element 7. A calibration signal is issued from the routine 21, and the correction coefficient is calculated and the memory 12 is rewritten.

第3図の動作を表わすフローチャートを第4図に示す。
力行又は回生運転中は周波数補正モードとなり、メモリ
の中の補正係数Kを用いてFpに補正演算を行い同期周波
数F0を算出する。惰行中に地上子の上を通過すると補正
係数修正モードとなり、地上子間を通過する時間tを読
込んで同期周波数F0を算出し、これとFpから補正係数K
を計算する。ここで手動修正の場合は修正指令が有るこ
とを判定して補正係数の修正を行う。自動修正の場合は
較正信号が成立していることで修正を行う。
A flow chart showing the operation of FIG. 3 is shown in FIG.
During the power running or the regenerative operation, the frequency correction mode is set, and the correction coefficient K in the memory is used to perform the correction calculation on Fp to calculate the synchronous frequency F 0 . When passing over the ground element during coasting, the correction coefficient correction mode is set, the time t passing between the ground elements is read, the synchronization frequency F 0 is calculated, and the correction coefficient K is calculated from this and Fp.
To calculate. In the case of manual correction, it is determined that there is a correction command and the correction coefficient is corrected. In the case of automatic correction, correction is performed because the calibration signal is established.

これらの動作は短サイクル(数ms間隔)でくり返し行な
われているので、刻々変化する車体速度に充分対応して
周波数補正を行うことができる。
Since these operations are repeated in a short cycle (every few ms), the frequency can be corrected sufficiently corresponding to the ever-changing vehicle speed.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、車輪径の変化により生ずる
速度検出誤差を修正して、車体速度に正確に合わせた周
波数制御ができるので、リニアモームの特性を充分に引
出し円滑な運転が行える。また地上子のある場所を惰行
通過するだけで自動的に較正を行うことができるので、
調整のためのメンテナンス作業が不要である。
As described above, according to the present invention, the speed detection error caused by the change of the wheel diameter can be corrected and the frequency control can be accurately adjusted to the vehicle body speed, so that the characteristics of the linear mom can be sufficiently drawn out and the smooth operation can be performed. Also, because you can automatically calibrate by simply coasting through a place with a ground element,
Maintenance work for adjustment is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

第1図はリニアモータ式電車の台車及び本発明の方法に
関する速度検出用センサ類を示すシステム構成図、第2
図は本発明の方法による信号の流れを示すブロック図、
第3図は本発明の第2の実施例としてマイクロコンピユ
ータを用いた場合の信号の流れを示すブロック図、第4
図は第3図の動作を説明するフローチャート、 1……リニア誘導モータ、6……パルスエンコーダ、7,
7′……地上子、8……車上子、14……同期周波数演算
部、15……補正係数演算部、12……記憶部、11……周波
数補正部。
FIG. 1 is a system configuration diagram showing a carriage of a linear motor type electric train and sensors for speed detection relating to the method of the present invention, FIG.
FIG. 1 is a block diagram showing the flow of signals according to the method of the present invention,
FIG. 3 is a block diagram showing a signal flow when a microcomputer is used as the second embodiment of the present invention, and FIG.
The figure is a flow chart for explaining the operation of Fig. 3, 1 ... Linear induction motor, 6 ... Pulse encoder, 7,
7 '... ground element, 8 ... vehicle element, 14 ... synchronous frequency calculation section, 15 ... correction coefficient calculation section, 12 ... storage section, 11 ... frequency correction section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】推進力を発生するリニアモータ、該リニア
モータを装着し車輪により走行する台車、該台車のより
支持される車体、前記リニアモータを付勢するインバー
タ、前記車輪に結合され速度信号を発生する速度検出
器、該速度検出器出力を入力して前記インバータのゲー
ト信号を制御するゲート制御装置を備えたリニアモータ
式電気車の制御装置において、前記車体又は台車に設け
られた車上子、前記電気車が等速惰行する区間に所定の
間隔を置いて前記車上子に対向して設けられた複数の地
上子、前記電気車が惰行中であってかつ前記地上子を通
過したとき、前記車上子の出力から車体速度を算出し、
この出力と前記速度検出器の出力とを比較して周波数補
正係数を演算する補正係数演算部、前記周波数補正係数
を保持しておく記憶部、該記憶部に収納された補正係数
を用いて前記速度検出器出力周波数を補正する周波数補
正部を設け、該周波数補正部出力に前記ゲート制御装置
より与えられるすべり周波数を加減算して前記ゲート制
御装置に与える周波数とすることを特徴とするリニアモ
ータ式電気車の制御装置。
1. A linear motor for generating a propulsive force, a dolly equipped with the linear motor and traveling by wheels, a vehicle body supported by the dolly, an inverter for urging the linear motor, and a speed signal coupled to the wheels. In a controller for a linear motor electric vehicle equipped with a speed detector that generates a signal, and a gate controller that controls the gate signal of the inverter by inputting the output of the speed detector, a vehicle mounted on the vehicle body or the carriage. Child, a plurality of ground elements provided facing the car upper child at a predetermined interval in a section in which the electric vehicle coasts at a constant speed, the electric vehicle is coasting and has passed the ground element When calculating the vehicle speed from the output of the car
A correction coefficient calculation unit that calculates a frequency correction coefficient by comparing this output with the output of the speed detector, a storage unit that holds the frequency correction coefficient, and a correction coefficient that is stored in the storage unit. A linear motor type characterized in that a frequency correction unit for correcting the output frequency of the speed detector is provided, and a slip frequency given by the gate control device is added to or subtracted from the output of the frequency correction unit to obtain a frequency given to the gate control device. Electric vehicle control device.
JP60070970A 1985-04-05 1985-04-05 Controller for linear motor type electric vehicle Expired - Lifetime JPH0734601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070970A JPH0734601B2 (en) 1985-04-05 1985-04-05 Controller for linear motor type electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070970A JPH0734601B2 (en) 1985-04-05 1985-04-05 Controller for linear motor type electric vehicle

Publications (2)

Publication Number Publication Date
JPS61231805A JPS61231805A (en) 1986-10-16
JPH0734601B2 true JPH0734601B2 (en) 1995-04-12

Family

ID=13446887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070970A Expired - Lifetime JPH0734601B2 (en) 1985-04-05 1985-04-05 Controller for linear motor type electric vehicle

Country Status (1)

Country Link
JP (1) JPH0734601B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122696A1 (en) * 2006-04-17 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Electric car drive control apparatus
KR101044896B1 (en) 2006-05-25 2011-06-28 미쓰비시덴키 가부시키가이샤 Ac rotating machine control apparatus and ac rotating machine control method
JP6314371B2 (en) * 2013-04-22 2018-04-25 村田機械株式会社 MOBILE BODY SYSTEM AND MOBILE BODY DRIVING METHOD
JP6189211B2 (en) * 2013-12-26 2017-08-30 株式会社東芝 Electric vehicle control device
JP7312034B2 (en) * 2019-06-21 2023-07-20 株式会社日立製作所 TRAIN SECURITY SYSTEM, TRAIN SECURITY CONTROL METHOD AND ON-TRAIN ON-BOARD DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858881B2 (en) * 1979-04-13 1983-12-27 株式会社日立製作所 Vehicle automatic driving device
JPS56107707A (en) * 1980-01-25 1981-08-26 Hitachi Ltd Frequency control system for induction motor of vehicle
JPS59129505A (en) * 1983-01-13 1984-07-25 Hitachi Ltd Controlling method of linear induction motor drive vehicle
JPH0785670B2 (en) * 1983-01-26 1995-09-13 株式会社日立製作所 Linear induction motor drive

Also Published As

Publication number Publication date
JPS61231805A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
US8645011B2 (en) Traction control system and method
US6148269A (en) Wheel diameter calibration system for vehicle slip/slide control
KR950015169B1 (en) Control system for induction motor driven electric car
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
US4982816A (en) Speed control system for elevators
EP0514847B1 (en) System and method for controlling speed of electric motor in extremely low speed range using rotary pulse encoder
JP3747255B2 (en) Electric vehicle control device
JPH0734601B2 (en) Controller for linear motor type electric vehicle
US4503374A (en) Speed detection apparatus and method
US4819168A (en) Train control having improved wheel wear adjustment for more accurate train operation
JPS6356187A (en) Speed control unit of induction motor
JPH03138273A (en) Control device for use in elevator device free from speed sensor
JPH11103507A (en) Speed controller for car
JPS63185789A (en) Method and device for controlling elevator
EP0451287B1 (en) Main shaft motor control method
US7043395B2 (en) Method for detecting the magnetic flux the rotor position and/or the rotational speed
JPH10197408A (en) Control method for compensation of torque of brake tester
JPH08294299A (en) Induction motor control device and electrically-operated power steering device using this induction motor control device
JPH11351947A (en) Moving unit with auxiliary power source, method for detecting mass of vehicle with the unit and method for controlling the unit
JPS6133791B2 (en)
JP3111798B2 (en) Variable speed drive
JP2935583B2 (en) Speed control device for elevator inverter
JP3231340B2 (en) Truck traveling control device
JPS61258604A (en) Frequency controller of linear motor type electric railcar
JPH0612312B2 (en) Electric inertial compensator for electric dynamometer