JPH07321202A - Forming method for multilayer interconnection - Google Patents

Forming method for multilayer interconnection

Info

Publication number
JPH07321202A
JPH07321202A JP13387394A JP13387394A JPH07321202A JP H07321202 A JPH07321202 A JP H07321202A JP 13387394 A JP13387394 A JP 13387394A JP 13387394 A JP13387394 A JP 13387394A JP H07321202 A JPH07321202 A JP H07321202A
Authority
JP
Japan
Prior art keywords
film
insulating
wiring
electrode
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13387394A
Other languages
Japanese (ja)
Inventor
Kenji Yamazaki
憲二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP13387394A priority Critical patent/JPH07321202A/en
Publication of JPH07321202A publication Critical patent/JPH07321202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a forming method for multilayer interconnections with good electric contact between layers without the lowering of the productivity by process increase in the case of using wet etching in combination. CONSTITUTION:When a multilayer interconnection is formed, the lower electrodes 2b of the multilayer interconnection are made out of tantalum(Ta), and insulating layers 3 between interconnections are made of an insulating layer out of noncrystalline material mainly composed of silicon, and the surfaces of the Ta electrodes are plasma-processed just before the process of attaching the upper electrode film. By doing this way, insulating coats formed on the surfaces of the Ta electrodes on the occasion of attaching the insulating layers etc. are removed. Consequently, it becomes possible to lower contact resistance without using wet etching in combination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜プロセスで作製さ
れる薄膜素子において、接続用開口部により接続される
多層配線の形成方法に関し、特に、接続用開口部におい
て良好なコンタクト抵抗を得るための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a multi-layered wiring connected by a connection opening in a thin film element manufactured by a thin film process, and particularly for obtaining a good contact resistance in the connection opening. Regarding the method.

【0002】[0002]

【従来の技術】金属膜の多層配線を有する薄膜素子にお
いて、絶縁層を挟んで形成された複数の金属膜(配線)
同士の電気的接触を得るためには、絶縁膜の所望位置に
接続用開口部(コンタクトホール)を形成し、配線同士
を接続することが行なわれる。上記構造の薄膜素子にお
ける多層配線は、ガラス基板上に下部金属膜を着膜し、
この下部金属膜をパターニングして下部配線を形成し、
下部金属膜を覆うように絶縁膜を着膜し、この絶縁膜の
所望位置にコンタクトホールを穿孔し、前記絶縁膜上に
上部金属膜を着膜し、この上部金属膜をパターニングし
て上部配線を形成することにより行なわれる。
2. Description of the Related Art In a thin film element having a multi-layered wiring of metal films, a plurality of metal films (wiring) formed with an insulating layer sandwiched therebetween.
In order to obtain electrical contact between the wirings, a connection opening (contact hole) is formed at a desired position of the insulating film to connect the wirings. The multilayer wiring in the thin film element having the above structure has a lower metal film deposited on a glass substrate,
This lower metal film is patterned to form a lower wiring,
An insulating film is formed to cover the lower metal film, a contact hole is formed at a desired position of the insulating film, an upper metal film is formed on the insulating film, and the upper metal film is patterned to form an upper wiring. By forming the.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら上記製
造方法によれば、下部金属膜上に絶縁膜を着膜する際及
び絶縁膜のエッチングの際に、その表面に絶縁性の被膜
が形成され、この被膜を介して下部配線と上部配線とが
接続されるので、多層配線間のコンタクト抵抗が所望の
抵抗値よりも高くなり、結果として、例えば薄膜素子の
電荷転送不良の原因となるという問題点があった。ま
た、下部配線をクロム(Cr)で形成し、上部配線を酸
化インジウム・スズ(ITO)で形成する場合に関して
は、Cr表面に形成されたCrの弗化物を主体とする絶
縁性被膜をCF4 プラズマにさらした後、更にO2 プラ
ズマにさらして、前記絶縁性被膜中の弗素の一部を酸素
に置換し、塩酸−硝酸−水系のエッチング液に浸漬させ
て被膜を除去し、所望のコンタクト抵抗を確保する方法
が提案されている(特公平4−30178号公報参
照)。ところで、上記方法においては、ドライエッチン
グとウエットエッチングとを併用しているので、薄膜素
子の製造工程における工程増による生産性の低下を引き
起こすという問題点がある。
However, according to the above manufacturing method, an insulating film is formed on the surface of the lower metal film when depositing the insulating film and etching the insulating film. Since the lower wiring and the upper wiring are connected via this film, the contact resistance between the multilayer wirings becomes higher than a desired resistance value, and as a result, for example, charge transfer failure of the thin film element is caused. was there. When the lower wiring is formed of chromium (Cr) and the upper wiring is formed of indium tin oxide (ITO), the insulating film mainly composed of fluoride of Cr formed on the surface of Cr is CF 4. After being exposed to plasma, it is further exposed to O 2 plasma to replace a part of fluorine in the insulating film with oxygen, and the film is removed by immersing it in an etching solution of hydrochloric acid-nitric acid-water system to obtain a desired contact. A method of ensuring resistance has been proposed (see Japanese Patent Publication No. 4-30178). By the way, in the above method, since dry etching and wet etching are used in combination, there is a problem that productivity is lowered due to an increase in steps in the manufacturing process of the thin film element.

【0004】本発明は上記実情に鑑みてなされたもの
で、工程増による生産性の低下を引き起こすことなく、
多層配線間の良好な電気的コンタクトが得られる多層配
線の形成方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and does not cause a decrease in productivity due to an increase in steps,
An object of the present invention is to provide a method for forming a multi-layered wiring, which can obtain good electrical contact between the multi-layered wiring.

【0005】[0005]

【課題を解決するための手段】上記従来例の問題点を解
決するため本発明に係る多層配線の方法は、次の各工程
を具備することを特徴としている。第1の工程として、
タンタル(Ta)電極上にシリコンを主体とした非晶質
材料より成る絶縁層を被覆する。第2の工程として、該
絶縁層をプラズマエッチングして接続用開口部を形成す
る。第3の工程として、接続用開口部におけるTa電極
表面を上部電極膜の着膜直前にプラズマ処理する。第4
の工程として、接続用開口部を介してTa電極と接続す
る上部電極を形成する。
In order to solve the above-mentioned problems of the conventional example, the method of multilayer wiring according to the present invention is characterized by including the following steps. As the first step,
The tantalum (Ta) electrode is covered with an insulating layer made of an amorphous material mainly containing silicon. In the second step, the insulating layer is plasma-etched to form a connection opening. As a third step, plasma treatment is performed on the Ta electrode surface in the connection opening immediately before the deposition of the upper electrode film. Fourth
In the step of, the upper electrode connected to the Ta electrode through the connection opening is formed.

【0006】[0006]

【作用】本発明方法によれば、多層配線の下部電極をタ
ンタル(Ta)で形成し、配線間の絶縁層を窒化シリコ
ンを主体とした非晶質材料より成る絶縁層で形成すると
ともに、上部電極膜を着膜する工程直前に、Ta電極表
面をプラズマ処理することにより、前記絶縁層の着膜等
の際にTa電極表面に形成された絶縁性被膜を除去する
ことができるので、ウエットエッチングを併用すること
なくドライエッチングのみで絶縁性被膜を除去できる。
According to the method of the present invention, the lower electrode of the multilayer wiring is formed of tantalum (Ta), the insulating layer between the wirings is formed of the insulating layer made of an amorphous material mainly containing silicon nitride, and By performing plasma treatment on the Ta electrode surface immediately before the step of depositing the electrode film, it is possible to remove the insulating coating formed on the Ta electrode surface when depositing the insulating layer. The insulating film can be removed only by dry etching without using.

【0007】[0007]

【実施例】本発明方法による多層配線の製造方法の一例
として、薄膜プロセスで形成されるTFTの製造方法に
適用した場合について、図1(a)及至(c)、図2
(a)及び(b)を参照しながら説明する。ガラス基板
1上に下部金属膜として膜厚100nmのタンタル(T
a)膜をスパッタリング法等で着膜し、フォトリソ法に
より所望パターンにパターニングしてTFTのゲート電
極2a及び下部配線2bを形成する。続いて、TFTの
ゲート絶縁膜及び層間絶縁膜として膜厚300nmの第
1のSiN膜3,TFTのチャネルとなる活性層として
膜厚50nmのa−Si膜4′,TFTのチャネル保護
膜として膜厚150nmの第2のSiN膜5′をプラズ
マCVDで真空を破ることなく連続的に着膜する(図1
(a))。次に、前記第2のSiN膜5′を所望パター
ンにパターニングして前記ゲート電極側にチャネル保護
層5を形成する(図1(b))。次に、オーミックコン
タクト用のPドープしたa−Si膜6′をプラズマCV
Dで膜厚100nmに着膜し、更に膜厚200nmのチ
タン(Ti)膜7′をスパッタリング法で着膜する(図
1(c))。続いて、a−Si膜6′及びTi膜7′を
同一のレジストパターンを用いてパターニングしてソー
ス電極6a及びドレイン電極6bを形成する。更に、a
−Si膜4′をパターニングして半導体活性層4を形成
する(図2(a))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an example of a method of manufacturing a multi-layer wiring according to the method of the present invention, a case of applying it to a method of manufacturing a TFT formed by a thin film process will be described with reference to FIGS.
A description will be given with reference to (a) and (b). A 100 nm thick tantalum (T
a) A film is deposited by a sputtering method or the like and patterned into a desired pattern by a photolithography method to form a gate electrode 2a and a lower wiring 2b of the TFT. Then, a first SiN film having a film thickness of 300 nm as a gate insulating film and an interlayer insulating film of the TFT 3, an a-Si film 4 ′ having a film thickness of 50 nm as an active layer which becomes a channel of the TFT, and a film serving as a channel protective film of the TFT. A second SiN film 5'having a thickness of 150 nm is continuously deposited by plasma CVD without breaking the vacuum (Fig. 1).
(A)). Next, the second SiN film 5'is patterned into a desired pattern to form a channel protective layer 5 on the gate electrode side (FIG. 1B). Next, the P-doped a-Si film 6'for ohmic contact is subjected to plasma CV.
D is deposited to a film thickness of 100 nm, and a titanium (Ti) film 7'with a film thickness of 200 nm is further deposited by the sputtering method (FIG. 1C). Then, the a-Si film 6'and the Ti film 7'are patterned using the same resist pattern to form the source electrode 6a and the drain electrode 6b. Furthermore, a
The -Si film 4'is patterned to form the semiconductor active layer 4 (FIG. 2A).

【0008】次に、第1のSiN膜3を所望のレジスト
パターンを用いて、SF6 、フロン123及びO2 の混
合ガスによりドライエッチングし、レジスト剥離効果を
増加されるためのO2 ガスによるプラズマアッシングを
行なった後、レジスト剥離液により前記レジストパター
ンを除去して下部配線2b上の第1のSiN膜3にコン
タクトホール8を形成する(図2(b))。更に、絶縁
膜として膜厚1.15μmのポリイミド膜9をスピン塗
布法により塗布し、パターニングして前記コンタクトホ
ール8上にコンタクトホール10を形成する(図2
(c))。
[0008] Next, the first SiN film 3 with a desired resist pattern, SF 6, by O 2 gas for dry etching by a mixed gas of Freon 123 and O 2, is increased resist stripping effect After performing plasma ashing, the resist pattern is removed by a resist stripping solution to form a contact hole 8 in the first SiN film 3 on the lower wiring 2b (FIG. 2B). Further, a polyimide film 9 having a thickness of 1.15 μm is applied as an insulating film by a spin coating method and patterned to form a contact hole 10 on the contact hole 8 (FIG. 2).
(C)).

【0009】次に、本発明方法に特徴的部分であるコン
タクト部分における下部配線2bのプラズマ処理を行な
う(図3(a))。このプラズマ処理はSF6 とO2
混合ガスを用いて行なわれる。プラズマ処理の条件は、
例えば、SF6/O2 の混合比:60/40、RFパワ
ー:450W、圧力:11Pa、処理時間75秒で行な
う。O2 ガスは、エッチングレートを調整するととも
に、エッチングを安定させるために用いるものである。
前記プラズマ処理は、下部配線2bの表面(Ta表面)
に形成される高抵抗の変質層20をSF6 と反応させて
エッチング除去するために行なうものである。なお、前
記変質層20は、下部配線2bを構成する下部金属膜上
に第1のSiN膜3のCVDによる着膜時の加熱処理や
アニール処理を行なう工程、第1のSiN膜3のドライ
エッチング後のO2 アッシング時に、下部金属膜のTa
表面がO2 プラズマにさらされることにより形成される
物質(酸化膜等の絶縁性被膜)と考えられる。
Next, plasma treatment of the lower wiring 2b in the contact portion, which is a characteristic portion of the method of the present invention, is performed (FIG. 3A). This plasma treatment is performed using a mixed gas of SF 6 and O 2 . The conditions for plasma treatment are
For example, SF 6 / O 2 mixture ratio: 60/40, RF power: 450 W, pressure: 11 Pa, processing time: 75 seconds. O 2 gas is used for adjusting the etching rate and stabilizing the etching.
The plasma treatment is performed on the surface of the lower wiring 2b (Ta surface).
This is carried out in order to react the high-quality altered layer 20 formed in the above with SF 6 and remove it by etching. The altered layer 20 includes a step of performing a heat treatment or an annealing treatment when the first SiN film 3 is deposited on the lower metal film forming the lower wiring 2b by CVD, and a dry etching of the first SiN film 3. During the subsequent O 2 ashing, Ta of the lower metal film is
It is considered to be a substance (an insulating film such as an oxide film) formed by exposing the surface to O 2 plasma.

【0010】その後、金属膜としてアルミニウム(A
l)/モリブデン(Mo)積層膜をスパッタリング法に
より着膜し、所望のパターンにパターニングして上部配
線11を形成し、下部配線2bと上部配線11との接続
がコンタクトホールを介して行なわれるTFT及び多層
配線を含む薄膜素子が得られる(図3(b))。
Thereafter, aluminum (A
l) / molybdenum (Mo) laminated film is deposited by a sputtering method and patterned into a desired pattern to form the upper wiring 11, and the lower wiring 2b and the upper wiring 11 are connected via a contact hole. Thus, a thin film element including a multi-layer wiring can be obtained (FIG. 3B).

【0011】上記工程で作製されたTFT及び多層配線
を含む薄膜素子の下部配線(Ta)2bと上部配線(A
l/Mo)11との電気的接触は、プラズマ処理を行な
うことにより下部電極表面の絶縁性被膜(変質層)が除
去されているため、コンタクト抵抗の低抵抗化を図るこ
とができる。上記実施例において、第1のSiN膜3の
コンタクトホ−ル8の開口部の大きさを6μm□とし、
Ta/Al/Mo間のコンタクト抵抗を測定したところ
次のような結果を得た。すなわち、プラズマ処理がない
場合は、コンタクトホール1個あたり数kΩ以上である
のに対し、プラズマ処理を行なった場合には、コンタク
トホール1個あたり20Ω程度となり、コンタクト抵抗
の大幅な低減を確認することができた。
The lower wiring (Ta) 2b and the upper wiring (A) of the thin film element including the TFT and the multilayer wiring manufactured in the above process
For electrical contact with (1 / Mo) 11, the insulating film (altered layer) on the surface of the lower electrode is removed by performing plasma treatment, so that the contact resistance can be lowered. In the above embodiment, the size of the opening of the contact hole 8 of the first SiN film 3 is 6 μm □,
When the contact resistance between Ta / Al / Mo was measured, the following results were obtained. That is, when there is no plasma treatment, the contact resistance is several kΩ or more per contact hole, whereas when the plasma treatment is performed, it becomes about 20 Ω per contact hole, and it is confirmed that the contact resistance is significantly reduced. I was able to.

【0012】上記実施例によれば、多層配線の下部配線
2bをタンタル(Ta)で形成し、配線間の絶縁層を第
1のSiN膜3で形成するとともに、上部配線11とな
る金属膜(Al/Mo積層膜)を着膜する工程直前に、
下部配線(Ta)2b表面をプラズマ処理することによ
り、Ta表面に存在する変質層(絶縁性被膜)20(図
3(a))を除去してコンタクト抵抗の低抵抗化を図る
ことができる。その際に、絶縁性被膜除去のためにウエ
ットエッチングを併用する必要がないので、工程増によ
る生産性の低下を引き起こすことなく、多層配線間の良
好な電気的コンタクトを得ることができる。
According to the above-described embodiment, the lower wiring 2b of the multilayer wiring is formed of tantalum (Ta), the insulating layer between the wirings is formed of the first SiN film 3, and the metal film to be the upper wiring 11 ( Immediately before the step of depositing the Al / Mo laminated film),
By plasma-treating the surface of the lower wiring (Ta) 2b, it is possible to remove the deteriorated layer (insulating coating) 20 (FIG. 3A) existing on the surface of Ta to lower the contact resistance. At this time, it is not necessary to use wet etching together to remove the insulating film, so that good electrical contact between the multilayer wirings can be obtained without causing a decrease in productivity due to an increase in steps.

【0013】上記実施例においては、プラズマ処理をS
6 とO2 との混合ガスにより行なったが、SF6 ガス
のみで行なってもTa表面に存在する絶縁性被膜(変質
層)を除去することができる。O2 ガスは、前記したよ
うに、エッチングレートを調整する等のために使用され
るものであり、絶縁性被膜(変質層)のエッチング除去
はSF6 ガスでなされるからである。また、SF6 ガス
に代えてCF4 ガスを使用しても、絶縁性被膜(変質
層)20をエッチング除去することができる。また、配
線間の絶縁層をSiN膜3で形成したが、SiO2 等、
シリコンを主体とした非晶質材料より成る絶縁層で形成
してもよい。
In the above embodiment, the plasma treatment is performed by S
Although the mixed gas of F 6 and O 2 was used, the insulating film (altered layer) existing on the Ta surface can be removed by using only the SF 6 gas. This is because the O 2 gas is used for adjusting the etching rate and the like, as described above, and the insulating film (altered layer) is removed by etching with the SF 6 gas. The insulating coating (altered layer) 20 can be removed by etching by using CF 4 gas instead of SF 6 gas. Further, although the insulating layer between the wirings is formed of the SiN film 3, SiO 2 or the like
It may be formed of an insulating layer made of an amorphous material mainly containing silicon.

【0014】[0014]

【発明の効果】本発明方法によれば、多層配線の下部電
極をタンタル(Ta)で形成し、配線間の絶縁層をシリ
コンを主体とした非晶質材料より成る絶縁層で形成する
とともに、上部電極膜を着膜する工程直前に、Ta電極
表面をプラズマ処理することにより、前記絶縁層の着膜
等の際にTa電極表面に形成された絶縁性被膜を除去し
て低抵抗化を図るため、絶縁性被膜除去を行なうに際し
てウエットエッチングを併用する必要がない。従って、
工程増による生産性の低下を引き起こすことなく、多層
配線間の良好な電気的コンタクトを得ることができる。
According to the method of the present invention, the lower electrode of the multilayer wiring is formed of tantalum (Ta), and the insulating layer between the wirings is formed of an insulating layer made of an amorphous material mainly containing silicon. Immediately before the step of depositing the upper electrode film, the surface of the Ta electrode is subjected to plasma treatment to remove the insulating coating formed on the surface of the Ta electrode when depositing the insulating layer or the like to achieve low resistance. Therefore, it is not necessary to use wet etching together when removing the insulating film. Therefore,
Good electrical contact between the multilayer wirings can be obtained without lowering the productivity due to the increase in the number of processes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)及至(c)は、本発明方法を適用した
薄膜素子の製造方法の一部を示す工程説明図である。
1A to 1C are process explanatory views showing a part of a method for manufacturing a thin film element to which the method of the present invention is applied.

【図2】 (a)及至(c)は、本発明方法を適用した
薄膜素子の製造方法の一部を示す工程説明図である。
2A to 2C are process explanatory views showing a part of a method for manufacturing a thin film element to which the method of the present invention is applied.

【図3】 (a)及び(b)は、本発明方法を適用した
薄膜素子の製造方法の一部を示す工程説明図である。
3A and 3B are process explanatory views showing a part of a method of manufacturing a thin film element to which the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…ガラス基板、 2a…ゲート電極、 2b…下部配
線、 4…半導体活性層、 5…チャネル保護層、 6
a…ソース電極、 6b…ドレイン電極、 8…コンタ
クトホール、 9…ポリイミド膜、 10…コンタクト
ホール、 11…上部配線, 20…変質層(絶縁性被
膜)
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2a ... Gate electrode, 2b ... Lower wiring, 4 ... Semiconductor active layer, 5 ... Channel protective layer, 6
a ... Source electrode, 6b ... Drain electrode, 8 ... Contact hole, 9 ... Polyimide film, 10 ... Contact hole, 11 ... Upper wiring, 20 ... Altered layer (insulating film)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/40 A 29/786 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 29/40 A 29/786

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンタル(Ta)電極上にシリコンを主
体とした非晶質材料より成る絶縁層を被覆する工程と、 該絶縁層をプラズマエッチングして接続用開口部を形成
する工程と、 接続用開口部におけるTa電極表面を上部電極膜の着膜
直前にプラズマ処理を行なう工程と、 接続用開口部を介して前記Ta電極と接続する上部電極
を形成する工程と、を具備することを特徴とする多層配
線の形成方法。
1. A step of coating a tantalum (Ta) electrode with an insulating layer made of an amorphous material mainly containing silicon, a step of plasma-etching the insulating layer to form a connection opening, and a connection. And a step of performing plasma treatment on the surface of the Ta electrode in the opening for use just before the deposition of the upper electrode film, and a step of forming an upper electrode connected to the Ta electrode through the opening for connection. And a method for forming multilayer wiring.
JP13387394A 1994-05-25 1994-05-25 Forming method for multilayer interconnection Pending JPH07321202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13387394A JPH07321202A (en) 1994-05-25 1994-05-25 Forming method for multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13387394A JPH07321202A (en) 1994-05-25 1994-05-25 Forming method for multilayer interconnection

Publications (1)

Publication Number Publication Date
JPH07321202A true JPH07321202A (en) 1995-12-08

Family

ID=15115072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13387394A Pending JPH07321202A (en) 1994-05-25 1994-05-25 Forming method for multilayer interconnection

Country Status (1)

Country Link
JP (1) JPH07321202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135598A (en) * 2006-11-29 2008-06-12 Casio Comput Co Ltd Manufacturing method for thin-film transistor panel
JP2009038353A (en) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2009038354A (en) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd Light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135598A (en) * 2006-11-29 2008-06-12 Casio Comput Co Ltd Manufacturing method for thin-film transistor panel
JP2009038353A (en) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP2009038354A (en) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd Light emitting device
US8842230B2 (en) 2007-07-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9188825B2 (en) 2007-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9766526B2 (en) 2007-07-06 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10338447B2 (en) 2007-07-06 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10678107B2 (en) 2007-07-06 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10712625B2 (en) 2007-07-06 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11194207B2 (en) 2007-07-06 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11726378B2 (en) 2007-07-06 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Similar Documents

Publication Publication Date Title
US6432755B2 (en) Thin film transistor and manufacturing method therefor
JPH0191438A (en) Manufacture of semiconductor device
JP2001036095A (en) Thin film transistor and manufacture thereof
JPH07321202A (en) Forming method for multilayer interconnection
JPH10326830A (en) Manufacture of semiconductor device
JPH03244126A (en) Manufacture of semiconductor device
JP3219056B2 (en) Processing method of organic insulating film
JP3348564B2 (en) Method for manufacturing dielectric capacitor
JPH11111842A (en) Multilayered wiring structure and its manufacture
KR100580397B1 (en) manufacturing methods of a thin film transistor substrate for a liquid crystal display
JP2991388B2 (en) Method for manufacturing semiconductor device
JP2518100B2 (en) Method for manufacturing semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film
JPS58116751A (en) Manufacture of semiconductor device
JPH05206086A (en) Method of etching thin film
KR100192553B1 (en) Method for fabricating multi-layer metal interconnection
JPH02140927A (en) Manufacture of semiconductor device
JPH0743734A (en) Formation of ito patterning layer
JPH0367351B2 (en)
JPS63284524A (en) Production of thin film transistor array
JPH05160126A (en) Formation of multilayer wiring
JPS6019661B2 (en) Electrode formation method
JPH09330976A (en) Manufacture of semiconductor device
JPH01207931A (en) Manufacture of semiconductor device
JPS61271855A (en) Manufacture of semiconductor device