JPH07318490A - Quality judging method of vegetables and fruits - Google Patents

Quality judging method of vegetables and fruits

Info

Publication number
JPH07318490A
JPH07318490A JP13121294A JP13121294A JPH07318490A JP H07318490 A JPH07318490 A JP H07318490A JP 13121294 A JP13121294 A JP 13121294A JP 13121294 A JP13121294 A JP 13121294A JP H07318490 A JPH07318490 A JP H07318490A
Authority
JP
Japan
Prior art keywords
transmitted light
sample
waveform
quality
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13121294A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fujii
井 智 幸 藤
Masayuki Fujii
井 昌 之 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP13121294A priority Critical patent/JPH07318490A/en
Publication of JPH07318490A publication Critical patent/JPH07318490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To aim to accurately discriminate quality (a sugar degree) since a waveform of transmitted light becomes almost constant when ripeness degrees are equal to each other even if a quantity of transmitted light becomes different by a difference or the like in the size or weight of a specimen. CONSTITUTION:In a quality judging method of vegetables and fruits to detect transmitted light from a specimen 17 by irradiation of light having a wave length in a prescribed range from a light source 2, sample waveforms (C1), (C2) and (C3) of plural transmitted light by quality of the specimen 17 are stored, and a transmitted light waveform (B) of the specimen 17 in the same wave length range with the sample waveforms (C1), (C2) and (C3) is detected, and the transmitted light waveform (B) and the sample waveforms (C1), (C2) and (C3) are compared with each other, and quality of the specimen 17 is discriminated according to the sample waveforms (C1), (C2) and (C3) whose pattern coincides with the transmitted light waveform (B).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばメロン・スイカ、
ミカンなどの青果物を非破壊検査する青果物の品質判定
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, melon watermelon,
The present invention relates to a method for determining the quality of fruits and vegetables by nondestructively inspecting fruits and vegetables such as oranges.

【0002】[0002]

【従来の技術】従来、特開平4−104041号公報、
特開平4−140647号公報に示す如く、光源から所
定の波長の近赤外線光を検体に照射させ、検体からの透
過光を検出して青果物の品質を判定する技術があった。
2. Description of the Related Art Conventionally, Japanese Patent Laid-Open No. 104041/1992,
As disclosed in Japanese Patent Application Laid-Open No. 4-140647, there is a technique of determining the quality of fruits and vegetables by irradiating a sample with near-infrared light having a predetermined wavelength and detecting transmitted light from the sample.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、検体
からの透過光によって検体の品質を判定するものであ
り、透過光の強度を計測し、糖度などを演算によって得
るものであるから、重量(水分量)または空洞状態など
が演算の係数となるサンプル値と異なり易く、例えば同
一収穫場所の同一種類の検体のサンプル値を容易に初期
設定し得ず、そのため品質判定誤差が極めて不明確にな
り易く、品質判定機能の向上を容易に図り得ない等の問
題があった。
The above-mentioned prior art is to judge the quality of the sample by the transmitted light from the sample, and to measure the intensity of the transmitted light and obtain the sugar content etc. by calculation. The (moisture content) or the state of cavities are likely to be different from the sample value that is the coefficient of the calculation, and for example, the sample value of the same type of sample at the same harvesting place cannot be easily initialized, so the quality judgment error becomes extremely unclear. However, there is a problem that the quality judgment function cannot be easily improved.

【0004】[0004]

【課題を解決するための手段】然るに、本発明は、光源
から所定範囲の波長の光を検体に照射させ、検体からの
透過光を検出する青果物の品質判定方法において、検体
の品質別の複数透過光のサンプル波形を記憶させると共
に、前記サンプル波形と同波長範囲の検体の透過光波形
を検出し、該透過光波形と前記サンプル波形を対比さ
せ、前記透過光波形とパターンが一致するサンプル波形
に基づき検体の品質を判別するもので、例えば集荷され
た検体からサンプルを取出して品質(熟度)別の複数透
過光のサンプル波形を記憶させる作業を選別開始時に行
うことにより検体の品質判別を適正に行い得ると共に、
例えば検体の大きさまたは重量の差などによって透過光
量が異なっても熟度が等しいときは透過光の波形が略一
定となることにより、正確に品質(熟度)判別を行い
得、検体の熟度判定機能の向上などを容易に図り得るも
のである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a method for determining the quality of fruits and vegetables in which a sample is irradiated with light having a wavelength within a predetermined range from a light source and transmitted light from the sample is detected. While storing the sample waveform of the transmitted light, the transmitted light waveform of the sample in the same wavelength range as the sample waveform is detected, the transmitted light waveform and the sample waveform are compared, and the sample waveform having the same pattern as the transmitted light waveform. The quality of the sample is determined based on the above.For example, the quality of the sample can be determined by taking out the sample from the collected sample and storing the sample waveforms of multiple transmitted light for each quality (maturity) at the start of sorting. You can do it properly,
For example, even if the amount of transmitted light differs due to the difference in the size or weight of the sample, when the maturity is the same, the waveform of the transmitted light is almost constant, so that the quality (maturity) can be accurately discriminated. It is possible to easily improve the degree determination function.

【0005】[0005]

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。図1は品質検査装置の説明図であり、電源(1)
を有するハロゲン光源(2)と、絞り(3)と、倍率器
(4)(5)と、集光器(6)を、光学テーブル(7)
に配設させると共に、集光器(6)にバンドル型光ファ
イバ(8)を介して光接続させる分光器(9)と、冷却
CCDを有するCCD光検出器(10)を備え、品質検
査装置(11)を構成している。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an explanatory view of the quality inspection device, a power supply (1)
An optical table (7), a halogen light source (2) having an aperture, an aperture stop (3), a magnifier (4) (5), and a condenser (6).
And a CCD photodetector (10) having a cooled CCD, and a spectroscope (9) which is disposed in the light collector and is optically connected to the light collector (6) through a bundle type optical fiber (8). It constitutes (11).

【0006】また、モニタ(12)及びキーボード(1
3)などを有するコンピュータ(14)を備え、前記C
CD光検出器(10)に通信用光ファイバ(15)を介
してコンピュータ(14)を接続させ、中央処理装置
(16)を構成している。
Also, a monitor (12) and a keyboard (1
A computer (14) having 3) or the like,
A computer (14) is connected to the CD photodetector (10) through a communication optical fiber (15) to form a central processing unit (16).

【0007】さらに、前記ハロゲン光源(2)、絞り
(3)、倍率器(4)(5)、集光器(6)を、略一直
線上に配置させ、この配置中心線である光軸上に、検体
として用いる青果物であるメロン(17)の略中心を位
置させるもので、前記倍率器(5)と集光器(6)の間
で光軸と略直交する方向に選果コンベア(18)を延設
させ、昇降機構(19)によって高さ調節自在なリフト
(20)上に前記コンベア(18)を取付け、コンベア
(18)上にメロン(17)を支持させ、光軸の高さ位
置で光軸と交叉する方向に複数のメロン(17)がコン
ベア(18)によって連続的に搬送されるように構成し
ている。
Further, the halogen light source (2), the diaphragm (3), the magnifiers (4) and (5), and the condenser (6) are arranged in a substantially straight line on the optical axis which is the center line of the arrangement. The melon (17), which is a fruit or vegetable to be used as a sample, is positioned approximately at the center, and the fruit selection conveyor (18) is placed between the multiplier (5) and the condenser (6) in a direction substantially orthogonal to the optical axis. ) Is extended and the conveyor (18) is mounted on a lift (20) whose height can be adjusted by an elevating mechanism (19) so that the melon (17) is supported on the conveyor (18) and the height of the optical axis is increased. The plurality of melons (17) are configured to be continuously conveyed by a conveyor (18) in a direction intersecting the optical axis at a position.

【0008】そして、図2、図3にも示す如く、ハロゲ
ン光源(2)から所定範囲の波長(650〜850ナノ
メートル)の近赤外線光(図2に波形(A)で示す)ま
たは可視光を検体であるメロン(17)に絞り(3)及
び倍率器(4)(5)を介して照射させ、メロン(1
7)からの透過光をCCD光検出器(10)によって検
出させ、CCD光検出器(10)からコンピュータ(1
4)に透過光波形(B)を入力させる。また、メロン
(17)の品質別の複数透過光のサンプル波形(C1)
(C2)(C3)をコンピュータ(16)に記憶させる
と共に、前記サンプル波形(C1)(C2)(C3)と
同波長範囲のメロン(17)の透過光波形(B)をCC
D光検出器(10)からコンピュータ(14)に入力さ
せ、該透過光波形(B)と前記サンプル波形(C1)
(C2)(C3)を対比させ、前記透過光波形(B)と
パターンが一致するサンプル波形(C1)(C2)(C
3)に基づきメロン(17)の品質(熟度)を判別さ
せ、メロン(17)の熟度を判定させる。
As shown in FIGS. 2 and 3, near-infrared light (shown by waveform (A) in FIG. 2) or visible light having a wavelength within a predetermined range (650 to 850 nm) from the halogen light source (2). The melon (17), which is a sample, is irradiated with light through the diaphragm (3) and the multipliers (4) and (5), and the melon (1
The transmitted light from 7) is detected by the CCD photodetector (10), and the computer (1
The transmitted light waveform (B) is input to 4). In addition, sample waveforms (C1) of multiple transmitted light for each quality of the melon (17)
(C2) and (C3) are stored in the computer (16), and the transmitted light waveform (B) of the melon (17) in the same wavelength range as the sample waveforms (C1), (C2) and (C3) is CCed.
Input from the D photodetector (10) to the computer (14), and the transmitted light waveform (B) and the sample waveform (C1)
(C2) and (C3) are compared, and sample waveforms (C1), (C2) and (C) whose patterns match the transmitted light waveform (B).
Based on 3), the quality (ripeness) of the melon (17) is determined, and the ripeness of the melon (17) is determined.

【0009】また、前記メロン(17)の大きさ(上下
高さ等)を測定するセンサ(図示省略)を設け、メロン
(17)の大きさを自動的に計測して昇降機構(19)
を自動制御することにより、リフト(20)の自動昇降
制御によってコンベア(18)上のメロン(17)の高
さ調節を自動的に行い、ハロゲン光源(2)の近赤外線
光がメロン(17)中心部に常に照射されるように構成
することができる。
Further, a sensor (not shown) for measuring the size (vertical height, etc.) of the melon (17) is provided, and the size of the melon (17) is automatically measured to raise and lower the moving mechanism (19).
The height of the melon (17) on the conveyor (18) is automatically adjusted by the automatic lifting control of the lift (20), and the near infrared light of the halogen light source (2) is automatically controlled by the melon (17). It can be configured such that the central portion is always illuminated.

【0010】さらに、図4に示す如く、収穫したメロン
(17)…を受入れる投入シュート(21)並びに供給
装置(22)を前記選果コンベア(18)送り始端部に
設け、コンベア(18)上にメロン(17)を整列させ
て載せると共に、供給装置(22)の下手側に、品質検
査装置(11)、ラベル印刷貼付装置(23)、選別装
置(24)を夫々配設させ、コンベア(18)送り終端
部の選別装置(24)の複数の選別出口(25)…から
選果後のメロン(17)を排出させるように構成してい
る。
Further, as shown in FIG. 4, a feeding chute (21) for receiving the harvested melons (17) and a feeding device (22) are provided at the feed start end of the fruit selection conveyor (18), and on the conveyor (18). The melon (17) is aligned and placed on the conveyor, and the quality inspection device (11), the label printing / pasting device (23), and the sorting device (24) are arranged on the lower side of the supply device (22), respectively, and the conveyor ( 18) The melons (17) after the selection are discharged from the plurality of sorting outlets (25) of the sorting device (24) at the feeding end portion.

【0011】そして、図5のフローチャートに示す如
く、品質検査装置(11)CCD光検出器(10)から
メロン(17)の透過光データが透過光波形(B)とし
て中央処理装置(16)のコンピュータ(14)に入力
されると、予め記憶させたサンプル波形(C1)(C
2)(C3)と前記透過光波形(B)を対比してメロン
(17)の熟度(品質)判別により熟度を判定し、食味
時期の演算並びに出荷等級の判定を行い、食味時期のラ
ベル印刷及びラベル貼付制御により、ラベル印刷貼付装
置(23)を作動させて食味時期を印刷したラベルをメ
ロン(17)に貼付けると共に、出荷等級別に選果する
選別制御により、選別装置(24)を作動させて各選別
出口(25)…からメロン(17)を排出させ、各選別
出口(25)…に設ける箱詰め機(図示省略)によって
メロン(17)を自動的に梱包して出荷する。なお、メ
ロン(17)以外に、スイカ、ミカン、モモなど各種青
果物を検体として用いてもよい。
Then, as shown in the flow chart of FIG. 5, the transmitted light data of the melon (17) from the quality inspection device (11) CCD photodetector (10) is transmitted to the central processing unit (16) as a transmitted light waveform (B). When input to the computer (14), the sample waveforms (C1) (C
2) By comparing (C3) with the transmitted light waveform (B), the ripeness is judged by judging the ripeness (quality) of the melon (17), and the tasting time is calculated and the shipping grade is judged. By the label printing and label sticking control, the label printing sticking device (23) is operated to stick the label on which the taste is printed to the melon (17), and the sorting device (24) selects the products according to the shipping grade. Are operated to discharge the melons (17) from the respective sorting outlets (25), and the melons (17) are automatically packaged and shipped by a boxing machine (not shown) provided at the respective sorting outlets (25). In addition to the melon (17), various fruits and vegetables such as watermelon, mandarin orange, and peach may be used as samples.

【0012】[0012]

【発明の効果】以上実施例から明らかなように本発明
は、光源(2)から所定範囲の波長の光を検体(17)
に照射させ、検体(17)からの透過光を検出する青果
物の品質判定方法において、検体(17)の品質別の複
数透過光のサンプル波形(C1)(C2)(C3)を記
憶させると共に、前記サンプル波形(C1)(C2)
(C3)と同波長範囲の検体(17)の透過光波形
(B)を検出し、該透過光波形(B)と前記サンプル波
形(C1)(C2)(C3)を対比させ、前記透過光波
形(B)とパターンが一致するサンプル波形(C1)
(C2)(C3)に基づき検体(17)の品質を判別す
るもので、例えば集荷された検体(17)からサンプル
を取出して品質(熟度)別の複数透過光のサンプル波形
(C1)(C2)(C3)を記憶させる作業を選別開始
時に行うことにより検体(17)の品質判別を適正に行
うことができると共に、例えば検体(17)の大きさま
たは重量の差などによって透過光量が異なっても熟度が
等しいときは透過光の波形が略一定となることにより、
正確に品質(熟度)判別を行うことができ、検体(1
7)の熟度判定機能の向上などを容易に図ることができ
るものである。
As is apparent from the above-described embodiments, the present invention provides the specimen (17) with light having a wavelength within a predetermined range from the light source (2).
In the method for determining the quality of fruits and vegetables in which the transmitted light from the sample (17) is detected, the sample waveforms (C1) (C2) (C3) of the plurality of transmitted light for each quality of the sample (17) are stored, and The sample waveform (C1) (C2)
The transmitted light waveform (B) of the sample (17) in the same wavelength range as (C3) is detected, and the transmitted light waveform (B) is compared with the sample waveforms (C1) (C2) (C3) to obtain the transmitted light. Sample waveform (C1) whose pattern matches the waveform (B)
The quality of the specimen (17) is determined based on (C2) and (C3). For example, a sample is taken out from the collected specimen (17) and sample waveforms (C1) ( By performing the operation of storing C2) and (C3) at the start of sorting, the quality of the sample (17) can be properly determined, and the amount of transmitted light varies depending on, for example, the size or weight of the sample (17). Even when the maturity is the same, the waveform of the transmitted light is almost constant,
The quality (maturity) can be accurately determined, and the sample (1
It is possible to easily improve the maturity determination function of 7).

【図面の簡単な説明】[Brief description of drawings]

【図1】品質検査装置の説明図。FIG. 1 is an explanatory diagram of a quality inspection device.

【図2】近赤外線光と透過光の関係を示す説明図。FIG. 2 is an explanatory diagram showing a relationship between near infrared light and transmitted light.

【図3】透過光のサンプル波形を示す説明図。FIG. 3 is an explanatory diagram showing a sample waveform of transmitted light.

【図4】選果コンベアの全体説明図。FIG. 4 is an overall explanatory view of a fruit selection conveyor.

【図5】前図の選果フローチャート。FIG. 5 is a selection flowchart of the previous figure.

【符号の説明】[Explanation of symbols]

(2) 光源 (17) メロン(検体) (B) 透過光波形 (C1)(C2)(C3) サンプル波形 (2) Light source (17) Melon (sample) (B) Transmitted light waveform (C1) (C2) (C3) Sample waveform

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源から所定範囲の波長の光を検体に照
射させ、検体からの透過光を検出する青果物の品質判定
方法において、検体の品質別の複数透過光のサンプル波
形を記憶させると共に、前記サンプル波形と同波長範囲
の検体の透過光波形を検出し、該透過光波形と前記サン
プル波形を対比させ、前記透過光波形とパターンが一致
するサンプル波形に基づき検体の品質を判別することを
特徴とする青果物の品質判定方法。
1. A method for determining the quality of fruits and vegetables, which comprises irradiating a sample with light having a wavelength within a predetermined range from a light source and detecting transmitted light from the sample, and storing a plurality of sample waveforms of transmitted light for each quality of the sample, Detecting the transmitted light waveform of the sample in the same wavelength range as the sample waveform, comparing the transmitted light waveform and the sample waveform, and determining the quality of the sample based on the sample waveform whose pattern matches the transmitted light waveform. A characteristic method for determining the quality of fruits and vegetables.
JP13121294A 1994-05-20 1994-05-20 Quality judging method of vegetables and fruits Pending JPH07318490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13121294A JPH07318490A (en) 1994-05-20 1994-05-20 Quality judging method of vegetables and fruits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13121294A JPH07318490A (en) 1994-05-20 1994-05-20 Quality judging method of vegetables and fruits

Publications (1)

Publication Number Publication Date
JPH07318490A true JPH07318490A (en) 1995-12-08

Family

ID=15052668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13121294A Pending JPH07318490A (en) 1994-05-20 1994-05-20 Quality judging method of vegetables and fruits

Country Status (1)

Country Link
JP (1) JPH07318490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037150A (en) * 2011-03-04 2022-03-08 日本電気株式会社 Distribution management method, distribution management system, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037150A (en) * 2011-03-04 2022-03-08 日本電気株式会社 Distribution management method, distribution management system, and program

Similar Documents

Publication Publication Date Title
US6847447B2 (en) Apparatus and method and techniques for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
AU2001245710B2 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
Lu et al. A near–infrared sensing technique for measuring internal quality of apple fruit
AU2001245710A1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
EP0981744B1 (en) Apparatus for assessment of the condition of fruit and vegetables
CN100483109C (en) Portable fruit sugar content non-destructive detection device capable of weighing
Slaughter et al. Nondestructive determination of total and soluble solids in fresh prune using near infrared spectroscopy
JP4665899B2 (en) Online internal quality inspection method and equipment
Krivoshiev et al. A possibility for elimination of the interference from the peel in nondestructive determination of the internal quality of fruit and vegetables by VIS/NIR spectroscopy
JP3481108B2 (en) Apparatus and method for determining internal quality of fruits and vegetables
CHEN et al. NIR measurement of specific gravity of potato
JPS5826250A (en) Method and device for determining state of aging of plastic product
JPH07318490A (en) Quality judging method of vegetables and fruits
Chalucova et al. Determination of green pea maturity by measurement of whole pea transmittance in the NIR region
Farsaie et al. Design and development of an automatic electro-optical sorter for removing BGY fluorescent pistachio nuts
KR101002656B1 (en) Nondestructive evaluation apparatus of sugar content for grape
JP2001116701A (en) Non-destructive fruit sorting machine
JPH1054794A (en) Method and device for inspecting quality inside vegitables and fruits
JP4544455B2 (en) Joint fruit selection facility
US8239061B2 (en) Specific gravity monitoring and sorting system
JP2007069060A (en) Sorting system of vegetables and fruits
Choi et al. Nondestructive quality evaluation technology for fruits and vegetables using near-infrared spectroscopy
KR100307930B1 (en) Apparatus for classifying fruit
JPH0821794A (en) Apparatus for judging quality of fruit and vegetables
Pan et al. Nondestructive measuring soluble solid contents and weight of intact pears based on on-line near-infrared spectroscopy