JPH07315880A - Glass plate coated with transparent conductive film and touch panel using the same - Google Patents

Glass plate coated with transparent conductive film and touch panel using the same

Info

Publication number
JPH07315880A
JPH07315880A JP11827794A JP11827794A JPH07315880A JP H07315880 A JPH07315880 A JP H07315880A JP 11827794 A JP11827794 A JP 11827794A JP 11827794 A JP11827794 A JP 11827794A JP H07315880 A JPH07315880 A JP H07315880A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
thin film
glass plate
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11827794A
Other languages
Japanese (ja)
Other versions
JP2874556B2 (en
Inventor
Masahiro Hirata
昌宏 平田
Taichi Fukuhara
太一 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11827794A priority Critical patent/JP2874556B2/en
Publication of JPH07315880A publication Critical patent/JPH07315880A/en
Application granted granted Critical
Publication of JP2874556B2 publication Critical patent/JP2874556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve transmittance of visible rays and visibility of the glass base plate by coating the surface with a thin film mainly comprising SiO2, a TiO2 thin film in specified thicknesses and a transparent conductive film mainly consisting of SnO2 in order. CONSTITUTION:A base plate (1) made of float glass having 92% transmission at 550nm wavelength is cleaned and dried, then subjected to the normal-pressure CVD(chemical vapor deposition) process using SiH4 and O2 at 400-600 deg.C to form a thin film 10-40nm thick (2), mainly composed of SiO2 on one surface as an undercoat, then the normal pressure CVD process is conducted using a titanium compound such as a titanium alkoxide, beta-diketone chelate or titanium tetrachloride and an oxidizing agent such as O2 to laminate a thin film 100-120nm thick (3), mainly composed of TiO,z on the undercoat (2), further the normal pressure CVD process is repeated again using a tin compound containing chlorine and oxygen to laminate a transparent conductive film (4) 20-80nm thick, mainly composed of SnO2 so that the transmittance of the laminate thus formed is increased higher than that of the glass plate only.

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

【0001】本発明は透明導電性ガラス板およびそれを
用いたタッチパネルに関し、さらに詳述すると可視光の
透過率が高く視認性に優れたタッチパネルを得るのに適
した透明導電膜付きガラス板およびそれを用いたタッチ
パネルに関する。
The present invention relates to a transparent conductive glass plate and a touch panel using the same, more specifically, a glass plate with a transparent conductive film suitable for obtaining a touch panel having high visible light transmittance and excellent visibility. Relates to a touch panel using.

【従来の技術】[Prior art]

【0002】近年、各種情報処理機器の小型化に伴い、
個人用デジタル情報機器と呼ばれる携帯端末が注目を集
めている。このような携帯端末では、液晶表示体と一体
化して用いられる信号入力のためのタッチパネルの重要
性も増大しており、様々な開発がなされている。タッチ
パネルは表示画面を見ながら、指やペン先等で駆動回路
へ信号を入力するために用いられる。この場合、表示素
子の裏面側の基体に一方の電極が形成されており、これ
に対向するガラスなどの透明基体の表面に形成された透
明導電膜が他方の電極となる。
With the recent miniaturization of various information processing equipment,
Mobile terminals called personal digital information devices have been attracting attention. In such mobile terminals, the importance of a touch panel for signal input, which is used integrally with a liquid crystal display, is increasing, and various developments have been made. The touch panel is used for inputting a signal to the drive circuit with a finger or a pen tip while looking at the display screen. In this case, one electrode is formed on the substrate on the back surface side of the display element, and the transparent conductive film formed on the surface of the transparent substrate, such as glass, facing this is the other electrode.

【0003】かかる透明導電膜には可視光透過率ができ
るだけ高いことと抵抗のリニアリティが要求される。こ
こで抵抗のリニアリティとは、ある起点に対して任意の
点を選んだときの二点間の抵抗値と距離の比例関係の度
合いを表すものである。通常、抵抗値のリニアリティ
は、直線に沿って被膜のシート抵抗を測定し、標準偏差
を平均値で除した百分率で評価される。透明導電膜材料
としては酸化インジウムや酸化錫を主成分とする薄膜が
利用できる。
The transparent conductive film is required to have a visible light transmittance as high as possible and a linearity of resistance. Here, the linearity of resistance represents the degree of proportionality between the resistance value and the distance between two points when an arbitrary point is selected with respect to a certain starting point. Usually, the linearity of the resistance value is evaluated by measuring the sheet resistance of the coating film along a straight line and evaluating the standard deviation by the average value as a percentage. A thin film containing indium oxide or tin oxide as a main component can be used as the transparent conductive film material.

【0004】携帯端末の性能向上に伴ってタッチパネル
用透明導電膜付きガラスの性能も更に向上させる必要が
生じている。すなわち可視光透過率が高いことは視認性
向上のために必要であり、波長550nmでの透過率が91%
以上であることが望まれている。
As the performance of mobile terminals has improved, it has become necessary to further improve the performance of glass with a transparent conductive film for touch panels. That is, high visible light transmittance is necessary for improving visibility, and the transmittance at a wavelength of 550 nm is 91%.
The above is desired.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】上記のように、安価でかつ高強度のタッチ
パネル用透明導電膜材料として従来から用いられている
酸化錫ではこれらの要求を満足することができない。透
過率を向上させるためには膜の厚みを薄くすることが必
要であるが、要求特性は理論限界を越えており、かつ、
膜の厚みを薄くすると抵抗値が高くなりすぎるといった
問題が生じる。
As described above, tin oxide conventionally used as an inexpensive and high-strength transparent conductive film material for a touch panel cannot satisfy these requirements. In order to improve the transmittance, it is necessary to reduce the film thickness, but the required properties exceed the theoretical limit, and
If the film is made thin, there arises a problem that the resistance value becomes too high.

【0006】本発明は、かかる従来技術の問題点に鑑み
なされたものであって、高い可視光透過率、具体的には
91%を越えるタッチパネル用透明導電膜付きガラスおよ
びそれを用いたタッチパネルを提供することを目的とす
る。
The present invention has been made in view of the problems of the prior art, and has a high visible light transmittance, specifically,
It is an object to provide glass with a transparent conductive film for a touch panel exceeding 91% and a touch panel using the same.

【課題を解決するための手段】[Means for Solving the Problems]

【0007】本発明は、ガラス板表面にSiO2を主成分と
する薄膜、TiO2を主成分とする薄膜、SnO2を主成分とす
る透明導電膜を順次被覆させた透明導電膜付きガラス板
であって、該SiO2を主成分とする薄膜の厚みを10〜50n
m、該TiO2を主成分とする薄膜の厚みを100〜120nm、該
透明導電膜の厚みを20〜80nmとしたタッチパネル用透明
導電膜付きガラス板である。
The present invention relates to a glass plate with a transparent conductive film in which a thin film containing SiO2 as a main component, a thin film containing TiO2 as a main component, and a transparent conductive film containing SnO2 as a main component are sequentially coated on the surface of the glass plate. , The thickness of the thin film mainly composed of SiO2 is 10 to 50n
A glass plate with a transparent conductive film for a touch panel, in which the thickness of the thin film containing TiO2 as a main component is 100 to 120 nm and the thickness of the transparent conductive film is 20 to 80 nm.

【0008】そして、ガラス板表面に厚みが10〜50nmの
SiO2を主成分とする薄膜、厚みが100〜120nmおTiO2を主
成分とする薄膜、厚みが20〜80nmのSnO2を主成分とする
透明導電膜を順次被覆させた透明導電膜付きガラス板を
第1の基体とし、透明導電性膜が被覆された透明樹脂板
を第2の基体とし、第1の基体と第2の基体が、それぞ
れの基体に被覆された透明導電膜が対向し、かつ、第1
の基体と第2の基体との間に空間が形成されるように接
着されてなるタッチパネルは、表示部の視認性が高いと
いう特徴を有する。
The glass plate surface has a thickness of 10 to 50 nm.
A glass plate with a transparent conductive film in which a thin film mainly composed of SiO2, a thin film mainly composed of TiO2 with a thickness of 100 to 120 nm, and a transparent conductive film mainly composed of SnO2 having a thickness of 20 to 80 nm are sequentially coated. A transparent resin plate coated with a transparent conductive film as a second substrate, the first substrate and the second substrate are opposed to each other by the transparent conductive films coated on the respective substrates, and First
The touch panel that is adhered so that a space is formed between the base body and the second base body has a feature that the visibility of the display unit is high.

【0009】さらに、該透明導電膜付きガラスは、SiO2
を主成分とする薄膜、TiO2を主成分とする薄膜、SnO2を
主成分とする透明導電膜の厚みを上記範囲の中で調整し
て、波長550nmでの透過率が91%以上であり、波長400〜
800nmの領域において一つの極大を有する分光透過率を
有し、かつ、その極大は550nmより短波長側にあるよう
にすることは、視認性の優れたタッチパネルを得る上で
好ましい。
Further, the glass with the transparent conductive film is made of SiO2.
The thickness of the thin film containing TiO2 as the main component, the thin film containing TiO2 as the main component, and the thickness of the transparent conductive film containing SnO2 as the main component are adjusted within the above range, and the transmittance at a wavelength of 550 nm is 91% or more. 400 ~
It is preferable that the spectral transmittance has one maximum in the 800 nm region and that the maximum is on the shorter wavelength side than 550 nm in order to obtain a touch panel with excellent visibility.

【0010】本発明の透明導電膜付きガラスにおいて
は、前記SnO2を主成分とする透明導電膜はハロゲン元素
として塩素のみを含有するものが、電気抵抗を0.5〜1.5
KΩ/□とし、かつ上記SiO2を主成分とする薄膜及びTiO
2を主成分とする薄膜と積層して、得られる透明導電膜
付きガラスの透過率を用いるガラス素板の透過率よりも
高くすることができる。
In the glass with a transparent conductive film of the present invention, the transparent conductive film containing SnO2 as a main component contains only chlorine as a halogen element, but has an electric resistance of 0.5 to 1.5.
KΩ / □ and the above-mentioned SiO2 as a main component thin film and TiO
By laminating a thin film containing 2 as a main component, the transmittance of the obtained glass with a transparent conductive film can be made higher than the transmittance of the glass base plate used.

【0011】以下、本発明の透明導電膜付きガラスを図
面を参照しながら説明する。図1は、本発明の透明導電
膜付きガラス板の積層構成を示す概念図である。図1に
おいて、(1)は基板ガラス、(2)はSiO2を主成分とする薄
膜、(3)はTiO2を主成分とする薄膜、(4)はSnO2を主成分
とする透明導電膜である。
The glass with a transparent conductive film of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a laminated structure of a glass plate with a transparent conductive film of the present invention. In FIG. 1, (1) is a substrate glass, (2) is a thin film containing SiO2 as a main component, (3) is a thin film containing TiO2 as a main component, and (4) is a transparent conductive film containing SnO2 as a main component. .

【0012】基板ガラス(1)としては、フロートガラス
など、従来より透明導電膜付きガラスに用いられている
ものが用いられ透明であれば特に限定されない。
The substrate glass (1) is not particularly limited as long as it is transparent and is conventionally used for glass with a transparent conductive film, such as float glass.

【0013】SiO2を主成分とする薄膜(2)は、アンダー
コートとして設けられるものであり、基体に含まれるナ
トリウム等がSnO2を主成分とする透明導電膜(4)に拡散
してその電気特性に影響を及ぼすことを防止するための
ものである。かかるSiO2を主成分とする膜は、その厚み
によって積層後の透過率が影響されないため、アンダー
コートとしての機能が発現するのに十分な厚みがあれば
よく、10〜50nmの厚みとするのが好ましく、さらに20〜
30nmとするのが好ましい。SiO2を主成分とする膜を形成
する方法としては、生産性の点からSiH4(シラン)とO2
(酸素)を400〜600℃で反応させる常圧CVD法を適用す
ることが好ましい。また、原料中にP(燐)やB(ほう
素)の化合物を混合し、これらの元素を含むSiO2を主成
分とした膜としてもよい。
The thin film (2) containing SiO2 as a main component is provided as an undercoat, and sodium or the like contained in the substrate diffuses into the transparent conductive film (4) containing SnO2 as a main component so that its electrical characteristics are improved. It is intended to prevent the influence on. Such a film containing SiO2 as a main component does not affect the transmittance after lamination due to the thickness thereof, so that the film may have a thickness sufficient to exhibit the function as an undercoat, and a thickness of 10 to 50 nm is preferable. Preferably 20 to
30 nm is preferable. From the point of view of productivity, SiH4 (silane) and O2
It is preferable to apply an atmospheric pressure CVD method in which (oxygen) is reacted at 400 to 600 ° C. Alternatively, a compound containing P (phosphorus) or B (boron) may be mixed in the raw material to form a film containing SiO 2 containing these elements as a main component.

【0014】TiO2を主成分とする薄膜(3)は、透明導電
膜付きガラス板の透過率を大きくするために設けられる
ものである。TiO2を主成分とする薄膜を形成する手段と
しては、生産性の点からチタン化合物と酸素等の酸化剤
を400〜600℃で反応させる常圧CVD法が好適である。チ
タン化合物としては、チタンテトライソプロポキシド
(Ti[OCH(CH3)2]4)やチタンテトラ-n-ブトキシド(Ti
(OCH2CH2CH2CH3)4)などのアルコキシド、ジ-i-プロポ
キシ・ビス(アセチルアセトナト)チタン(Ti[OCH(CH
3)2]2[OC(CH3)CHCOCH3]2)などのβ-ジケトンキレート
や四塩化チタン(TiCl4)が使用できる。このようにし
て得られるTiO2を主成分とする薄膜の厚みは100〜120nm
とするのが好ましく、105〜115nmとするのが好ましい。
膜厚が100nmよりも薄いと透過率のピークが短波長側に
シフトし波長550nmでの透過率が91%より小さくな
る。膜厚が120nmよりも厚いと、透過率のピークが長波
長側にシフトし、短波長域での透過率が低下するため透
過色が黄色みを帯びるため意匠性が損なわれるため好ま
しくない。
The thin film (3) containing TiO2 as a main component is provided to increase the transmittance of the glass plate with the transparent conductive film. From the viewpoint of productivity, the atmospheric pressure CVD method in which a titanium compound and an oxidizing agent such as oxygen are reacted at 400 to 600 ° C. is preferable as a means for forming a thin film containing TiO 2 as a main component. Titanium compounds include titanium tetraisopropoxide (Ti [OCH (CH3) 2] 4) and titanium tetra-n-butoxide (Ti
(OCH2CH2CH2CH3) 4) and other alkoxides, di-i-propoxy bis (acetylacetonato) titanium (Ti [OCH (CH
3) 2] 2 [OC (CH3) CHCOCH3] 2) and other β-diketone chelates and titanium tetrachloride (TiCl4) can be used. The thickness of the thin film composed mainly of TiO2 thus obtained is 100-120 nm.
It is preferable that it is, and it is preferable that it is 105 to 115 nm.
When the film thickness is thinner than 100 nm, the peak of the transmittance shifts to the short wavelength side and the transmittance at the wavelength of 550 nm becomes less than 91%. When the film thickness is thicker than 120 nm, the peak of the transmittance shifts to the long wavelength side, the transmittance in the short wavelength region decreases, the transmitted color becomes yellowish, and the designability is deteriorated, which is not preferable.

【0015】SnO2を主成分とする薄膜(4)は、透明導電
膜付きガラスに導電性を付与するために設けられる。Sn
O2を主成分とする透明導電性膜を形成する手段として
は、生産性と膜の電気特性の点から塩素を含む錫化合物
と酸素を400〜600℃で反応させる常圧CVD法が好適であ
る。塩素を含む錫化合物としては、モノブチル錫トリク
ロライド(C4H9SnCl3)や四塩化錫(SnCl4)などが使用
される。また、錫原料中にHFの蒸気やCF3Brなどのフ
ッ素を含む化合物、あるいは五塩化アンチモンを含む化
合物の蒸気を混合し、被膜中に微量のフッ素やアンチモ
ンを添加しても良い。このようにして得られるSnO2を主
成分とする透明導電膜は、20〜80nmに選定されより好ま
しくは40〜80nmに選定される。膜厚が20nmより薄い場合
には抵抗値のリニアリティが5%を越えてしまう。膜厚
が80nmよりも厚い場合には透過率のピークが長波長側に
シフトし、短波長域での透過率が低下するため透明導電
膜付きガラスの透過色が黄色みを帯びるため意匠性が損
なわれ好ましくない。
The thin film (4) containing SnO2 as a main component is provided to impart conductivity to the glass with a transparent conductive film. Sn
As a means for forming a transparent conductive film containing O2 as a main component, an atmospheric pressure CVD method in which a tin compound containing chlorine and oxygen are reacted at 400 to 600 ° C. is preferable from the viewpoint of productivity and electric characteristics of the film. . As the tin compound containing chlorine, monobutyltin trichloride (C4H9SnCl3), tin tetrachloride (SnCl4) and the like are used. Alternatively, a tin raw material may be mixed with a vapor of HF, a compound containing fluorine such as CF3Br, or a vapor containing a compound containing antimony pentachloride, and a trace amount of fluorine or antimony may be added to the film. The transparent conductive film containing SnO2 as the main component thus obtained is selected to have a thickness of 20 to 80 nm, more preferably 40 to 80 nm. When the film thickness is thinner than 20 nm, the linearity of the resistance value exceeds 5%. When the film thickness is thicker than 80 nm, the transmittance peak shifts to the long wavelength side, and the transmittance in the short wavelength region decreases, so the transmitted color of the glass with a transparent conductive film becomes yellowish and the design is good. Damaged and not preferable.

【作用】[Action]

【0016】本発明の透明導電膜付きガラス板は、ガラ
ス板表面にSiO2を主成分とする薄膜、TiO2を主成分とす
る薄膜、SnO2を主成分とする透明導電膜を順次所定厚み
範囲に被覆されており、可視光線透過率が高い。したが
ってこのガラス板を用いたタッチパネルは表示部の視認
性に優れている。
In the glass plate with a transparent conductive film of the present invention, a thin film containing SiO2 as a main component, a thin film containing TiO2 as a main component, and a transparent conductive film containing SnO2 as a main component are sequentially coated on the surface of the glass plate in a predetermined thickness range. The visible light transmittance is high. Therefore, the touch panel using this glass plate has excellent visibility of the display unit.

【実施例】【Example】

【0017】実施例1 大きさが300x300mm、厚みが1.1mmの波長550nmにおける
透過率が92%のフロートガラスを洗浄、乾燥し基板とし
た。この基板を450℃に加熱し、基板表面にSiH4(シラ
ン)、N2(窒素)、O2(酸素)の調整されたガスを供給
して厚みが30nmのSiO2薄膜を形成した。しかる後に基板
を500℃に加熱し、Ti[OCH(CH3)2]4の蒸気、N2、O2の調
整されたガスを供給してSiO2膜表面に厚みが110nmのTiO
2薄膜を形成した。次に基板を500℃に保ったまま、C4H9
SnCl3の蒸気、N2、O2および水蒸気の調整されたガスを
供給してTiO2膜表面に厚みが60nmの塩素含有SnO2膜を形
成した。このようにして得られた積層構造を有する透明
導電膜付きガラスを徐冷し、試料とした。この試料の可
視光透過率を分光光度計により測定した結果を図2に示
す。波長520nmにピークをもち波長550nmでの透過率が93
%であった。また、試料の中央を通り長辺に平行な直線
を11等分した10点でをシート抵抗を測定しリニアリ
ティを評価したところ、抵抗値のリニアリティは2%で
あった。
Example 1 A float glass having a size of 300 × 300 mm and a thickness of 1.1 mm and a transmittance of 92% at a wavelength of 550 nm was washed and dried to obtain a substrate. This substrate was heated to 450 ° C., and a gas in which SiH4 (silane), N2 (nitrogen) and O2 (oxygen) were adjusted was supplied to the surface of the substrate to form a SiO2 thin film having a thickness of 30 nm. After that, the substrate is heated to 500 ° C., vapor of Ti [OCH (CH3) 2] 4, and gas adjusted with N2 and O2 are supplied to the surface of the SiO2 film to form TiO with a thickness of 110 nm.
Two thin films were formed. Next, while keeping the substrate at 500 ℃, C4H9
A chlorine-containing SnO2 film having a thickness of 60 nm was formed on the surface of the TiO2 film by supplying adjusted gases of SnCl3 vapor, N2, O2 and water vapor. The glass with a transparent conductive film having a laminated structure thus obtained was gradually cooled and used as a sample. The results of measuring the visible light transmittance of this sample with a spectrophotometer are shown in FIG. It has a peak at a wavelength of 520 nm and a transmittance of 93 at a wavelength of 550 nm.
%Met. The linearity of the resistance value was 2% when the sheet resistance was measured at 10 points where a straight line passing through the center of the sample and parallel to the long side was divided into 11 equal parts.

【0018】実施例2 TiO2膜の厚みを120nm、塩素含有SnO2膜の厚みを40nmと
した以外は実施例1と同様に試料を作製した。試料の可
視光透過率を分光光度計により測定したところ、波長54
0nmにピークをもち波長550nmでの透過率が92%であっ
た。また、試料の抵抗値のリニアリティは実施例1と同
じ測定方法で3%であった。
Example 2 A sample was prepared in the same manner as in Example 1 except that the TiO2 film had a thickness of 120 nm and the chlorine-containing SnO2 film had a thickness of 40 nm. When the visible light transmittance of the sample was measured by a spectrophotometer, the wavelength of 54
It had a peak at 0 nm and had a transmittance of 92% at a wavelength of 550 nm. Further, the linearity of the resistance value of the sample was 3% by the same measuring method as in Example 1.

【0019】実施例3 TiO2膜の厚みを100nm、塩素含有SnO2膜の厚みを80nmと
した以外は実施例1と同様に試料を作製した。試料の可
視光透過率を分光光度計により測定したところ、波長50
0nmにピークをもち波長550nmでの透過率が91%であっ
た。また、試料の抵抗値のリニアリティは実施例1と同
じ測定方法で3%であった。$ 実施例4 実施例1で作成した透明導電膜付きガラス板の透明導電
膜(5)をストライプ状にパターンニングし、このガラ
スとストライプ状にパターニングしたITO透明導電膜
(8)が被覆されたPETフイルム(7)とを、透明導
電膜が内側にかつストライプの方向が直行するように、
かつガラス板とPETフイルムの間隔が約100μmと
なるようにスペーサー(6)を用いて貼り付けた。透明
導電膜の間に一定の電圧を印加できるようにリード線を
取付け、図3a(リード線は図示してない)に示すよう
な断面構造のタッチパネルとした。このタッチパネルは
図3(b)に示すように指で押厚することにより電極間
の抵抗が変化し、例えば液晶表示セルと重ね合わせて用
いると指の押圧力で制御できる視認性のよい表示素子が
得られた。 比較例1 TiO2膜の厚みを130nm、塩素含有SnO2の厚みを60nmとし
た以外は実施例1と同様に試料を作製した。試料の可視
光透過率を分光光度計により測定したところ、波長560n
mにピークをもち波長550nmでの透過率が90%であった。
この試料の抵抗値のリニアリティは2%であった。
Example 3 A sample was prepared in the same manner as in Example 1 except that the TiO2 film had a thickness of 100 nm and the chlorine-containing SnO2 film had a thickness of 80 nm. When the visible light transmittance of the sample was measured by a spectrophotometer, the wavelength of 50
It had a peak at 0 nm and a transmittance of 91% at a wavelength of 550 nm. Further, the linearity of the resistance value of the sample was 3% by the same measuring method as in Example 1. $ Example 4 The transparent conductive film (5) of the glass plate with a transparent conductive film prepared in Example 1 was patterned in a stripe shape, and this glass and the ITO transparent conductive film (8) patterned in a stripe shape were covered. With the PET film (7), the transparent conductive film is directed inward and the stripe direction is perpendicular to the inside.
Further, the glass plate and the PET film were attached using a spacer (6) so that the distance between them was about 100 μm. Lead wires were attached so that a constant voltage could be applied between the transparent conductive films, and a touch panel having a cross-sectional structure as shown in FIG. 3a (lead wires not shown) was obtained. As shown in FIG. 3 (b), this touch panel changes the resistance between the electrodes when it is pressed with a finger. For example, when used in combination with a liquid crystal display cell, it is a display element with good visibility that can be controlled by the pressing force of the finger. was gotten. Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the TiO2 film had a thickness of 130 nm and the chlorine-containing SnO2 had a thickness of 60 nm. When the visible light transmittance of the sample was measured by a spectrophotometer, the wavelength was 560n.
It had a peak at m and had a transmittance of 90% at a wavelength of 550 nm.
The linearity of the resistance value of this sample was 2%.

【0020】比較例2 TiO2膜の厚みを90nm、塩素含有SnO2膜の厚みを80nmとし
た以外は実施例1と同様に試料を作製した。試料の可視
光透過率を分光光度計により測定したところ、波長490n
mにピークをもち波長550nmでの透過率が88%であった。
また、試料の抵抗のリニアリティは1%であった。
Comparative Example 2 A sample was prepared in the same manner as in Example 1 except that the TiO2 film had a thickness of 90 nm and the chlorine-containing SnO2 film had a thickness of 80 nm. When the visible light transmittance of the sample was measured with a spectrophotometer, the wavelength was 490n.
It had a peak at m and had a transmittance of 88% at a wavelength of 550 nm.
The linearity of the resistance of the sample was 1%.

【0021】比較例3 大きさが300x300mm、厚みが1.1mmのフロートガラスを洗
浄、乾燥し基板とした。この基板を450℃に加熱し、基
板表面にSiH4、N2、O2の調整されたガスを供給して厚み
が30nmのSiO2薄膜を形成した。しかる後に基板を500℃
に加熱し、C4H9SnCl3の蒸気、N2、O2、HFの蒸気および
水蒸気の調整されたガスを供給してSiO2膜表面に厚みが
25nmのフッ素を含むSnO2薄膜を形成した。このようにし
て得られた、透明導電膜付きガラスを徐冷し、試料とし
た。試料の可視光透過率を分光光度計により測定した結
果を図2に示す。波長550nmでの透過率は90%であっ
た。また、試料の抵抗値はリニアリティは4%であっ
た。 比較例4
Comparative Example 3 Float glass having a size of 300 × 300 mm and a thickness of 1.1 mm was washed and dried to obtain a substrate. This substrate was heated to 450 ° C., and a gas adjusted to have SiH4, N2, and O2 was supplied to the surface of the substrate to form a SiO2 thin film having a thickness of 30 nm. After that, the substrate is heated to 500 ℃
Heated to C4H9SnCl3 vapor, N2, O2, HF vapor and vapor adjusted gas to supply the SiO2 film surface with thickness.
A SnO2 thin film containing 25 nm of fluorine was formed. The glass with a transparent conductive film thus obtained was gradually cooled and used as a sample. The results of measuring the visible light transmittance of the sample with a spectrophotometer are shown in FIG. The transmittance at a wavelength of 550 nm was 90%. The linearity of the resistance value of the sample was 4%. Comparative Example 4

【発明の効果】【The invention's effect】

【0022】本発明によれば可視光透過率が高く視認性
に優れたタッチパネル用の透明導電膜付きガラスを得る
ことができる。
According to the present invention, it is possible to obtain a glass with a transparent conductive film for a touch panel which has a high visible light transmittance and an excellent visibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の透明導電膜付きガラスの一部断面図で
ある。
FIG. 1 is a partial cross-sectional view of glass with a transparent conductive film of the present invention.

【図2】本発明の一実施例の可視透過特性を示す図であ
る。
FIG. 2 is a diagram showing visible light transmission characteristics according to an embodiment of the present invention.

【図3】本発明のタッチパネルの断面図である。FIG. 3 is a cross-sectional view of the touch panel of the present invention.

【符号の説明】[Explanation of symbols]

(1):透明基体 (2):SiO2を主成分とする薄膜 (3):TiO2を主成分とする薄膜 (4):SnO2を主成分とする透明導電膜 (5):(2)、(3)、(4)が順次積層された透明
電極 (6):スペーサー (7):PETフイルム (8):透明導電膜
(1): Transparent substrate (2): Thin film containing SiO2 as a main component (3): Thin film containing TiO2 as a main component (4): Transparent conductive film containing SnO2 as a main component (5): (2), ( Transparent electrode in which 3) and (4) are sequentially laminated (6): Spacer (7): PET film (8): Transparent conductive film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 17/06 27/06 8413−4F G02F 1/133 530 G06F 3/033 350 A 0832−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B32B 17/06 27/06 8413-4F G02F 1/133 530 G06F 3/033 350 A 0832-5E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス板表面にSiO2を主成分とする薄膜、
TiO2を主成分とする薄膜、SnO2を主成分とする透明導電
膜を順次被覆させた透明導電膜付きガラス板であって、
該SiO2を主成分とする薄膜の厚みを10〜50nm、該TiO2を
主成分とする薄膜の厚みを100〜120nm、該透明導電膜の
厚みを20〜80nmとしたタッチパネル用透明導電膜付きガ
ラス板。
1. A thin film containing SiO2 as a main component on the surface of a glass plate,
A thin film containing TiO2 as a main component, a glass plate with a transparent conductive film obtained by sequentially coating a transparent conductive film containing SnO2 as a main component,
A glass plate with a transparent conductive film for a touch panel, wherein the thickness of the thin film containing SiO2 as a main component is 10 to 50 nm, the thickness of the thin film containing TiO2 as a main component is 100 to 120 nm, and the thickness of the transparent conductive film is 20 to 80 nm. .
【請求項2】波長550nmでの透過率が用いるガラス板単
独の透過率よりも高く、波長400〜800nmの領域において
一つの極大を有する分光透過率を有し、かつ、その極大
を550nmより短波長側にあるようにしたことを特徴とす
る請求項1に記載のタッチパネル用透明導電膜付きガラ
ス板。
2. The transmittance at a wavelength of 550 nm is higher than the transmittance of the glass plate used alone, and the spectral transmittance has one maximum in the wavelength range of 400 to 800 nm, and the maximum is shorter than 550 nm. The glass plate with a transparent conductive film for a touch panel according to claim 1, wherein the glass plate is on the wavelength side.
【請求項3】請求項1乃至2のいずれかの項に記載の透
明導電膜付きガラス板を第1の基体とし、透明導電性膜
が被覆された透明樹脂板を第2の基体とし、第1の基体
と第2の基体とが、それぞれの基体に被覆された透明導
電膜が対向し、かつ、第1の基体と第2の基体との間に
空間が形成されるように接着されてなるタッチパネル。
3. A glass plate with a transparent conductive film according to claim 1 is used as a first substrate, and a transparent resin plate coated with a transparent conductive film is used as a second substrate. The first substrate and the second substrate are bonded so that the transparent conductive films coated on the respective substrates face each other and a space is formed between the first substrate and the second substrate. Touch panel.
JP11827794A 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same Expired - Fee Related JP2874556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Publications (2)

Publication Number Publication Date
JPH07315880A true JPH07315880A (en) 1995-12-05
JP2874556B2 JP2874556B2 (en) 1999-03-24

Family

ID=14732677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11827794A Expired - Fee Related JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Country Status (1)

Country Link
JP (1) JP2874556B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071623A (en) * 1998-02-13 2000-06-06 Central Glass Company, Limited Hydrophilic article and method for producing same
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2009249220A (en) * 2008-04-04 2009-10-29 Asahi Glass Co Ltd Film formation method for transparent substrate
JP4516657B2 (en) * 1999-06-18 2010-08-04 日本板硝子株式会社 SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
KR101456560B1 (en) * 2007-01-15 2014-10-31 쌩-고벵 글래스 프랑스 Glass substrate coated with layers having an improved mechanical strength
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071623A (en) * 1998-02-13 2000-06-06 Central Glass Company, Limited Hydrophilic article and method for producing same
JP4516657B2 (en) * 1999-06-18 2010-08-04 日本板硝子株式会社 SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
US7151532B2 (en) 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
KR101014061B1 (en) * 2002-08-09 2011-02-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multifunctional Multilayer Optical Film
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
KR101456560B1 (en) * 2007-01-15 2014-10-31 쌩-고벵 글래스 프랑스 Glass substrate coated with layers having an improved mechanical strength
JP2009249220A (en) * 2008-04-04 2009-10-29 Asahi Glass Co Ltd Film formation method for transparent substrate
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US10595574B2 (en) 2011-08-08 2020-03-24 Ford Global Technologies, Llc Method of interacting with proximity sensor with a glove
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US10501027B2 (en) 2011-11-03 2019-12-10 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9447613B2 (en) 2012-09-11 2016-09-20 Ford Global Technologies, Llc Proximity switch based door latch release
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration

Also Published As

Publication number Publication date
JP2874556B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JPH07315880A (en) Glass plate coated with transparent conductive film and touch panel using the same
JPH08138446A (en) Glass plate with transparent conductive film and transparent touch panel using it
KR101124076B1 (en) Touch panel
US20140020810A1 (en) Capacitive touch panel, manufacturing method therefor and liquid crystal display apparatus provided with the touch panel
JP4086132B2 (en) Transparent conductive film and touch panel
US20050030629A1 (en) Optical layer system having antireflection properties
CN103477398A (en) Conductive substrate and touchscreen having same
JP2012101544A (en) Transparent conductive layered film, method for producing the same, and touch panel including the same
JP5297125B2 (en) Gas barrier film with transparent conductive film and touch panel using the same
CN104298389A (en) Touch panel and touch display panel
JP6186805B2 (en) Touch panel
KR20140132800A (en) A touch screen panel and a display including the touch screen panel
US10198121B2 (en) Projected capacitive touch switch panel
CN109725777A (en) Touch base plate and preparation method thereof, touch control display apparatus
JPH09161542A (en) Transparent conductive laminate and touch panel using the same
KR20110137550A (en) Transparent conductive stacked film and touch panel having the same
JP4376474B2 (en) Transparent conductive film
JP6507311B2 (en) Substrate with transparent conductive layer and liquid crystal panel
JPH08151235A (en) Glass plate having electrically conductive transparent film and transparent touch panel
CN103207692A (en) Image display system comprising touch panel and manufacturing method of touch panel
JPH08132554A (en) Transparent conductive film
JPH06316442A (en) Multilayer antireflection film having conductivity
JP2005190700A (en) Substrate with transparent conductive film and its manufacturing method
JP2009045753A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2010066836A (en) Touch panel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees