JPH08138446A - Glass plate with transparent conductive film and transparent touch panel using it - Google Patents

Glass plate with transparent conductive film and transparent touch panel using it

Info

Publication number
JPH08138446A
JPH08138446A JP27510194A JP27510194A JPH08138446A JP H08138446 A JPH08138446 A JP H08138446A JP 27510194 A JP27510194 A JP 27510194A JP 27510194 A JP27510194 A JP 27510194A JP H08138446 A JPH08138446 A JP H08138446A
Authority
JP
Japan
Prior art keywords
layer
glass plate
transparent conductive
thickness
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27510194A
Other languages
Japanese (ja)
Inventor
Masahiro Hirata
昌宏 平田
Taichi Fukuhara
太一 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ITA GLASS FINE KK
Nippon Sheet Glass Co Ltd
Original Assignee
NIPPON ITA GLASS FINE KK
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ITA GLASS FINE KK, Nippon Sheet Glass Co Ltd filed Critical NIPPON ITA GLASS FINE KK
Priority to JP27510194A priority Critical patent/JPH08138446A/en
Publication of JPH08138446A publication Critical patent/JPH08138446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE: To provide a glass plate with a transparent conductive film and a transparent touch panel using it by forming thin films, which respectively contain SiO2 , SnO2 , TiO2 , SiO2 , SiO2 as principal constituents and are provided with specific thickness individually, on a glass plate. CONSTITUTION: In a glass plate with a transparent conductive film, the first layer 3, which comprises a thin film containing SiO2 as a principal constituent and serves as an under coating layer, the second layer 4 comprising a thin film which contains SnO2 as a principal constituent, the third layer 5 comprising a thin film which contains TiO2 as a principal constituent, and the fourth layer 6 comprising a thin film which contains SiO2 as a principal constituent are sequently formed on a glass plate 2 in order. Thickness from the glass plate 2 to the second layer 4 is set to 30-120nm, thickness of the third layer 5 is set to 10-110nm, thickness of the fourth layer 6 is set to 30-120nm, and thickness of the fifth layer 7 is set to 20-30nm. In this way, the glass plate provided with a transparent conductive film, in which visible radiation transmittance is high while wavelength dependency of the transmittance is low, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

【0001】本発明は各種の入力機器に用いられる透明
導電膜付きガラス板及び透明タッチパネルに関する。
The present invention relates to a glass plate with a transparent conductive film and a transparent touch panel used for various input devices.

【従来の技術】[Prior art]

【0002】透明タッチパネルは、電卓、リモコン、電
話機、コピー機、電子手帳、制御機器、携帯端末機、ゲ
ーム機器、教育機器等の各種機器の入力手段として用い
られる。従来、このような用途に用いられる透明導電膜
付きガラス板及び透明タッチパネルとしては、ガラス板
上に、SiO2を主成分とする薄膜からなる第1層、S
nO2を主成分とする透明導電膜からなる第2層を順次
積層形成した透明導電膜付きガラス板、及びこの透明導
電膜付きガラス板を第1電極板とし、透明導電性膜が設
けられた可撓性を有する透明板を第2電極板として、第
1電極板と第2電極板とを、所定の空隙を設けて対向配
置してなる透明タッチパネルが知られている。
A transparent touch panel is used as an input means for various devices such as a calculator, a remote controller, a telephone, a copy machine, an electronic notebook, a control device, a mobile terminal device, a game device, and an educational device. Conventionally, as a glass plate with a transparent conductive film and a transparent touch panel used for such an application, a first layer composed of a thin film containing SiO 2 as a main component, S, on a glass plate.
A glass plate with a transparent conductive film in which a second layer made of a transparent conductive film containing nO2 as a main component is sequentially laminated, and a glass plate with a transparent conductive film is used as a first electrode plate, and a transparent conductive film may be provided. A transparent touch panel is known in which a transparent transparent plate is used as a second electrode plate, and a first electrode plate and a second electrode plate are arranged to face each other with a predetermined gap.

【0003】ところで、透明導電膜には、可視光透過率
が高いことと、抵抗値のリニアリティが要求される。こ
こで、抵抗値のリニアリティとは、ある起点に対して任
意の点を選択したときの二点間の抵抗値と距離の比例関
係の度合いを示すもので、通常、直線に沿って被膜のシ
ート抵抗を測定し、標準偏差を平均値で除した百分率で
評価されるものである。
By the way, a transparent conductive film is required to have a high visible light transmittance and a linearity of a resistance value. Here, the linearity of the resistance value indicates the degree of the proportional relationship between the resistance value and the distance between two points when an arbitrary point is selected with respect to a certain starting point. The resistance is measured, and the standard deviation is divided by the average value, which is evaluated as a percentage.

【0004】そして、透明導電膜付きガラス板やこれを
用いた透明タッチパネルには、使用される携帯端末器の
性能向上に伴って、より高い可視光透過率、抵抗値のリ
ニアリティが要求されるようになっており、例えば、可
視光透過率については、波長550nmでの透過率93
%以上、抵抗値のリニアリティについては5%以内とい
うような性能が要求されている。
Further, a glass plate with a transparent conductive film and a transparent touch panel using the same are required to have higher visible light transmittance and higher linearity of resistance value as the performance of a mobile terminal used is improved. For example, regarding the visible light transmittance, the transmittance at a wavelength of 550 nm is 93
% Or more, and the linearity of the resistance value is required to be 5% or less.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来のガラス板上に、SiO2を主成分とする薄膜か
らなる第1層、SnO2を主成分とする透明導電膜から
なる第2層を順次積層形成した透明導電膜付きガラス板
にあっては、酸化錫(SnO2)の光学定数によって透
過率が決まり、膜厚を選定しても、波長550nmの透
過率(以下、T550と呼ぶ)として89〜90%が限
界であって、高透過率T550=93%以上を得ること
はできない。
However, a first layer made of a thin film containing SiO2 as a main component and a second layer made of a transparent conductive film containing SnO2 as a main component are sequentially laminated on the above-mentioned conventional glass plate. In the formed glass plate with a transparent conductive film, the transmittance is determined by the optical constant of tin oxide (SnO2), and even if the film thickness is selected, the transmittance at a wavelength of 550 nm (hereinafter referred to as T550) is 89- The limit is 90%, and a high transmittance T550 = 93% or more cannot be obtained.

【0006】そこで、本出願人は、先にガラス板上に、
SiO2を主成分とする薄膜からなる第1層、TiO2
を主成分とする第2層、SnO2を主成分とする透明導
電膜からなる第3層を順次積層形成した透明導電膜付き
ガラス板を提案している。これによれば、T550=9
2%が得られるものの、分光透過率曲線に山谷が生じ、
可視光領域でフラットな透過率を得るという点では不十
分であった。
[0006] Therefore, the applicant of the present invention, first on the glass plate,
First layer composed of a thin film containing SiO2 as a main component, TiO2
There is proposed a glass plate with a transparent conductive film, in which a second layer containing Si as a main component and a third layer containing a transparent conductive film containing SnO 2 as a main component are sequentially laminated. According to this, T550 = 9
Although 2% is obtained, there are peaks and valleys in the spectral transmittance curve,
It has been insufficient in terms of obtaining a flat transmittance in the visible light region.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
請求項1の透明導電膜付きガラス板は、ガラス板上に、
SiO2を主成分とする薄膜からなる第1層、SnO2
を主成分とする薄膜からなる第2層、TiO2を主成分
とする薄膜からなる第3層、SiO2を主成分とする薄
膜からなる第4層、SnO2を主成分とする薄膜からな
る第5層を順次積層形成し、前記第2層の厚みを30〜
120nm、第3層の厚みを10〜110nm、第4層
の厚みを30〜80nm、第5層の厚みを20〜30n
mとした。
In order to solve the above-mentioned problems, the glass plate with a transparent conductive film according to claim 1 is provided on the glass plate,
SnO2, a first layer composed of a thin film containing SiO2 as a main component
A second layer formed of a thin film containing TiO2 as a main component, a third layer formed of a thin film containing TiO2 as a main component, a fourth layer formed of a thin film containing SiO2 as a main component, and a fifth layer formed of a thin film containing SnO2 as a main component. Are sequentially laminated, and the thickness of the second layer is 30 to
120 nm, the thickness of the third layer is 10 to 110 nm, the thickness of the fourth layer is 30 to 80 nm, and the thickness of the fifth layer is 20 to 30 n.
m.

【0008】請求項2の透明タッチパネルは、請求項1
に記載の透明導電膜付きガラス板を第1電極板とし、透
明導電性膜が設けられた可撓性を有する透明板を第2電
極板として、前記第1電極板の透明導電膜と第2電極板
の透明導電膜とを所定の空隙を設けて対向配置した。こ
こで2枚の電極板はそれぞれの板に被覆された透明導電
膜が内側になるように対向配置される。
A transparent touch panel according to a second aspect is the first aspect.
The glass plate with a transparent conductive film according to claim 1 is used as a first electrode plate, and the flexible transparent plate provided with a transparent conductive film is used as a second electrode plate. The transparent conductive film of the electrode plate was arranged to face each other with a predetermined gap. Here, the two electrode plates are arranged so as to face each other with the transparent conductive films covered by the respective plates facing inside.

【0009】以下に本発明を添付図面に基づいて説明す
る。図1は本発明に係る透明導電膜付きガラス板の模式
的構成図である。
The present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a glass plate with a transparent conductive film according to the present invention.

【0010】この透明導電膜付きガラス板1は、ガラス
板2上に、SiO2を主成分とする薄膜からなるアンダ
ーコート層としての第1層3を、この第1層3上にSn
O2を主成分とする薄膜からなる第2層4を、この第2
層4上にTiO2を主成分とする薄膜からなる第3層5
を、この第3層5上にSiO2を主成分とする薄膜から
なる第4層6を、この第4層6上にSnO2を主成分と
する薄膜からなる第5層7を順次積層形成してなる。
In this glass plate 1 with a transparent conductive film, a first layer 3 as an undercoat layer composed of a thin film containing SiO 2 as a main component is formed on a glass plate 2, and Sn is formed on the first layer 3.
The second layer 4 made of a thin film containing O2 as a main component is
On the layer 4, a third layer 5 composed of a thin film containing TiO 2 as a main component
On the third layer 5, a fourth layer 6 made of a thin film containing SiO 2 as a main component and a fifth layer 7 made of a thin film containing SnO 2 as a main component are sequentially laminated on the fourth layer 6. Become.

【0011】ここで、ガラス板2としては、フロートガ
ラスなど、従来より透明導電膜付きガラス板に用いられ
ているものであれば良く、また透明ガラスに限定される
ものではない。
Here, the glass plate 2 is not limited to the transparent glass, as long as it has been conventionally used for the glass plate with the transparent conductive film, such as float glass.

【0012】SiO2を主成分とする薄膜からなる第1
層3は、基体に含まれるナトリウム等がSnO2を主成
分とする第2層4及び第5層7に拡散してその電気特性
に影響を及ぼすことを防止するためのものである。この
第1層3は、光学特性には影響を及ぼさないので、その
膜厚はアンダーコート層として機能するに充分な厚みで
あれば良く、10〜50nmの厚みとするのが好まし
く、より好ましくは、20〜30nmである。SiO2
を主成分とする薄膜を形成する方法としては、生産性の
点からSiH4(モノシラン)とO2(酸素)を400
〜600℃で反応させる常圧CVD法を適用することが
好ましい。また、原料中にP(燐)やB(ほう素)の化
合物を混合し、これらの元素を含むSiO2を主成分と
する薄膜を用いることもできる。
A first thin film composed mainly of SiO2
The layer 3 is for preventing sodium or the like contained in the substrate from diffusing into the second layer 4 and the fifth layer 7 containing SnO2 as a main component and affecting the electrical characteristics thereof. Since the first layer 3 does not affect the optical characteristics, its thickness may be a thickness sufficient to function as an undercoat layer, and is preferably 10 to 50 nm, more preferably 20 to 30 nm. SiO2
As a method for forming a thin film containing as a main component, SiH4 (monosilane) and O2 (oxygen) are mixed in 400
It is preferable to apply an atmospheric pressure CVD method in which the reaction is performed at ˜600 ° C. It is also possible to mix a compound of P (phosphorus) or B (boron) in the raw material and use a thin film containing SiO 2 containing these elements as a main component.

【0013】なお、ガラス板2として、ほう珪酸ガラス
を主体とする無アルカリガラスを用いる場合には、Si
O2を主成分とする薄膜からなる第1層3を省略するこ
とができる。
When a non-alkali glass mainly composed of borosilicate glass is used as the glass plate 2, Si is used.
The first layer 3 composed of a thin film containing O2 as a main component can be omitted.

【0014】SnO2を主成分とする薄膜からなる第2
層4は、透明導電膜付きガラス板の透過率を大きくする
ために設けられるものである。SnO2を主成分とする
薄膜を形成する方法としては、生産性の点から塩素を含
む錫化合物と酸素を400〜600℃で反応させる常圧
CVD法が好適である。塩素を含む錫化合物としては、
モノブチル錫トリクロライドや四塩化錫(SnCl4)
などが使用される。
A second thin film composed mainly of SnO2
The layer 4 is provided to increase the transmittance of the glass plate with the transparent conductive film. From the viewpoint of productivity, the atmospheric pressure CVD method in which a tin compound containing chlorine and oxygen are reacted at 400 to 600 ° C. is suitable as a method for forming a thin film containing SnO 2 as a main component. As a tin compound containing chlorine,
Monobutyltin trichloride and tin tetrachloride (SnCl4)
Etc. are used.

【0015】このSnO2を主成分とする薄膜からなる
第2層4の厚みは、30〜120nmとするのが好まし
く、より好ましくは60〜100nmである。膜厚が3
0nmより薄い場合には長波長域の透過率が低下し、1
20nmより厚い場合には短波長域の透過率が低下す
る。また、この第2層4はピンホール等の影響で第5層
7と短絡された場合でも第5層7のシート抵抗に影響を
及ぼすことがないよう、高いシート抵抗を有することが
望ましく、例えば10kΩ/□以上が好ましい。SnO
2を主成分とする薄膜の高抵抗化はアルミニウム(A
l)やインジウム(In)などの3価の金属元素をドー
プすることによっておこなう事ができる。
The thickness of the second layer 4 composed of a thin film containing SnO2 as a main component is preferably 30 to 120 nm, more preferably 60 to 100 nm. Film thickness is 3
When the thickness is less than 0 nm, the transmittance in the long wavelength region decreases, and
When the thickness is thicker than 20 nm, the transmittance in the short wavelength region decreases. Further, it is desirable that the second layer 4 has a high sheet resistance so as not to affect the sheet resistance of the fifth layer 7 even when short-circuited with the fifth layer 7 due to the influence of a pinhole or the like. 10 kΩ / □ or more is preferable. SnO
The high resistance of the thin film mainly composed of
It can be performed by doping with a trivalent metal element such as 1) or indium (In).

【0016】TiO2を主成分とする薄膜からなる第3
層5は、透明導電膜付きガラス板の透過率を大きくする
ために設けられるものである。TiO2を主成分とする
薄膜を形成する方法としては、チタン化合物と酸素等の
酸化剤を400〜600℃で反応させる常圧CVD法が
好適である。チタン化合物としては、チタンテトライソ
プロポキシド(Ti(OCH(CH3)2)4)やチタ
ンテトラ−n−ブトキシド(Ti(OCH2CH2CH
2CH3)4)などのアルコキシド、ジ−i−プロポキ
シ・ビス(アセチルアセトナト)チタン(Ti(OCH
(CH3)2)2(OC(CH3)CHCOCH3)
2)などのβ−ジケトンキレートや四塩化チタン(Ti
Cl4)が使用できる。
A third thin film composed mainly of TiO2
The layer 5 is provided to increase the transmittance of the glass plate with the transparent conductive film. As a method for forming a thin film containing TiO 2 as a main component, a normal pressure CVD method in which a titanium compound and an oxidizing agent such as oxygen are reacted at 400 to 600 ° C. is suitable. Titanium compounds include titanium tetraisopropoxide (Ti (OCH (CH3) 2) 4) and titanium tetra-n-butoxide (Ti (OCH2CH2CH).
2CH3) 4) and other alkoxides, di-i-propoxy bis (acetylacetonato) titanium (Ti (OCH
(CH3) 2) 2 (OC (CH3) CHCOCH3)
2) and other β-diketone chelates and titanium tetrachloride (Ti
Cl4) can be used.

【0017】このTiO2を主成分とする薄膜からなる
第3層5の厚みは、10〜110nmとするのが好まし
く、より好ましくは20〜90nmである。膜厚が10
nmより薄い場合には長波長域の透過率が低下し、11
0nmより厚い場合には短波長域の透過率が低下する。
The thickness of the third layer 5 composed of a thin film containing TiO2 as a main component is preferably 10 to 110 nm, more preferably 20 to 90 nm. Film thickness 10
When the thickness is less than nm, the transmittance in the long wavelength region decreases,
When it is thicker than 0 nm, the transmittance in the short wavelength region is lowered.

【0018】SiO2を主成分とする薄膜からなる第4
層6は透明導電膜付きガラス板の透過率を大きくするた
めに設けられるものであり、第1層3と同様にして形成
される。この第4層6の厚みは、30〜80nmとする
のが好ましく、より好ましくは40〜70nmである。
膜厚が30nmより薄い場合には長波長域の透過率が低
下し、80nmより厚い場合には短波長域の透過率が低
下する。
Fourth thin film composed mainly of SiO2
The layer 6 is provided to increase the transmittance of the glass plate with the transparent conductive film, and is formed in the same manner as the first layer 3. The thickness of the fourth layer 6 is preferably 30 to 80 nm, more preferably 40 to 70 nm.
When the film thickness is thinner than 30 nm, the transmittance in the long wavelength region decreases, and when it is thicker than 80 nm, the transmittance in the short wavelength region decreases.

【0019】SnO2を主成分とする薄膜からなる第5
層7は本発明による透明導電膜付きガラスにおいて導電
性を付与するために設けられるものである。第5層7は
第2層4と同様にして形成されるが、導電性を調整する
ために原料ガス中にHFやCF3Br、CH3CHF2
などのフッ素を含む化合物、あるいは五塩化アンチモン
などのアンチモンを含む化合物を混合し、被膜中にフッ
素やアンチモンを添加してもよい。
Fifth thin film mainly composed of SnO2
The layer 7 is provided to impart conductivity to the glass with a transparent conductive film according to the present invention. The fifth layer 7 is formed in the same manner as the second layer 4, but HF, CF3Br, CH3CHF2 are added to the source gas in order to adjust the conductivity.
A compound containing fluorine such as or a compound containing antimony such as antimony pentachloride may be mixed and fluorine or antimony may be added to the film.

【0020】この第5層7の厚みは、20〜30nmと
するのが好ましく、より好ましくは20〜25nmであ
る。膜厚が20nmより薄い場合には抵抗値のリニアリ
ティが5%を越えてしまい、30nmより厚い場合には
透過率が低下する。
The thickness of the fifth layer 7 is preferably 20 to 30 nm, more preferably 20 to 25 nm. When the film thickness is less than 20 nm, the linearity of the resistance value exceeds 5%, and when it is more than 30 nm, the transmittance decreases.

【0021】[0021]

【作用】ガラス板表面に薄膜を形成して得られる透明導
電膜付きガラス板において、ガラス板表面にSiO2を
主成分とする薄膜からなるアンダーコート層としての第
1層を形成し、この第1層上に厚みを30〜120nm
としたSnO2を主成分とする薄膜からなる第2層を、
この第2層上に厚みを10〜110nmとしたTiO2
を主成分とする薄膜からなる第3層を、この第3層上に
厚みを30〜80nmとしたSiO2を主成分とする薄
膜からなる第4層を、この第4層上に厚みを20〜30
nmとしたSnO2を主成分とする薄膜からなる第5層
を順次積層形成することにより、波長550nmでの透
過率が93%以上であり、かつ可視光領域の透過率が8
7%以上となり、可視光の透過スペクトルがフラットに
近くなる。
In a glass plate with a transparent conductive film obtained by forming a thin film on the surface of a glass plate, a first layer as an undercoat layer made of a thin film containing SiO 2 as a main component is formed on the surface of the glass plate. 30-120 nm thickness on the layer
And a second layer formed of a thin film containing SnO2 as a main component,
TiO2 having a thickness of 10 to 110 nm on the second layer
A third layer composed of a thin film containing as a main component, a fourth layer composed of a thin film containing SiO2 as a main component having a thickness of 30 to 80 nm on the third layer, and a thickness of 20 to 20 on the fourth layer. Thirty
By sequentially stacking and forming a fifth layer made of a thin film of SnO2 having a wavelength of 0.5 nm, the transmittance at a wavelength of 550 nm is 93% or more, and the transmittance in the visible light region is 8%.
It becomes 7% or more, and the transmission spectrum of visible light becomes nearly flat.

【0022】そして、この透明導電膜付きガラス板を用
いた本発明の透明タッチパネルによれば、視認性が向上
し、カラー表示にも対応することが可能となる。
According to the transparent touch panel of the present invention using the glass plate with the transparent conductive film, the visibility is improved and it is possible to support color display.

【0023】[0023]

【実施例】以下に、本発明の透明導電膜付きガラス板1
及び透明タッチパネルの具体的実施例について説明す
る。 実施例1 大きさが300*320mm、厚みが1.1mmの波長
550nmにおける透過率が92%のフロートガラスを
洗浄、乾燥してガラス板(基板)とした。この基板を4
50℃に加熱し、基板表面にSiH4、N2、O2の調
整されたガスを供給して、厚みが30nmのSiO2を
主成分とする第1層を成膜した。その後、基板を500
℃に加熱し、C4H9SnCl3の蒸気、N2、O2及
び水蒸気の調整されたガスを供給して、第1層の膜表面
に厚みが80nmのSnO2を主成分とする第2層を成
膜した。ついで、Ti[OCH(CH3)2]4の蒸
気、N2、O2の調整されたガスを供給して、厚みが2
0nmのTiO2を主成分とする第3層を成膜した。そ
して、第3層上に、上記と同様にして、厚みが40nm
のSiO2を主成分とする第4層を成膜した。最後に、
C4H9SnCl3の蒸気、CH3CHF2、N2、O
2及び水蒸気の調整されたガスを供給して、第4層の膜
表面に厚みが30nmのSnO2を主成分とする第5層
を成膜した。
EXAMPLE A glass plate 1 with a transparent conductive film of the present invention is described below.
A specific example of the transparent touch panel will be described. Example 1 A float glass having a size of 300 * 320 mm and a thickness of 1.1 mm and a transmittance of 92% at a wavelength of 550 nm was washed and dried to obtain a glass plate (substrate). This board is 4
The substrate was heated to 50 ° C., and a gas in which SiH 4, N 2, and O 2 was adjusted was supplied to the surface of the substrate to form a first layer having a thickness of 30 nm and containing SiO 2 as a main component. Then the substrate is 500
The mixture was heated to 0 ° C., and a gas having adjusted C4H9SnCl3 vapor, N2, O2, and water vapor was supplied to form a second layer containing SnO2 as a main component having a thickness of 80 nm on the film surface of the first layer. Then, a vapor of Ti [OCH (CH3) 2] 4, a gas adjusted with N2 and O2 is supplied to adjust the thickness to 2
A third layer containing 0 nm of TiO 2 as a main component was formed. Then, a thickness of 40 nm is formed on the third layer in the same manner as above.
The fourth layer containing SiO 2 as a main component was formed. Finally,
C4H9SnCl3 vapor, CH3CHF2, N2, O
2 and a regulated gas of water vapor were supplied to form a fifth layer containing SnO 2 as a main component and having a thickness of 30 nm on the surface of the fourth layer.

【0024】このようにして得られた積層構造の透明導
電膜付きガラス板を徐冷し、試料とし、この試料の可視
光透過率を分光光度計により測定した。この測定結果を
図2に実線で示している。同図からわかるように、波長
550nmでの透過率が94%で、可視光領域での透過
率の最小値は90%であった。
The glass plate with a transparent conductive film having a laminated structure thus obtained was gradually cooled to prepare a sample, and the visible light transmittance of this sample was measured by a spectrophotometer. This measurement result is shown by the solid line in FIG. As can be seen from the figure, the transmittance at a wavelength of 550 nm was 94%, and the minimum value of the transmittance in the visible light region was 90%.

【0025】また、試料の中央を通り長辺に平行な直線
を11等分した10点でのシート抵抗を測定してリニア
リティを評価したところ、抵抗値のリニアリティは3%
であった。
Further, when the linearity was evaluated by measuring the sheet resistance at 10 points where a straight line passing through the center of the sample and parallel to the long side was divided into 11 equal parts, the linearity of the resistance value was 3%.
Met.

【0026】次に、上記の透明導電膜付きガラス板1を
用いた透明タッチパネルについて図3を参照して説明す
る。この透明タッチパネル11は同図(a)に示すよう
に、透明導電膜付きガラス板を第1電極板12とし、透
明導電膜18が設けられた可撓性を有する透明基体17
を第2電極板13として、第1電極板12と第2電極板
13とを間隙形成部材であるスペーサ14を介して所定
の間隙、例えば約100μmをおいて対向配置させてな
る。
Next, a transparent touch panel using the above glass plate 1 with a transparent conductive film will be described with reference to FIG. As shown in FIG. 1A, the transparent touch panel 11 has a glass plate with a transparent conductive film as a first electrode plate 12, and a flexible transparent substrate 17 provided with a transparent conductive film 18.
Is used as the second electrode plate 13, and the first electrode plate 12 and the second electrode plate 13 are arranged to face each other with a predetermined gap, for example, about 100 μm, via a spacer 14 that is a gap forming member.

【0027】この透明タッチパネルは、通常、対向した
2枚の透明導電膜付きガラス22、23の間隙に液晶2
4を封入してなる液晶ディスプレイパネル21と組み合
わせた入力機器として使用される。図3(b)のように
上記第2電極板12である透明導電膜付きガラス板と平
行に液晶ディスプレイパネル21を配置した入力機器の
場合、液晶ディスプレイパネルに対向する第2電極板1
2の基板であるガラス2の表面に反射防止処理を施し
て、視認性の向上をはかることができる。また、透明タ
ッチパネル11と液晶ディスプレイパネル21との間隙
に屈折率調整剤を挿入して視認性を向上させることも可
能である。さらに、図3(c)のように、上記第2電極
板12のガラス2表面に液晶ディスプレイパネルを駆動
させる透明導電膜26を成膜し、タッチパネルと液晶デ
ィスプレイパネルを一体とすることにより視認性の向上
をはかることもできる。
In this transparent touch panel, normally, the liquid crystal 2 is placed in a gap between two glass plates 22 and 23 having transparent conductive films which face each other.
4 is used as an input device in combination with a liquid crystal display panel 21. In the case of an input device in which the liquid crystal display panel 21 is arranged in parallel with the glass plate with the transparent conductive film which is the second electrode plate 12 as shown in FIG. 3B, the second electrode plate 1 facing the liquid crystal display panel 1
It is possible to improve the visibility by applying an antireflection treatment to the surface of the glass 2 which is the second substrate. It is also possible to insert a refractive index adjusting agent in the gap between the transparent touch panel 11 and the liquid crystal display panel 21 to improve the visibility. Further, as shown in FIG. 3C, the transparent conductive film 26 for driving the liquid crystal display panel is formed on the surface of the glass 2 of the second electrode plate 12, and the touch panel and the liquid crystal display panel are integrated to improve the visibility. Can be improved.

【0028】実施例2 実施例1の第2層の厚みを90nmに、第3層の厚みを
10nmにした以外は実施例1と同様にして試料を得
た。この試料の、波長550nmでの透過率は93%、
可視光領域での透過率の最小値は89%、抵抗値のリニ
アリティは3%であった。
Example 2 A sample was obtained in the same manner as in Example 1 except that the thickness of the second layer was 90 nm and the thickness of the third layer was 10 nm. The transmittance of this sample at a wavelength of 550 nm is 93%,
The minimum value of the transmittance in the visible light region was 89%, and the linearity of the resistance value was 3%.

【0029】実施例3 実施例1の第2層の厚みを90nmに、第4層の厚みを
50nmにした以外は実施例1と同様にして試料を得
た。この試料の、波長550nmでの透過率は93%、
可視光領域での透過率の最小値は88%、抵抗値のリニ
アリティは3%であった。
Example 3 A sample was obtained in the same manner as in Example 1 except that the thickness of the second layer was 90 nm and the thickness of the fourth layer was 50 nm. The transmittance of this sample at a wavelength of 550 nm is 93%,
The minimum value of the transmittance in the visible light region was 88%, and the linearity of the resistance value was 3%.

【0030】比較例1 大きさが300*320mm、厚みが1.1mmの波長
550nmにおける透過率が92%のフロートガラスを
洗浄、乾燥してガラス板(基板)とした。この基板を4
50℃に加熱し、基板表面にSiH4、N2、O2の調
整されたガスを供給して、厚みが25nmのSiO2を
主成分とする第1層を成膜した。その後、基板を500
℃に加熱し、C4H9SnCl3の蒸気、N2、O2、
HFの蒸気、及び水蒸気の調整されたガスを供給して、
第1層の膜表面に厚みが25nmのSnO2を主成分と
する第2層を成膜した。
Comparative Example 1 A float glass having a size of 300 * 320 mm and a thickness of 1.1 mm and a transmittance of 92% at a wavelength of 550 nm was washed and dried to obtain a glass plate (substrate). This board is 4
The substrate was heated to 50 ° C. and a gas adjusted to have SiH 4, N 2, and O 2 was supplied to the substrate surface to form a first layer having a thickness of 25 nm and containing SiO 2 as a main component. Then the substrate is 500
Heated to ℃, vapor of C4H9SnCl3, N2, O2,
By supplying HF vapor and regulated gas of water vapor,
On the film surface of the first layer, a second layer having a thickness of 25 nm and containing SnO2 as a main component was formed.

【0031】このようにして得られた透明導電膜付きガ
ラス板を徐冷し、試料とし、この試料の可視光透過率を
分光光度計により測定した。この測定結果を図2に破線
で示している。同図からわかるように、波長550nm
での透過率は90%で、抵抗値のリニアリティは4%で
あった。
The glass plate with a transparent conductive film thus obtained was gradually cooled to prepare a sample, and the visible light transmittance of this sample was measured by a spectrophotometer. The result of this measurement is shown by the broken line in FIG. As can be seen from the figure, the wavelength is 550 nm.
The transmittance was 90%, and the linearity of the resistance value was 4%.

【0032】比較例2 大きさが300*320mm、厚みが1.1mmの波長
550nmにおける透過率が92%のフロートガラスを
洗浄、乾燥してガラス板(基板)とした。この基板を4
50℃に加熱し、基板表面にSiH4、N2、O2の調
整されたガスを供給して、厚みが30nmのSiO2を
主成分とする第1層を成膜した。その後、基板を500
℃に加熱し、Ti[OCH(CH3)2]4の蒸気、N
2、O2の調整されたガスを供給して、第1層の膜表面
に厚みが110nmのTiO2を主成分とする第2層を
成膜した。ついで、基板を500℃に保ったまま、C4
H9SnCl3の蒸気、N2、O2及び水蒸気の調整さ
れたガスを供給して、第2層の膜表面に厚みが60nm
のSnO2を主成分とする第3層を成膜した。
Comparative Example 2 A float glass having a size of 300 * 320 mm and a thickness of 1.1 mm and a transmittance of 92% at a wavelength of 550 nm was washed and dried to obtain a glass plate (substrate). This board is 4
The substrate was heated to 50 ° C., and a gas in which SiH 4, N 2, and O 2 was adjusted was supplied to the surface of the substrate to form a first layer having a thickness of 30 nm and containing SiO 2 as a main component. Then the substrate is 500
Heated to ℃, vaporized Ti [OCH (CH3) 2] 4, N
By supplying a gas adjusted to O 2 and O 2, a second layer containing TiO 2 as a main component and having a thickness of 110 nm was formed on the film surface of the first layer. Then, while keeping the substrate at 500 ℃, C4
By supplying H9SnCl3 vapor, N2, O2 and vapor adjusted gas, the thickness of the second layer film surface is 60 nm.
A third layer containing SnO2 as the main component was deposited.

【0033】このようにして得られた積層構造の透明導
電膜付きガラス板を徐冷し、試料とし、この試料の可視
光透過率を分光光度計により測定した。この測定結果を
図2に鎖線で示している。同図からわかるように、波長
550nmでの透過率は91%、抵抗値のリニアリティ
は3%であったが、可視光領域での透過率の最小値は7
0%であった。
The glass plate with a transparent conductive film having a laminated structure thus obtained was gradually cooled to prepare a sample, and the visible light transmittance of this sample was measured by a spectrophotometer. The result of this measurement is shown by the chain line in FIG. As can be seen from the figure, the transmittance at a wavelength of 550 nm was 91% and the linearity of the resistance value was 3%, but the minimum value of the transmittance in the visible light region was 7%.
It was 0%.

【0034】比較例3 実施例1の第5層の厚みを50nmとした以外は、実施
例1と同様である。この試料の、波長550nmでの透
過率は91%、可視光領域での透過率の最小値は87
%、抵抗値のリニアリティは2%であった。
Comparative Example 3 The same as Example 1 except that the thickness of the fifth layer of Example 1 was 50 nm. This sample has a transmittance of 91% at a wavelength of 550 nm and a minimum transmittance of 87 in the visible light region.
%, And the linearity of the resistance value was 2%.

【0035】比較例4 実施例1の第2層の厚みを60nmとし、第4層の厚み
を20nmとした以外は、実施例1と同様である。この
試料の、波長550nmでの透過率は90%、可視光領
域での透過率の最小値は85%、抵抗値のリニアリティ
は3%であった。
Comparative Example 4 The same as Example 1 except that the thickness of the second layer of Example 1 was 60 nm and the thickness of the fourth layer was 20 nm. This sample had a transmittance of 90% at a wavelength of 550 nm, a minimum transmittance of 85% in the visible light region, and a linearity of resistance of 3%.

【0036】このように、実施例1〜3においては、波
長550nmでの透過率が93%以上で、かつ可視光領
域での透過率の最小値が87%以上が得られ、抵抗値の
リニアリティも5%以下が得られるが、比較例1〜4に
おいては、波長550nmでの透過率が93%以上とな
らない(比較例1〜4)、あるいは可視光領域での透過
率の最小値が87%未満となる(比較例2、4)。
As described above, in Examples 1 to 3, the transmittance at the wavelength of 550 nm was 93% or more, and the minimum transmittance in the visible light region was 87% or more, and the linearity of the resistance value was obtained. 5% or less can be obtained, but in Comparative Examples 1 to 4, the transmittance at the wavelength of 550 nm does not reach 93% or more (Comparative Examples 1 to 4), or the minimum value of the transmittance in the visible light region is 87. It becomes less than% (Comparative Examples 2 and 4).

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば可
視光透過率が高く、かつ透過率の波長依存性が小さい透
明導電膜付きガラス板を得ることができる。そして、こ
の透明導電膜付きガラス板を用いた本発明の透明タッチ
パネルによれば、視認性が良く、カラー表示にも対応で
きる。また、本発明の透明導電膜付きガラス板はその優
れた光学特性を利用して面発熱体や帯電防止ガラスなど
にも好適に使用し得る。
As described above, according to the present invention, a glass plate with a transparent conductive film having a high visible light transmittance and a small wavelength dependency of the transmittance can be obtained. Further, according to the transparent touch panel of the present invention using the glass plate with the transparent conductive film, the visibility is good, and color display can be supported. Further, the glass plate with a transparent conductive film of the present invention can be suitably used for a surface heating element, antistatic glass and the like by utilizing its excellent optical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る透明導電膜付きガラスの模式的構
成図である。
FIG. 1 is a schematic configuration diagram of glass with a transparent conductive film according to the present invention.

【図2】本発明の一実施例及び比較例の可視光透過特性
を示す線図である。
FIG. 2 is a diagram showing visible light transmission characteristics of an example of the present invention and a comparative example.

【図3】本発明に係る透明タッチパネルの模式的構成図
である。
FIG. 3 is a schematic configuration diagram of a transparent touch panel according to the present invention.

【符号の説明】[Explanation of symbols]

1…透明導電膜付きガラス板、2…ガラス板、3…第1
層、4…第2層、5…第3層、6…第4層、7…第5
層、11…透明タッチパネル、12…第1電極板、13
…第2電極板、14…スペーサ、16…透明導電膜、1
7…基体、18…透明導電膜、21…液晶ディスプレイ
パネル、22、23…電極板、24…液晶、25…基
体、26、27…透明導電膜、28…基体
1 ... Glass plate with transparent conductive film, 2 ... Glass plate, 3 ... First
Layer 4, 4th layer, 5th layer, 6th layer, 7th layer 5th layer
Layer, 11 ... Transparent touch panel, 12 ... First electrode plate, 13
... second electrode plate, 14 ... spacer, 16 ... transparent conductive film, 1
7 ... Substrate, 18 ... Transparent conductive film, 21 ... Liquid crystal display panel, 22, 23 ... Electrode plate, 24 ... Liquid crystal, 25 ... Substrate, 26, 27 ... Transparent conductive film, 28 ... Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス板上に、SiO2を主成分とする薄
膜からなる第1層、SnO2を主成分とする薄膜からな
る第2層、TiO2を主成分とする薄膜からなる第3
層、SiO2を主成分とする薄膜からなる第4層、Sn
O2を主成分とする薄膜からなる第5層を順次積層形成
し、前記第2層の厚みを30〜120nm、第3層の厚
みを10〜110nm、第4層の厚みを30〜120n
m、第5層の厚みを20〜30nmとしたことを特徴と
する透明導電膜付きガラス板。
1. A glass plate having a first layer composed of a thin film containing SiO2 as a main component, a second layer composed of a thin film containing SnO2 as a main component, and a third layer composed of a thin film containing TiO2 as a main component.
Layer, a fourth layer composed of a thin film containing SiO 2 as a main component, Sn
A fifth layer made of a thin film containing O2 as a main component is sequentially laminated, and the second layer has a thickness of 30 to 120 nm, the third layer has a thickness of 10 to 110 nm, and the fourth layer has a thickness of 30 to 120 n.
m, the thickness of the 5th layer was 20-30 nm, The glass plate with a transparent conductive film characterized by the above-mentioned.
【請求項2】請求項1に記載の透明導電膜付きガラス板
を第1電極板とし、透明導電性膜が設けられた可撓性を
有する透明板を第2電極板として、前記第1電極板の透
明導電膜と第2電極板の透明導電膜とを所定の空隙を設
けて対向配置してなることを特徴とする透明タッチパネ
ル。
2. A glass plate with a transparent conductive film according to claim 1 is used as a first electrode plate, and a flexible transparent plate provided with a transparent conductive film is used as a second electrode plate, and the first electrode is used. A transparent touch panel, characterized in that the transparent conductive film of the plate and the transparent conductive film of the second electrode plate are arranged to face each other with a predetermined gap.
JP27510194A 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it Pending JPH08138446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27510194A JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27510194A JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Publications (1)

Publication Number Publication Date
JPH08138446A true JPH08138446A (en) 1996-05-31

Family

ID=17550781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27510194A Pending JPH08138446A (en) 1994-11-09 1994-11-09 Glass plate with transparent conductive film and transparent touch panel using it

Country Status (1)

Country Link
JP (1) JPH08138446A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2006268085A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Touch panel
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
CN107544712A (en) * 2017-08-10 2018-01-05 维沃移动通信有限公司 A kind of cover-plate glass, cover-plate glass preparation method and mobile terminal
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151532B2 (en) 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
WO2004014814A1 (en) * 2002-08-09 2004-02-19 3M Innovative Properties Company Multifunctional multilayer optical film
JP2006268085A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Touch panel
JP4532316B2 (en) * 2005-03-22 2010-08-25 日本板硝子株式会社 Touch panel
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
CN102837467A (en) * 2011-06-22 2012-12-26 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US10595574B2 (en) 2011-08-08 2020-03-24 Ford Global Technologies, Llc Method of interacting with proximity sensor with a glove
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US10501027B2 (en) 2011-11-03 2019-12-10 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US9447613B2 (en) 2012-09-11 2016-09-20 Ford Global Technologies, Llc Proximity switch based door latch release
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
CN107544712A (en) * 2017-08-10 2018-01-05 维沃移动通信有限公司 A kind of cover-plate glass, cover-plate glass preparation method and mobile terminal

Similar Documents

Publication Publication Date Title
JPH08138446A (en) Glass plate with transparent conductive film and transparent touch panel using it
JP2874556B2 (en) Glass plate with transparent conductive film and touch panel using the same
US8313620B2 (en) ITO-coated article for use with touch panel display assemblies, and/or method of making the same
JP3603496B2 (en) Electrode plate for liquid crystal display
JPH08151235A (en) Glass plate having electrically conductive transparent film and transparent touch panel
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
JP2871592B2 (en) Electrode substrate for display device
CN108028094A (en) The manufacture method of substrate, liquid crystal panel with transparency conducting layer and the substrate with transparency conducting layer
JPH1185396A (en) Low reflection glass for substrate of touch panel
TW202119104A (en) Liquid crystal display device and method of fabricating liquid crystal display device
JP3630374B2 (en) Glass with transparent conductive film and method for forming transparent conductive film
JPS6082660A (en) Formation of oxide layer
JPH08151234A (en) Glass plate having electrically conductive transparent film and transparent touch panel produced by using the glass
WO2013080819A1 (en) Liquid-crystal lens
JPH06316442A (en) Multilayer antireflection film having conductivity
JPH08160408A (en) Production of liquid crystal display element
JP3965166B2 (en) Light modulation element and manufacturing method thereof
JP2001192238A (en) Glass substrate for display
JP2704212B2 (en) Manufacturing method of electro-optical device
JPH08248451A (en) Electrochromic element
JPH07146480A (en) Manufacture of color filter board with transparent electroconductive film
JPH02140704A (en) Color filter
JP2001210144A (en) Substrate having transparent conductive layer and its manufacturing method
JPH07267680A (en) Glass provided with transparent electrically-conductive film having high transmittance
JPH10134638A (en) Transparent conductive film, its manufacture, substrate with transparent conductive film, and transparent touch panel with it