JPH07297870A - Tdma data receiver - Google Patents

Tdma data receiver

Info

Publication number
JPH07297870A
JPH07297870A JP8882894A JP8882894A JPH07297870A JP H07297870 A JPH07297870 A JP H07297870A JP 8882894 A JP8882894 A JP 8882894A JP 8882894 A JP8882894 A JP 8882894A JP H07297870 A JPH07297870 A JP H07297870A
Authority
JP
Japan
Prior art keywords
value
correlation
circuit
phase
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8882894A
Other languages
Japanese (ja)
Inventor
Noriaki Shinagawa
宜昭 品川
Kazuhisa Tsubaki
和久 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8882894A priority Critical patent/JPH07297870A/en
Publication of JPH07297870A publication Critical patent/JPH07297870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

PURPOSE:To implement automatic frequency control by taking correlation between reception data after base band delay detection and a known synchronization word and using a complex correlation and a correlation power. CONSTITUTION:A correlation arithmetic circuit 9 takes a base band signal corresponding to a known synchronization word from a synchronization word generating circuit 10 with received data for a block of synchronization words of I, Q signals and gives a complex correlation psi as an estimated phase error thetae due to a frequency offset to an averaging circuit 12 and a correlation power ¦psi¦ to a correlation power discrimination circuit 11. When the correlation power ¦psi¦ exceeds the threshold power, the discrimination circuit 11 gives its output to the averaging circuit 12 as a control signal, in which the complex correlation values psi in preceding and current reception slots are averaged and a resulting signal is fed to a phase compensation circuit 13. On the other hand, when the correlation power ¦psi¦ is less than the threshold power, the discrimination circuit 11 gives the complex correlation psi obtained in the precedingly received slot to the phase compensation circuit 13 after calculation of averaging as an estimated phase error thetae in a current reception slot. Then an estimate offset is used to compensate the phase and its output is given to discrimination circuits 14, 15, in which the signal is discriminated in terms of binarization and the result is outputted from a decoder 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル無線通信で
用いられる時分割多重アクセス(TDMA)データ受信装
置に関し、フレーム同期受信時、ベースバンド遅延検波
後の受信データと、既知の同期ワードとの相関をとり、
周波数オフセットに起因して位相誤差を補償し、相関パ
ワーの値を用いて自動周波数制御(AFC)を行うもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a time division multiple access (TDMA) data receiving apparatus used in digital radio communication, and at the time of frame synchronous reception, the received data after baseband differential detection and a known synchronous word are used. Correlate,
The phase error is compensated due to the frequency offset, and the automatic frequency control (AFC) is performed using the value of the correlation power.

【0002】[0002]

【従来の技術】図4は従来のTDMAデータ受信装置の
構成を示すブロック図であり、これは一例として、π/
4シフト4相位相変調(QPSK)波信号(以下、π/4
シフトQPSK変調波信号という)を受信する場合を示
す。
2. Description of the Related Art FIG. 4 is a block diagram showing the structure of a conventional TDMA data receiving apparatus.
4-shift 4-phase phase modulation (QPSK) wave signal (hereinafter π / 4
The case of receiving a shift QPSK modulated wave signal) is shown.

【0003】図4において、1はTDMAのπ/4シフ
トQPSK変調波信号を受信するアンテナ、2は受信信
号を波形整形するための受信用ルートナイキストバンド
パスフィルタ(以下、RNBPFと略称する)、3は前記
RNBPF2の出力に接続されるリミタアンプ、4は、
前記リミタアンプ3の出力を周波数変換し、ベースバン
ドの同相成分,直交成分を検出するための直交検波器、
5は前記直交検波器4に受信信号の搬送波周波数に準同
期した正弦波信号を供給するための局部発信器であり、
図2はこの局部発信器で周波数オフセットを生じている
ときのベースバンド遅延検波後の位相ダイアグラムを示
す。
In FIG. 4, 1 is an antenna for receiving a π / 4 shift QPSK modulated wave signal of TDMA, 2 is a receiving root Nyquist band pass filter (hereinafter abbreviated as RNBPF) for waveform shaping of the received signal, 3 is a limiter amplifier connected to the output of RNBPF2, and 4 is
A quadrature detector for frequency-converting the output of the limiter amplifier 3 to detect an in-phase component and a quadrature component of the baseband,
Reference numeral 5 is a local oscillator for supplying the quadrature detector 4 with a sine wave signal which is quasi-synchronized with the carrier frequency of the received signal,
FIG. 2 shows a phase diagram after baseband differential detection when a frequency offset is generated in this local oscillator.

【0004】6,7は、前記直交検波器4の同相成分,
直交成分出力をシンボル周期ごとにシンボルデータ識別
点においてサンプリングし、ディジタル信号に変換する
ためのA/D変換器、8は、前記A/D変換器6,7の
出力X,Yを取り込み、受信されたπ/4シフトQPS
K変調波信号の変調位相差の余弦と正弦を各々同相成分
I,直交成分Qとして出力するベースバンド遅延検波回
路、9は前記ベースバンド遅延検波回路8の出力である
I,Q信号の同期ワードの区間について、I,Q信号と
後述する同期ワード発生回路10から出力される既知同期
ワードに対応するベースバンド信号値の間の複素相関値
Ψを計算し、この複素相関値Ψの値を前記局部発信器5
での周波数オフセットに起因する位相誤差θeの推定値
の情報として後述する位相補償回路13に供給する相関演
算回路、10は既知の同期ワードに対応した変調位相差の
余弦と正弦をベースバンド信号として前記相関演算回路
9に供給する同期ワード発生回路、13は前記相関演算回
路9から供給される複素相関値Ψの値を用いてベースバ
ンド遅延検波回路8の出力信号I,Qに含まれる周波数
オフセットに起因した位相誤差θeを補償する位相補償
回路であり、図3はこの位相補償回路で位相補償を行っ
た後の判定結果の位相ダイアグラムを示す。
Reference numerals 6 and 7 denote in-phase components of the quadrature detector 4,
An A / D converter for sampling the quadrature component output at a symbol data identification point for each symbol period and converting it into a digital signal, and 8 takes in the outputs X and Y of the A / D converters 6 and 7 and receives them. Π / 4 shift QPS
A baseband delay detection circuit that outputs the cosine and sine of the modulation phase difference of the K modulation wave signal as the in-phase component I and the quadrature component Q, respectively, and 9 is the synchronization word of the I and Q signals output from the baseband delay detection circuit 8. For the section of, the complex correlation value Ψ between the I and Q signals and the baseband signal value corresponding to the known sync word output from the sync word generation circuit 10 described later is calculated, and the value of this complex correlation value Ψ is Local oscillator 5
Correlation calculation circuit to be supplied to the phase compensation circuit 13 described later as information of the estimated value of the phase error θe caused by the frequency offset at 10, and 10 as the cosine and sine of the modulation phase difference corresponding to the known synchronization word as the baseband signal. A synchronization word generation circuit to be supplied to the correlation operation circuit 9, 13 is a frequency offset included in the output signals I and Q of the baseband delay detection circuit 8 using the value of the complex correlation value Ψ supplied from the correlation operation circuit 9. This is a phase compensation circuit for compensating the phase error θe caused by the above. FIG. 3 shows a phase diagram of the determination result after the phase compensation is performed by this phase compensation circuit.

【0005】14,15は前記位相補償回路13の出力を2値
判定するための判定回路、16は前記判定回路14,15の出
力を2進のシリアルデータに変換するためのデコーダ、
17はデコーダ16の出力を受信データとして検出するため
の受信データ出力端子である。
Reference numerals 14 and 15 are decision circuits for binary-deciding the output of the phase compensation circuit 13, and 16 are decoders for converting the outputs of the decision circuits 14 and 15 into binary serial data.
Reference numeral 17 is a reception data output terminal for detecting the output of the decoder 16 as reception data.

【0006】次に上記従来例の動作について図4に基づ
き、図2,図3を参照しながら説明する。図4におい
て、アンテナ1から受信されたπ/4シフトQPSK変
調波信号は、RNBPF2,リミタアンプ3を経て直交
検波器4に入力され、ここを通してベースバンド信号に
周波数変換される。このとき、変調波信号のシンボルレ
ートをfR=1/T(T:シンボル周期)とすると、この
シンボル周期ごとにシンボルデータ識別点での受信信号
をサンプリングするA/D変換器6,7の出力X(n
T),Y(nT)は、(数1),(数2)のようになる。ただ
し、雑音は0であると仮定する。
Next, the operation of the above-mentioned conventional example will be described based on FIG. 4 and with reference to FIGS. In FIG. 4, the π / 4 shift QPSK modulated wave signal received from the antenna 1 is input to the quadrature detector 4 via the RNBPF 2 and the limiter amplifier 3, and is frequency-converted to a baseband signal through the quadrature detector 4. At this time, assuming that the symbol rate of the modulated wave signal is fR = 1 / T (T: symbol period), the outputs of the A / D converters 6 and 7 that sample the received signal at the symbol data identification point for each symbol period. X (n
T) and Y (nT) are as in (Equation 1) and (Equation 2). However, it is assumed that the noise is zero.

【0007】[0007]

【数1】X(nT)=COS(φ(nT)+2πΔfnT)[Expression 1] X (nT) = COS (φ (nT) + 2πΔfnT)

【0008】[0008]

【数2】Y(nT)=SIN(φ(nT))+2πΔfnT) (数1),(数2)において、φ(nT)は受信されたπ/4
シフトQPSK変調波信号の変調位相、Δfはこの変調
信号の中心周波数と局部発信器5の周波数の間の誤差で
ある周波数オフセット量を示す。ベースバンド遅延検波
回路8では、自局の受信スロットでのX(nT),Y(n
T)に対して、(数3),(数4)の演算を行う。
[Formula 2] Y (nT) = SIN (φ (nT)) + 2πΔfnT In (Formula 1) and (Formula 2), φ (nT) is the received π / 4.
The modulation phase, Δf, of the shift QPSK modulated wave signal indicates a frequency offset amount which is an error between the center frequency of this modulated signal and the frequency of the local oscillator 5. In the baseband differential detection circuit 8, X (nT), Y (n
The operations of (Equation 3) and (Equation 4) are performed on T).

【0009】[0009]

【数3】I(nT)=X(nT)X((n−1)T)+Y(nT)
Y((n−1)T)
## EQU3 ## I (nT) = X (nT) X ((n-1) T) + Y (nT)
Y ((n-1) T)

【0010】[0010]

【数4】Q(nT)=Y(nT)X((n−1)T)−X(n
T)Y((n−1)T) この結果、ベースバンド遅延検波回路8の同相出力I
(nT),直交出力Q(nT)には、(数5),(数6)で示さ
れるような受信されたπ/4シフトQPSK変調波信号
の変調位相差Δφ(nT)の余弦および正弦を発生する。
## EQU4 ## Q (nT) = Y (nT) X ((n-1) T) -X (n
T) Y ((n-1) T) As a result, the in-phase output I of the baseband differential detection circuit 8
(nT), the quadrature output Q (nT) is the cosine and sine of the modulation phase difference Δφ (nT) of the received π / 4 shift QPSK modulated wave signal as shown in (Equation 5) and (Equation 6). To occur.

【0011】[0011]

【数5】I(nT)=COS(Δφ(nT)+θe)[Equation 5] I (nT) = COS (Δφ (nT) + θe)

【0012】[0012]

【数6】Q(nT)=SIN(Δφ(nT)+θe)[Equation 6] Q (nT) = SIN (Δφ (nT) + θe)

【0013】[0013]

【数7】Δφ(nT)=φ(nT)−φ((n−1)T) ただし、(数5),(数6)におけるθeは、(数8)で表さ
れるような局部発信器5での周波数オフセットΔfに起
因する位相誤差であり、I,Q平面上の位相ダイアグラ
ムにおいては、図2に示すように毎シンボル一定方向の
位相回転として現れる。図2において、白丸印が正しい
受信信号点(Δφ)であり、黒丸印が周波数オフセットΔ
fの影響により位相シフトした信号点(Δφ+θe)であ
る。
[Formula 7] Δφ (nT) = φ (nT) −φ ((n−1) T) However, θe in (Formula 5) and (Formula 6) is the local transmission as represented by (Formula 8). This is a phase error caused by the frequency offset Δf in the device 5, and appears in the phase diagram on the I and Q planes as a phase rotation in a constant direction for each symbol as shown in FIG. In FIG. 2, the white circle indicates the correct received signal point (Δφ), and the black circle indicates the frequency offset Δ.
It is a signal point (Δφ + θe) whose phase is shifted by the influence of f.

【0014】[0014]

【数8】θe=2πΔfT 以下の説明においては、同相成分,直交成分を持つ信号
は同相成分を実数部、直交成分を虚数部に持つ複素信号
として表現する。
## EQU00008 ## .theta.e = 2.pi..DELTA.fT In the following description, a signal having an in-phase component and a quadrature component is expressed as a complex signal having an in-phase component in the real part and an quadrature component in the imaginary part.

【0015】自局の受信スロットでのベースバンド遅延
検波回路8の出力を(数9)に示すような複素信号S(n
T)として表現する。
The output of the baseband differential detection circuit 8 in the receiving slot of the local station is the complex signal S (n
Express as T).

【0016】[0016]

【数9】 S(nT)=I(nT)+jQ(nT) =exp(j(Δφ(nT)+θe)) (j:虚数) また、ここでは、各受信スロットはLシンボルの同期ワ
ードを持ち、自局の受信スロットの同期ワードは既知で
あると仮定する。そして、この既知の同期ワードに対応
するベースバンド信号を複素信号として(数10)に示すS
i(kT)(k=0,1,2,………L-1)として表現し、
この複素信号が同期ワード発生回路10から出力されるも
のとする。
## EQU00009 ## S (nT) = I (nT) + jQ (nT) = exp (j (.DELTA..phi. (NT) +. Theta.e)) (j: imaginary number) Further, here, each reception slot has a synchronization word of L symbols. , It is assumed that the synchronization word of the reception slot of the local station is already known. Then, the baseband signal corresponding to this known sync word is expressed as a complex signal in S shown in (Equation 10).
Expressed as i (kT) (k = 0, 1, 2, ... L-1),
It is assumed that this complex signal is output from the synchronization word generation circuit 10.

【0017】[0017]

【数10】Si(kT)=exp(jΔφi(kT)) (k=0,1,………L-1) さらに、各受信スロットでのベースバンド遅延検波後の
受信データS(nT)について、1番目からL番目のシン
ボル(S(0)〜S((L-1)T))に同期ワードが存在すると
仮定する。このとき、相関演算回路9ではS(nT)の同
期ワードの区間について、(数11)に示すように既知の同
期ワードSi(kT)との複素相関値Ψを計算する。
## EQU10 ## Si (kT) = exp (jΔφi (kT)) (k = 0, 1, ... L-1) Further, regarding the reception data S (nT) after the baseband differential detection in each reception slot. It is assumed that a sync word exists in the 1st to Lth symbols (S (0) to S ((L-1) T)). At this time, the correlation calculation circuit 9 calculates the complex correlation value Ψ with the known sync word Si (kT) as shown in (Equation 11) for the section of the sync word of S (nT).

【0018】[0018]

【数11】 [Equation 11]

【0019】また、(数11)において、k=0,1,……
…L-1でのS(kT)は同期ワードであることから、(数
9),(数10)より(数12)の関係が成立する。
Also, in (Equation 11), k = 0, 1, ...
Since S (kT) at L-1 is a synchronization word, the relationship of (Equation 12) is established from (Equation 9) and (Equation 10).

【0020】[0020]

【数12】S(kT)=exp(j(Δφi(kT)+θe)) (k=0,1,………L-1) よって、(数10),(数12)を(数11)に代入すると、[Equation 12] S (kT) = exp (j (Δφi (kT) + θe)) (k = 0, 1, ... L-1) Therefore, (Equation 10) and (Equation 12) are transformed into (Equation 11) Substituting into

【0021】[0021]

【数13】 [Equation 13]

【0022】となり、複素相関値Ψは周波数オフセット
に起因した位相誤差θeの情報を与える。位相補償回路1
3では、(数13)で与えられる複素相関値Ψの値を用い、
(数14)に示すような演算を行い、ベースバンド遅延検波
回路8の出力S(nT)に含まれる位相誤差θeを補償す
る。
The complex correlation value Ψ gives information on the phase error θe caused by the frequency offset. Phase compensation circuit 1
In 3, the value of the complex correlation value Ψ given by (Equation 13) is used,
The calculation shown in (Equation 14) is performed to compensate for the phase error θe included in the output S (nT) of the baseband differential detection circuit 8.

【0023】[0023]

【数14】 [Equation 14]

【0024】なお、位相補償回路13はノイズが0のとき
は、−π<θe<π(−fR/2<Δf<fR/2)が補償範
囲となる。位相補償回路13の出力Se(nT)=Ie(nT)
+jQe(nT)は判定回路14,15において、図3に示す
ように受信信号点Δφ(×印)がI,Q平面上の第1象限
に存在する場合はΔφ=π/4、第2象限に存在する場
合はΔφ=3π/4、第3象限に存在する場合はΔφ=
−3π/4、第4象限に存在する場合はΔφ=−π/4と
判定(判定値Δφi:○印)され、さらにその出力はデコ
ーダ16により2進のシリアルデータに変換され、受信デ
ータ出力端子17から出力される。
When the noise of the phase compensation circuit 13 is zero, the compensation range is -π <θe <π (-fR / 2 <Δf <fR / 2). Output of phase compensation circuit 13 Se (nT) = Ie (nT)
In the decision circuits 14 and 15, + jQe (nT) is Δφ = π / 4 when the reception signal point Δφ (x mark) exists in the first quadrant on the I and Q planes as shown in FIG. Δφ = 3π / 4 when present in the quadrant, and Δφ = when present in the third quadrant
-3π / 4, if it exists in the 4th quadrant, Δφ = −π / 4 is determined (determination value Δφi: ◯ mark), and its output is further converted to binary serial data by the decoder 16 and received data output Output from terminal 17.

【0025】このように、上記従来のTDMAデータ受
信装置においても、フレーム同期受信時、ベースバンド
遅延検波後の受信データと既知の同期ワードの相関をと
ることにより周波数オフセットに起因した位相誤差を推
定し、その補償、つまり自動周波数制御(AFC)を行う
ことができる。
As described above, also in the conventional TDMA data receiving apparatus, the phase error caused by the frequency offset is estimated by correlating the received data after the baseband delay detection with the known sync word at the time of frame synchronous reception. However, the compensation, that is, automatic frequency control (AFC) can be performed.

【0026】[0026]

【発明が解決しようとする課題】しかしながら、上記の
従来のTDMAデータ受信装置では、ノイズやフェージ
ングの影響により受信データの同期ワードの区間が歪ん
でしまった場合、既知の同期ワードとの複素相関値とし
て与えられる周波数オフセットに起因する位相誤差の推
定精度が悪くなり、その推定値を用いて位相補償を行う
と、却ってそのスロットでの受信データが劣化してしま
うという問題があった。
However, in the above-mentioned conventional TDMA data receiving apparatus, when the section of the sync word of the received data is distorted due to the influence of noise or fading, a complex correlation value with a known sync word is obtained. There is a problem that the estimation accuracy of the phase error due to the frequency offset given as is deteriorated, and if the estimated value is used for the phase compensation, the received data in the slot is deteriorated.

【0027】本発明は、このような従来の問題を解決す
るものであり、ベースバンド遅延検波後の受信データと
既知の同期ワードの相関をとり、その複素相関値および
相関パワーの値を用いて、高精度の自動周波数制御(A
FC)を行うことを目的とする。
The present invention is intended to solve such a conventional problem by taking a correlation between received data after baseband differential detection and a known sync word, and using the complex correlation value and the correlation power value. , High precision automatic frequency control (A
FC).

【0028】[0028]

【課題を解決するための手段】本発明は上記目的を達成
するため、フレーム同期受信時、ベースバンド遅延検波
後の受信データと、既知の同期ワードとの相関をとるこ
とにより周波数オフセットに起因した位相誤差を補償
し、自動周波数制御を行うTDMAデータ受信装置にお
いて、相関演算回路から供給される相関パワー|Ψ|の
値が設定されたしきい値を超えるか、もしくはしきい値
未満であるかを判定し、その判定結果を制御信号として
後記スロット間平均回路に供給する相関パワー判定回路
と、前記相関パワー判定回路からの制御信号に応じて、
もし相関パワー|Ψ|の値がしきい値を超えている場合
は、前記相関演算回路より複素相関値Ψを取り込み過去
の受信スロットで得られた複素相関値Ψの値との間で平
均値Ψaを計算し、その結果、平均値Ψaを直交検波器の
局部発信器での周波数オフセットに起因する位相誤差θ
eの推定値の情報として位相補償回路に供給し、相関パ
ワー|Ψ|の値がしきい値未満である場合は、現受信ス
ロットで得られた複素相関値Ψは信頼性が低いとしてこ
の値を無視し、前の受信スロットで得られた複素相関値
Ψの値を現受信スロットでの位相誤差θeの推定値とし
て採用し、過去の受信スロットで得られた複素相関値Ψ
の値との間で平均値Ψaを計算し、その結果、平均値Ψa
を前記位相補償回路に供給するスロット間平均回路とを
付加したことを特徴とする。
In order to achieve the above-mentioned object, the present invention results from frequency offset by correlating received data after baseband differential detection with a known sync word at the time of frame sync reception. In a TDMA data receiver that compensates for phase errors and performs automatic frequency control, is the value of the correlation power | Ψ | supplied from the correlation calculation circuit greater than or less than a set threshold value? And a correlation power determination circuit that supplies the determination result as a control signal to a slot-to-slot averaging circuit to be described later, according to a control signal from the correlation power determination circuit,
If the value of the correlation power | Ψ | exceeds the threshold value, the complex correlation value Ψ is fetched from the correlation calculation circuit, and the average value is calculated between it and the value of the complex correlation value Ψ obtained in the past reception slot. Ψa is calculated, and as a result, the average value Ψa is calculated as the phase error θ due to the frequency offset at the local oscillator of the quadrature detector.
When the value of the correlation power | Ψ | is less than the threshold value, the complex correlation value Ψ obtained in the current reception slot is considered to be unreliable and is supplied to the phase compensation circuit as the information of the estimated value of e. Is ignored and the value of the complex correlation value Ψ obtained in the previous reception slot is adopted as the estimated value of the phase error θe in the current reception slot, and the complex correlation value Ψ obtained in the past reception slot is calculated.
And the average value Ψa is calculated, and as a result, the average value Ψa is calculated.
Is added to the phase compensating circuit.

【0029】[0029]

【作用】したがって、本発明によれば、既知の同期ワー
ドとの複素相関値を求めると同時に、その相関パワーも
計算し、複素相関値が周波数オフセットに起因した位相
誤差の推定値として信頼性が高いか低いかを相関パワー
の値から判定し、信頼性が低い場合は、その推定値を排
除して1つ前の受信スロットで得られた複素相関値を現
受信スロットでの位相誤差θeの推定値として採用し、
さらに過去の受信スロットで得られた推定値との平均値
を求めることにより、高精度に位相誤差を推定し、自動
周波数制御(AFC)を行う。
Therefore, according to the present invention, the complex correlation value with a known sync word is calculated, and at the same time, the correlation power thereof is calculated, and the reliability of the complex correlation value as an estimated value of the phase error caused by the frequency offset is high. Whether it is high or low is judged from the value of the correlation power, and when the reliability is low, the estimated value is excluded and the complex correlation value obtained in the reception slot immediately before is calculated as the phase error θe of the current reception slot. Adopted as an estimate,
Further, the phase error is estimated with high accuracy by obtaining the average value with the estimated value obtained in the past reception slot, and the automatic frequency control (AFC) is performed.

【0030】[0030]

【実施例】図1は本発明の一実施例におけるTDMAデ
ータ受信装置の構成を示すブロック図であり、これは一
例として、前記図4の従来例と同じπ/4シフトQPS
K変調波信号を受信する場合であるが、差動符号化N相
PSK(N=4,8,16,………)変調波用TDMAデー
タ受信装置についても同様に実施できるものである。
FIG. 1 is a block diagram showing the configuration of a TDMA data receiving apparatus according to an embodiment of the present invention. This is, as an example, the same .pi. / 4 shift QPS as the conventional example shown in FIG.
The case of receiving a K modulated wave signal is also applicable to a TDMA data receiving apparatus for differentially encoded N-phase PSK (N = 4, 8, 16, ...) Modulated wave.

【0031】前記図4と同じ機能ブロックには同じ符号
を付し、その説明を省略するが、機能上、異なる各ブロ
ックについて説明する。
The same functional blocks as those in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted. However, functionally different blocks will be described.

【0032】本実施例における相関演算回路9はベース
バンド遅延検波回路8の出力であるI,Q信号の同期ワ
ードの区間について、I,Q信号と後述する同期ワード
発生回路10から出力される既知同期ワードに対応するベ
ースバンド信号値の間の複素相関値Ψおよびその相関パ
ワー|Ψ|を計算し、複素相関値Ψの値を局部発信器5
での周波数オフセットに起因する位相誤差θeの推定値
の情報として後述するスロット間平均回路12に供給し、
また相関パワー|Ψ|の値を位相誤差情報の信頼性情報
として後述する相関パワー判定回路11に供給するもので
ある。
The correlation calculation circuit 9 in this embodiment outputs a known signal output from the I / Q signal and a later-described sync word generation circuit 10 for the sync word section of the I / Q signal output from the baseband delay detection circuit 8. The complex correlation value Ψ between the baseband signal values corresponding to the synchronization word and its correlation power | Ψ | are calculated, and the value of the complex correlation value Ψ is calculated by the local oscillator 5
Is supplied to the inter-slot averaging circuit 12, which will be described later, as information on the estimated value of the phase error θe due to the frequency offset at
Further, the value of the correlation power | Ψ | is supplied to the correlation power determination circuit 11 described later as reliability information of the phase error information.

【0033】前出の相関パワー判定回路11およびスロッ
ト間平均回路12は、本発明の特徴をなす付加回路であ
る。ここで、相関パワー判定回路11は、前記相関演算回
路9から供給される相関パワー|Ψ|の値が設定された
しきい値を超えるか、もしくはしきい値未満であるかを
判定し、その判定結果を制御信号として後述するスロッ
ト間平均回路12に供給するものである。
The correlation power determination circuit 11 and the inter-slot averaging circuit 12 described above are additional circuits that characterize the present invention. Here, the correlation power determination circuit 11 determines whether the value of the correlation power | Ψ | supplied from the correlation calculation circuit 9 exceeds the set threshold value or is less than the threshold value, and The determination result is supplied as a control signal to an inter-slot averaging circuit 12 described later.

【0034】前出のスロット間平均回路12は、前記相関
パワー判定回路11からの制御信号に応じて、もし相関パ
ワー|Ψ|の値がしきい値を超えている場合は、前記相
関演算回路9より複素相関値Ψを取り込み、過去の受信
スロットで得られた複素相関値Ψの値との間で平均値Ψ
aを計算し、その結果、平均値Ψaを局部発信器5での周
波数オフセットに起因する位相誤差θeの推定値の情報
として後述する位相補償回路13に供給し、相関パワー|
Ψ|の値がしきい値未満である場合は、現受信スロット
で得られた複素相関値Ψは信頼性が低いとしてこの値を
無視し、1つ前の受信スロットで得られた複素相関値Ψ
の値を現受信スロットでの位相誤差θeの推定値として
採用し、さらに過去の受信スロットで得られた複素相関
値Ψの値との間で平均値Ψaを計算し、その結果、平均
値Ψaを後述する位相補償回路13に供給するものであ
る。
The inter-slot averaging circuit 12 described above responds to the control signal from the correlation power determination circuit 11 if the correlation power | Ψ | exceeds a threshold value. The complex correlation value Ψ is taken in from 9 and the average value Ψ is obtained with the value of the complex correlation value Ψ obtained in the past reception slot.
a is calculated, and as a result, the average value Ψa is supplied to the phase compensation circuit 13 described later as information of the estimated value of the phase error θe due to the frequency offset in the local oscillator 5, and the correlation power |
If the value of Ψ | is less than the threshold value, the complex correlation value Ψ obtained in the current reception slot is considered to be unreliable and this value is ignored, and the complex correlation value obtained in the previous reception slot is ignored. Ψ
Is used as the estimated value of the phase error θe in the current receiving slot, and the average value Ψa is calculated with the value of the complex correlation value Ψ obtained in the past receiving slot. Is supplied to a phase compensation circuit 13 described later.

【0035】また位相補償回路13は、前記スロット間平
均回路12から供給される平均値Ψaを用い、ベースバン
ド遅延検波回路8の出力信号I,Qに含まれる周波数オ
フセットに起因した位相誤差θeを補償するものであ
る。
The phase compensating circuit 13 uses the average value Ψa supplied from the inter-slot averaging circuit 12 to calculate the phase error θe due to the frequency offset contained in the output signals I and Q of the baseband delay detection circuit 8. To compensate.

【0036】次に、上記本実施例の動作について図1に
基づき、図3を参照しながら説明するが、前記図4に示
す従来のTDMAデータ受信装置における受信動作にお
いて、アンテナ1から受信されたπ/4シフトQPSK
変調波信号に基づき同期ワード発生回路10から出力され
る既知の同期ワード(数1ないし数10)を出力するまで
は、本実施例も同様であるので、以下その動作について
説明する。なお、IQ平面上の位相ダイアグラムについ
ては、前記図2に示すように毎シンボル一定方向の位相
回転として現れるものとしている。
Next, the operation of this embodiment will be described based on FIG. 1 with reference to FIG. 3. In the receiving operation of the conventional TDMA data receiving apparatus shown in FIG. π / 4 shift QPSK
This embodiment is the same until the known sync word (numerical expression 1 to several 10) output from the sync word generating circuit 10 based on the modulated wave signal is output. Therefore, the operation will be described below. Note that the phase diagram on the IQ plane appears as a phase rotation in a fixed direction for each symbol as shown in FIG.

【0037】まず、ベースバンド遅延検波回路8におけ
る各受信スロットでのベースバンド遅延検波後の受信デ
ータS(nT)について、1番目からL番目のシンボル
(S(0)〜S((L-1)T))に同期ワードが存在すると仮定
する。このとき、相関演算回路9ではS(nT)の同期ワ
ードの区間について、(数15),(数16)に示すように、既
知の同期ワードSi(kT)との複素相関値Ψおよびその
相関パワー|Ψ|を計算する。
First, for the reception data S (nT) after the baseband differential detection in each reception slot in the baseband differential detection circuit 8, the 1st to Lth symbols
Suppose there is a sync word at (S (0) -S ((L-1) T)). At this time, the correlation calculation circuit 9 calculates the complex correlation value Ψ and its correlation with the known synchronization word Si (kT) as shown in (Equation 15) and (Equation 16) for the section of the S (nT) synchronization word. Calculate the power | Ψ |

【0038】[0038]

【数15】 [Equation 15]

【0039】[0039]

【数16】 [Equation 16]

【0040】一方、受信データに重畳するノイズやフェ
ージングの影響を考慮し、前記(数9)のS(nT)を改め
て(数17)のように表す。
On the other hand, considering the influence of noise and fading superimposed on the received data, S (nT) in the above (Equation 9) is expressed again as (Equation 17).

【0041】[0041]

【数17】 S(nT)=exp(j(Δφ(nT)+δ(nT)+θe) ただし、(数17)におけるδ(nT)は、ノイズやフェージ
ングによって生じる時刻に依存した誤差成分である。こ
のとき、(数15)においてk=0,1,………、L-1での
S(kT)は同期ワードであることから、前記(数10),
(数17)より次の関係が成立する。
S (nT) = exp (j (Δφ (nT) + δ (nT) + θe) where δ (nT) in (Equation 17) is a time-dependent error component caused by noise or fading. At this time, since k = 0, 1, ..., And, S (kT) at L-1 in (Equation 15) is a synchronization word, the above (Equation 10),
From (Equation 17), the following relation holds.

【0042】[0042]

【数18】 S(kT)=exp(j(Δφi(kT)+δ(kT)+θe) (k=0,1,………L-1) よって、(数10),(数18)を(数15),(数16)に代入する
と、以下のような結果が得られる。
S (kT) = exp (j (Δφi (kT) + δ (kT) + θe) (k = 0, 1, ... L-1) Therefore, (Equation 10) and (Equation 18) are changed to ( Substituting into (Equation 15) and (Equation 16), the following results are obtained.

【0043】[0043]

【数19】 [Formula 19]

【0044】[0044]

【数20】 [Equation 20]

【0045】(数19),(数20)において、δ(kT)=0の
場合は、
In (Equation 19) and (Equation 20), when δ (kT) = 0,

【0046】[0046]

【数21】Ψ=exp(jθe)Ψ = exp (jθe)

【0047】[0047]

【数22】|Ψ|=1 となり、相関パワー|Ψ|は最大値1を示し、複素相関
値Ψには位相誤差θeの推定値として正しい情報が得ら
れる。一方、δ(kT)≠0のときは(数20)より、
| Ψ | = 1, the correlation power | Ψ | shows the maximum value 1, and the correct information is obtained as the estimated value of the phase error θe in the complex correlation value Ψ. On the other hand, when δ (kT) ≠ 0, from (Equation 20),

【0048】[0048]

【数23】|Ψ|<1 となり、複素相関値Ψの値としては(数19)に示すように
推定誤差θeを含んだ結果が得られる。よって(数21)〜
(数23)の結果より、相関パワー|Ψ|は、複素相関値Ψ
が周波数オフセットに起因する位相誤差θeの推定値の
情報として信頼できるか否かを示す信頼性情報として使
えることがわかる。ここでは、相関パワー判定回路11に
おいて、相関パワー|Ψ|の値がしきい値を超えている
場合は複素相関値Ψの値は信頼できると判定し、相関パ
ワー|Ψ|の値がしきい値未満である場合、複素相関値
Ψの値は誤差が大きくて信頼できないと判定し、その結
果を制御信号としてスロット間平均回路12に供給する
[Expression 23] | Ψ | <1 and the result including the estimation error θe is obtained as the value of the complex correlation value Ψ, as shown in (Expression 19). Therefore (Equation 21) ~
From the result of (Equation 23), the correlation power | Ψ |
It can be seen that can be used as reliability information indicating whether or not it can be trusted as the information of the estimated value of the phase error θe due to the frequency offset. Here, the correlation power determination circuit 11 determines that the value of the complex correlation value Ψ is reliable when the value of the correlation power | Ψ | exceeds the threshold value, and the value of the correlation power | Ψ | If it is less than the value, it is determined that the value of the complex correlation value Ψ has a large error and is unreliable, and the result is supplied to the inter-slot averaging circuit 12 as a control signal.

【0049】[0049]

【外1】 [Outer 1]

【0050】すなわち、That is,

【0051】[0051]

【数24】 [Equation 24]

【0052】と設定する。Set as follows.

【0053】[0053]

【外2】 [Outside 2]

【0054】[0054]

【数25】 [Equation 25]

【0055】[0055]

【外3】 [Outside 3]

【0056】[0056]

【数26】 [Equation 26]

【0057】なお、位相補償回路13はノイズが0のとき
は、−π<θe<π(−fR/2<Δf<fR/2)が補償範
囲となる。位相補償回路13の出力Se(nT)=Ie(nT)
+jQe(nT)は判定回路14,15において、図3に示す
ように受信信号点がI,Q平面上の第1象限に存在する
場合はΔφ=π/4、第2象限に存在する場合はΔφ=
3π/4、第3象限に存在する場合はΔφ=−3π/4、
第4象限に存在する場合はΔφ=−π/4と判定され、
さらにその出力はデコーダ16により2進のシリアルデー
タに変換され、受信データ出力端子17から出力される。
When the noise of the phase compensation circuit 13 is 0, the compensation range is −π <θe <π (−fR / 2 <Δf <fR / 2). Output of phase compensation circuit 13 Se (nT) = Ie (nT)
In the decision circuits 14 and 15, + jQe (nT) is Δφ = π / 4 when the received signal point exists in the first quadrant on the I and Q planes, and when it exists in the second quadrant as shown in FIG. Δφ =
3π / 4, Δφ = −3π / 4 when present in the third quadrant,
When it exists in the 4th quadrant, it is determined that Δφ = −π / 4,
Further, its output is converted into binary serial data by the decoder 16 and output from the reception data output terminal 17.

【0058】このように、上記実施例によれば、既知の
同期ワードとの複素相関値Ψを求めると同時に、その相
関パワー|Ψ|も計算し、複素相関値Ψが周波数オフセ
ットに起因した位相誤差の推定値として信頼性が高いか
低いかを相関パワー|Ψ|の値から判定し、信頼性が低
い場合は、その推定値を排除して1つ前の受信スロット
で得られた複素相関値Ψを現受信スロットでの位相誤差
θeの推定値として採用し、さらに過去の受信スロット
で得られた推定値との平均値を求めることにより、高精
度に位相誤差を推定し、自動周波数制御(AFC)を行う
ことができる。
As described above, according to the above-described embodiment, the complex correlation value Ψ with the known synchronization word is obtained, and at the same time, the correlation power │Ψ│ is calculated, and the phase of the complex correlation value Ψ caused by the frequency offset is calculated. Whether the reliability is high or low as an estimated value of the error is determined from the value of the correlation power | Ψ |, and when the reliability is low, the estimated value is excluded and the complex correlation obtained in the preceding reception slot. The value Ψ is used as the estimated value of the phase error θe in the current receiving slot, and the average value with the estimated values obtained in the past receiving slots is obtained to estimate the phase error with high accuracy and perform automatic frequency control. (AFC) can be performed.

【0059】[0059]

【発明の効果】以上説明したように、本発明のTDMA
データ受信装置は、既知の同期ワードとの複素相関値を
求めると同時に、その相関パワーも計算し、複素相関値
が周波数オフセットに起因した位相誤差の推定値として
信頼性が高いか低いかを相関パワーの値から判定し、信
頼性が低い場合はその推定値を排除して1つ前の受信ス
ロットで得られた複素相関値を現受信スロットでの位相
誤差θeの推定値として採用し、さらに過去の受信スロ
ットで得られた推定値との平均値を求めることにより、
高精度の位相誤差を推定し、自動周波数制御(AFC)を
行うことができるものである。
As described above, the TDMA of the present invention.
The data receiving device calculates the complex correlation value with the known sync word, and at the same time, calculates the correlation power, and correlates whether the complex correlation value is high or low as the estimated value of the phase error caused by the frequency offset. Judging from the power value, when the reliability is low, the estimated value is eliminated and the complex correlation value obtained in the immediately preceding receiving slot is adopted as the estimated value of the phase error θe in the current receiving slot. By obtaining the average value with the estimated value obtained in the past reception slot,
It is possible to estimate a highly accurate phase error and perform automatic frequency control (AFC).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるTDMAデータ受信
装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a TDMA data receiving apparatus according to an embodiment of the present invention.

【図2】図1,図4の局部発信器で周波数オフセットを
生じているときの位相ダイアグラムである。
FIG. 2 is a phase diagram when a frequency offset is generated in the local oscillators of FIGS. 1 and 4.

【図3】図1,図4の位相補償を行った後の判定回路出
力の位相ダイアグラムである。
FIG. 3 is a phase diagram of the output of the determination circuit after performing the phase compensation of FIGS.

【図4】従来のTDMAデータ受信装置の構成を示すブ
ロック図である。
FIG. 4 is a block diagram showing a configuration of a conventional TDMA data receiving device.

【符号の説明】[Explanation of symbols]

1…アンテナ、 2…受信用ルートナイキストバンドパ
スフィルタ(RNBPF)、 3…リミタアンプ、 4…
直交検波器、 5…局部発信器、 6,7…A/D変換
器、 8…ベースバンド遅延検波回路、 9…相関演算
回路、 10…同期ワード発生回路、 11…相関パワー判
定回路、 12…スロット間平均回路、 13…位相補償回
路、 14,15…判定回路、 16…デコーダ、 17…受信
データ出力端子。
1 ... Antenna, 2 ... Reception root Nyquist bandpass filter (RNBPF), 3 ... Limiter amplifier, 4 ...
Quadrature detector, 5 ... Local oscillator, 6, 7 ... A / D converter, 8 ... Baseband delay detection circuit, 9 ... Correlation calculation circuit, 10 ... Synchronization word generation circuit, 11 ... Correlation power determination circuit, 12 ... Inter-slot averaging circuit, 13 ... Phase compensation circuit, 14, 15 ... Judgment circuit, 16 ... Decoder, 17 ... Received data output terminal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フレーム同期受信時、ベースバンド遅延
検波後の受信データと既知の同期ワードとの相関をとる
ことにより、周波数オフセットに起因した位相誤差を補
償し、自動周波数制御を行うTDMAデータ受信装置に
おいて、 相関演算回路から供給される相関パワー|Ψ|の値が設
定されたしきい値を超えるか、もしくはしきい値未満で
あるかを判定し、その判定結果を制御信号として後記ス
ロット間平均回路に供給する相関パワー判定回路と、前
記相関パワー判定回路からの制御信号に応じて、もし相
関パワー|Ψ|の値がしきい値を超えている場合は、前
記相関演算回路より複素相関値Ψを取り込み過去の受信
スロットで得られた複素相関値Ψの値との間で平均値Ψ
aを計算し、その結果、平均値Ψaを直交検波器の局部発
信器での周波数オフセットに起因する位相誤差θeの推
定値の情報として位相補償回路に供給し、相関パワー|
Ψ|の値がしきい値未満である場合は、現受信スロット
で得られた複素相関値Ψは信頼性が低いとしてこの値を
無視し、前の受信スロットで得られた複素相関値Ψの値
を現受信スロットでの位相誤差θeの推定値として採用
し、過去の受信スロットで得られた複素相関値Ψの値と
の間で平均値Ψaを計算し、その結果、平均値Ψaを前記
位相補償回路に供給するスロット間平均回路とを付加し
たことを特徴とするTDMAデータ受信装置。
1. A TDMA data reception for performing automatic frequency control by compensating a phase error caused by a frequency offset by correlating received data after baseband differential detection and a known synchronization word during frame synchronous reception. In the device, it is determined whether the value of the correlation power | Ψ | supplied from the correlation calculation circuit exceeds the set threshold value or is less than the set threshold value. Depending on the correlation power determination circuit supplied to the averaging circuit and the control signal from the correlation power determination circuit, if the value of the correlation power | Ψ | The average value Ψ is taken from the value of the complex correlation value Ψ obtained in the past reception slot by taking in the value Ψ.
a is calculated, and as a result, the average value Ψa is supplied to the phase compensation circuit as the information of the estimated value of the phase error θe due to the frequency offset at the local oscillator of the quadrature detector, and the correlation power |
If the value of Ψ | is less than the threshold value, the complex correlation value Ψ obtained in the current reception slot is considered to be unreliable and this value is ignored, and the complex correlation value Ψ obtained in the previous reception slot is The value is adopted as the estimated value of the phase error θe in the current reception slot, and the average value Ψa is calculated with the value of the complex correlation value Ψ obtained in the past reception slot. A TDMA data receiving device characterized in that an inter-slot averaging circuit supplied to a phase compensation circuit is added.
JP8882894A 1994-04-26 1994-04-26 Tdma data receiver Pending JPH07297870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8882894A JPH07297870A (en) 1994-04-26 1994-04-26 Tdma data receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8882894A JPH07297870A (en) 1994-04-26 1994-04-26 Tdma data receiver

Publications (1)

Publication Number Publication Date
JPH07297870A true JPH07297870A (en) 1995-11-10

Family

ID=13953807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8882894A Pending JPH07297870A (en) 1994-04-26 1994-04-26 Tdma data receiver

Country Status (1)

Country Link
JP (1) JPH07297870A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556089A (en) * 1991-08-27 1993-03-05 Sony Corp Receiver
JPH08223237A (en) * 1995-02-08 1996-08-30 Nippon Telegr & Teleph Corp <Ntt> Digital demodulator
JPH09200280A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Frequency offset compensator
JPH09200170A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Demodulator
JPH09224062A (en) * 1996-02-15 1997-08-26 Matsushita Electric Ind Co Ltd Data receiver
JPH10276233A (en) * 1997-03-28 1998-10-13 Sony Corp Radio receiver and radio reception method
JPH114267A (en) * 1997-06-13 1999-01-06 Kenwood Corp Absolute phase making circuit
JP2000115269A (en) * 1998-10-09 2000-04-21 Futaba Corp Carrier phase tracking device and frequency hopping receiver
JP2000115266A (en) * 1998-10-09 2000-04-21 Futaba Corp Symbol synchronization device and frequency hopping receiver
JP2000244591A (en) * 1999-02-24 2000-09-08 Nec Corp Circuit and method for demodulation and modulation
WO2000077961A1 (en) * 1999-06-15 2000-12-21 Samsung Electronics Co., Ltd. Apparatus and method for achieving symbol timing and frequency synchronization to orthogonal frequency division multiplexing signal
WO2001001590A1 (en) * 1999-06-29 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Automatic frequency control circuit and demodulator
JP2002290488A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Estimating device for amount of frequency offset
JP2004364157A (en) * 2003-06-06 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> Carrier synchronous circuit
JP2010016827A (en) * 2008-07-01 2010-01-21 Fujitsu Ltd Method and apparatus for adaptive optimization of average length in phase recovery
JP2013046382A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Radio signal synchronous processing apparatus
JP2014165863A (en) * 2013-02-27 2014-09-08 Panasonic Corp Receiver and communication method
US9712316B2 (en) 2013-02-27 2017-07-18 Panasonic Corporation Reception apparatus, phase error estimation method, and phase error correction method
JP2017216500A (en) * 2016-05-30 2017-12-07 日本電気株式会社 Signal detector and signal detection method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556089A (en) * 1991-08-27 1993-03-05 Sony Corp Receiver
JPH08223237A (en) * 1995-02-08 1996-08-30 Nippon Telegr & Teleph Corp <Ntt> Digital demodulator
JPH09200280A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Frequency offset compensator
JPH09200170A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Demodulator
JPH09224062A (en) * 1996-02-15 1997-08-26 Matsushita Electric Ind Co Ltd Data receiver
JPH10276233A (en) * 1997-03-28 1998-10-13 Sony Corp Radio receiver and radio reception method
US6246281B1 (en) 1997-06-13 2001-06-12 Kabushiki Kaisha Kenwood Absolute phasing circuit
JPH114267A (en) * 1997-06-13 1999-01-06 Kenwood Corp Absolute phase making circuit
JP2000115269A (en) * 1998-10-09 2000-04-21 Futaba Corp Carrier phase tracking device and frequency hopping receiver
JP2000115266A (en) * 1998-10-09 2000-04-21 Futaba Corp Symbol synchronization device and frequency hopping receiver
JP2000244591A (en) * 1999-02-24 2000-09-08 Nec Corp Circuit and method for demodulation and modulation
US7110476B1 (en) 1999-02-24 2006-09-19 Nec Corporation Demodulation and modulation circuit and demodulation and modulation method
WO2000077961A1 (en) * 1999-06-15 2000-12-21 Samsung Electronics Co., Ltd. Apparatus and method for achieving symbol timing and frequency synchronization to orthogonal frequency division multiplexing signal
US6353642B1 (en) 1999-06-29 2002-03-05 Mitsubishi Denki Kabushiki Kaisha Automatic frequency controller and demodulator unit
WO2001001590A1 (en) * 1999-06-29 2001-01-04 Mitsubishi Denki Kabushiki Kaisha Automatic frequency control circuit and demodulator
JP3983542B2 (en) * 1999-06-29 2007-09-26 三菱電機株式会社 Automatic frequency control circuit and demodulator
JP2002290488A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Estimating device for amount of frequency offset
JP2004364157A (en) * 2003-06-06 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> Carrier synchronous circuit
JP2010016827A (en) * 2008-07-01 2010-01-21 Fujitsu Ltd Method and apparatus for adaptive optimization of average length in phase recovery
JP2013046382A (en) * 2011-08-26 2013-03-04 Mitsubishi Electric Corp Radio signal synchronous processing apparatus
JP2014165863A (en) * 2013-02-27 2014-09-08 Panasonic Corp Receiver and communication method
US9712316B2 (en) 2013-02-27 2017-07-18 Panasonic Corporation Reception apparatus, phase error estimation method, and phase error correction method
JP2017216500A (en) * 2016-05-30 2017-12-07 日本電気株式会社 Signal detector and signal detection method

Similar Documents

Publication Publication Date Title
JPH07297870A (en) Tdma data receiver
EP0609717B1 (en) Carrier detector
EP0353779B1 (en) Preamble detection circuit for digital communications system
US7200188B2 (en) Method and apparatus for frequency offset compensation
US4879728A (en) DPSK carrier acquisition and tracking arrangement
US7430402B2 (en) Frequency error estimation and correction
JP3144457B2 (en) Automatic frequency adjustment method and device
JP2008543119A (en) Numerical computation (CORDIC) processor with improved precision coordinate rotation
IE62289B1 (en) &#34;Frequency control apparatus and method for a digital radio receiver&#34;
EP1484880B1 (en) Demodulation device and demodulation method for wireless data communication
WO2001037505A1 (en) Radio communication terminal capable of specifying burst position accurately and having small frequency error of regenerative carrier wave
US5914985A (en) Digital demodulator
JPH06205062A (en) Delay detection circuit
JP2659060B2 (en) Frequency error detection method
JP3120136B2 (en) TDMA data receiver
US5541966A (en) System and circuit for estimating the carrier frequency of a PSK numeric signal
US6389089B1 (en) Method of searching for pilot signals
JP3595478B2 (en) Frequency deviation detector and frequency deviation detection method
JP3088892B2 (en) Data receiving device
US6697437B1 (en) Receiving apparatus
JP2000341354A (en) Oscillator control circuit and oscillator control method
US6587523B1 (en) Radio signal receiving apparatus and a method of radio signal reception
JPH05347645A (en) Receiver
JPH0823361A (en) Tdma data receiver
JPH1041991A (en) Digital demodulation circuit