JPH07258915A - Porous polysulfone hollow yarn - Google Patents

Porous polysulfone hollow yarn

Info

Publication number
JPH07258915A
JPH07258915A JP7005094A JP7005094A JPH07258915A JP H07258915 A JPH07258915 A JP H07258915A JP 7005094 A JP7005094 A JP 7005094A JP 7005094 A JP7005094 A JP 7005094A JP H07258915 A JPH07258915 A JP H07258915A
Authority
JP
Japan
Prior art keywords
hollow fiber
polysulfone
hole
shape
hollow yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7005094A
Other languages
Japanese (ja)
Inventor
Michito Sumimori
道人 角森
Satoru Takada
覚 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP7005094A priority Critical patent/JPH07258915A/en
Publication of JPH07258915A publication Critical patent/JPH07258915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)

Abstract

PURPOSE:To obtain the subject hollow yarn useful for microfiltration, plasma separation, etc., capable of filtering without damaging a solute component, having sufficient mechanical strength and proper filtration flux density, by specifying the hole shape, the maximum diameter of the hole and the rate of hole area of the hollow yarn of an aromatic polysulfone. CONSTITUTION:The hole shape of fine holes existing in the inner surface of a hollow yarn obtained from an aromatic polysulfone having repeating units of formula I, formula II, etc., is an elliptic shape having a smooth periphery and the maximum diameter of the fine hole is 0.1-10mum. The rate of hole area of circular surface holes having >=0.1mum major axis is 7-23%. In (dry) wet spinning in which a solution containing the polysulfone resin is extruded together with an inner core solution from a ring-shaped nozzle and coagulated with a coagulating solution, affinity for the polysulfone as the inner core solution is controlled to give the objective porous polysulfone hollow yarn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質ポリスルホン中
空糸に関する。更に詳しくは、中空糸の内表面に滑らか
な周をなす楕円形から円形の孔を有する、または更に該
中空糸の外表面にスキン層をもたない、精密濾過または
血漿分離などの医療用分離膜の分野に効果的に使用しう
る多孔質ポリスルホン中空糸に関する。
TECHNICAL FIELD The present invention relates to a porous polysulfone hollow fiber. More specifically, the hollow fiber has an elliptical to circular hole with a smooth circumference on the inner surface, or has no skin layer on the outer surface of the hollow fiber, and is used for medical separation such as microfiltration or plasma separation. The present invention relates to a porous polysulfone hollow fiber that can be effectively used in the field of membranes.

【0002】[0002]

【従来の技術】ポリスルホン中空糸は、その優れた生物
学的安全性に加えて、耐熱性、耐薬品性にも優れている
ことから、透析膜、血漿分離膜、二重濾過膜法における
二次膜などの医療用途に広く利用されるようになった。
ポリスルホン中空糸及びその製造方法については、これ
までに数多く提案されている。これらのうち、特に血漿
分離などの医療用途あるいは精密濾過などの分野で使用
されうる芳香族ポリスルホン中空糸及びその製造方法に
ついては、特開昭57−35906号、特開昭60−2
22112号、特開昭59−183761号、特開昭5
8−91822号、特開昭58−114702号などの
公報に開示されている。
2. Description of the Related Art Polysulfone hollow fibers have excellent heat resistance and chemical resistance in addition to their excellent biological safety. Therefore, polysulfone hollow fibers are used in dialysis membranes, plasma separation membranes and double filtration membrane methods. It has come to be widely used for medical applications such as secondary membranes.
Many polysulfone hollow fibers and methods for producing the same have been proposed so far. Of these, aromatic polysulfone hollow fibers which can be used particularly in medical applications such as plasma separation or in the field of microfiltration and the production method thereof are described in JP-A-57-35906 and JP-A-60-2.
22112, JP 59-183761, JP 5
No. 8-91822 and JP-A-58-114702.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、これらの
公報に記載されている中空糸の内表面に存在する孔の形
は、スリット状、紡錘状又は形を特定できない不定形状
であり、いずれも滑らかな周を有する楕円形から円形で
はない。このように、孔の形や大きさが方向によって著
しく異なると、孔の大きさを特定することが困難なばか
りではなく、溶質成分の形によって濾過特性も複雑に影
響される。それゆえ、大きさだけではなく形も異なった
複数の溶質を含む液体を濾過する場合には、シャープな
分画特性を示さないという問題が生じる。孔の形や大き
さが方向によって著しく異なり、さらにその周が滑らか
でない内表面孔を有する中空糸を用いて血漿分離を行う
場合、該中空糸を血液と接触させ中空糸内表面上での血
液の剪断速度を大きくしたり、濾過量を多くするなどし
て、血漿成分と孔の周辺との摩擦を激しくすると、血球
成分が局部的な力を受けて溶血などの損傷を受ける。
However, the shapes of the holes present on the inner surface of the hollow fibers described in these publications are slit-like, spindle-like, or indefinite shapes whose shapes cannot be specified. Even from elliptical to circular with a smooth perimeter. As described above, when the shapes and sizes of the pores are significantly different depending on the directions, not only is it difficult to specify the size of the pores, but also the shape of the solute component affects the filtration characteristics in a complicated manner. Therefore, when a liquid containing a plurality of solutes having different shapes as well as sizes is filtered, there arises a problem that a sharp fractionation characteristic is not exhibited. When plasma separation is performed using a hollow fiber having inner surface pores whose pores are different in shape and size depending on the direction and whose circumference is not smooth, the blood on the inner surface of the hollow fiber is brought into contact with blood by contacting the hollow fiber with blood. If the friction between the blood plasma component and the periphery of the pores is increased by increasing the shear rate or increasing the filtration amount, the blood cell component receives local force and is damaged by hemolysis.

【0004】また、血漿分離を目的とした場合、適度な
濾過流束を得ようとすれば、中空糸の断面方向に最適な
平均孔径および開孔率が存在する。すなわち、平均孔径
が小さすぎたり、開孔率が低すぎると、十分な濾過流束
が得られず血球成分などが損傷を受けるという問題が生
じる場合がある。逆に、平均孔径が大きすぎると、血球
成分の漏洩という問題が生じる。また、開孔率が大きす
ぎると、中空糸自身の物理的強度が低下し、これを補う
ために膜厚を厚くすると、有効表面積が低下するという
問題が生じる。
Further, for the purpose of separating plasma, in order to obtain an appropriate filtration flux, there is an optimum average pore size and optimum porosity in the cross-sectional direction of the hollow fiber. That is, if the average pore size is too small or the open area ratio is too low, a sufficient filtration flux may not be obtained and the blood cell component may be damaged. On the contrary, if the average pore size is too large, the problem of leakage of blood cell components occurs. On the other hand, if the porosity is too large, the physical strength of the hollow fiber itself will decrease, and if the film thickness is increased to compensate for this, the effective surface area will decrease.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記のご
とき従来技術における課題を克服するため鋭意検討を重
ねた結果、以下の結論に到達した。すなわち溶血などの
損傷を防ぐためには、芳香族ポリスルホンからなる中空
糸であって、その内表面に存在する孔形状が滑らかな周
をなす楕円形から円形で、孔の最大長径が特定の範囲内
にあり、内表面積に対する、内表面孔の開孔面積の総和
の比である開孔率が特定の範囲内に調整してなるポリス
ルホン中空糸が上記目的を達成することが判り、本発明
を完成した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to overcome the problems in the prior art as described above, and have reached the following conclusions. That is, in order to prevent damage such as hemolysis, a hollow fiber made of aromatic polysulfone is used, and the shape of the pores present on its inner surface is an elliptical to circular shape with a smooth circumference, and the maximum major diameter of the pores is within a specified range. It was found that a polysulfone hollow fiber obtained by adjusting the porosity, which is the ratio of the total open area of the inner surface pores to the inner surface area, within a specific range achieves the above object, and completes the present invention. did.

【0006】すなわち、本発明は芳香族ポリスルホンか
らなる中空糸であって、その内表面に存在する孔形状が
滑らかな周をなす楕円形から円形で、孔の最大長径が
0.1〜10μmの範囲にあり、内表面積に対する、長
径が0.1μm以上の内表面孔の開孔面積の総和の比で
ある開孔率が7〜23%である多孔質ポリスルホン中空
糸を内容とするものである。
[0006] That is, the present invention is a hollow fiber made of aromatic polysulfone, the pores present on its inner surface are elliptical to circular with a smooth circumference, and the maximum major axis of the pores is 0.1 to 10 µm. A porous polysulfone hollow fiber having a porosity of 7 to 23%, which is the ratio of the total open area of the inner surface pores having a major axis of 0.1 μm or more to the inner surface area, is contained. .

【0007】本発明に用いる芳香族ポリスルホンとして
は、たとえば下記の繰り返し単位を有するものが一般に
知られている。
As the aromatic polysulfone used in the present invention, those having the following repeating units are generally known.

【0008】[0008]

【化1】 [Chemical 1]

【0009】[0009]

【化2】 [Chemical 2]

【0010】本発明の中空糸は、前記の如き芳香族ポリ
スルホンから製造された中空糸状の膜であり、その内表
面に存在する孔の形状が滑らかな周をなす楕円形から円
形で、孔の最大長径が0.1〜10μmの範囲にあり、
内表面積に対する、長径が0.1μm以上の内表面孔の
開孔面積の総和の比である開孔率が7〜23%であるこ
とが必要である。
The hollow fiber of the present invention is a hollow fiber membrane produced from the aromatic polysulfone as described above, and the shape of the pores present on the inner surface thereof is elliptical to circular with a smooth circumference, and The maximum major axis is in the range of 0.1-10 μm,
It is necessary that the open area ratio, which is the ratio of the total open area of the inner surface holes having a major axis of 0.1 μm or more to the inner surface area, is 7 to 23%.

【0011】中空糸の内表面に存在する孔形状が滑らか
な周をなす楕円形から円形でない場合は、シャープな分
画特性が得られないばかりでなく、たとえば血漿分離の
場合に血球成分が局部的な力を受けて溶血などの損傷を
受ける。本発明にいう楕円形、円形とは、実質的に楕円
形、円形であればよく、必ずしも完全な楕円形、円形を
示すものに限定されないが、楕円形については中空糸の
内表面に存在する任意の孔について、孔の長径/短径が
3以下のものをいう。また、孔の長径及び短径は、電子
顕微鏡によって観察して孔に外接する2本の平行線間の
距離で最大及び最小の長さである。さらに、最大長径と
は、内表面の任意の場所を電子顕微鏡によって観察した
ときの前述の長径の最大のものである。また、本発明に
いう滑らかな周とは、中空糸の内表面を電子顕微鏡によ
って、約5000倍程度に拡大して観察したときに、任
意の孔についてその外周形状が外周方向に向かって連続
したなだらかな凸状曲線で描かれる形状を指し、クサビ
型又は特定しがたい凹凸形状を含まない形状のものをい
う。
If the shape of the pores present on the inner surface of the hollow fiber is not elliptic to circular with a smooth circumference, not only sharp fractionation characteristics cannot be obtained, but, for example, in the case of plasma separation, the blood cell component is localized. Subject to damage such as hemolysis. The elliptical shape and the circular shape referred to in the present invention may be substantially an elliptical shape or a circular shape, and is not limited to a perfect elliptical shape or a circular shape, but the elliptical shape exists on the inner surface of the hollow fiber. The term "arbitrary hole" refers to one having a major axis / minor axis of 3 or less. The major axis and minor axis of the hole are the maximum and minimum lengths of the distance between two parallel lines circumscribing the hole as observed by an electron microscope. Further, the maximum major axis is the maximum major axis described above when an arbitrary place on the inner surface is observed with an electron microscope. In addition, the term “smooth circumference” as used in the present invention means that, when the inner surface of a hollow fiber is observed under an electron microscope at a magnification of about 5000 times, the outer peripheral shape of any hole is continuous toward the outer peripheral direction. It refers to a shape that is drawn with a gentle convex curve, and refers to a shape that does not include wedge-shaped or irregular shapes that are difficult to specify.

【0012】さらに、本発明にいう開孔率とは、中空糸
の内表面を電子顕微鏡によって3000倍で10箇所以
上観察し、平均的な場所を写真撮影し、8×6cmの視野
について画像処理装置〔例えば、PIAS(株)製、P
IAS III型〕を用いて、内表面積に対する、長径が
0.1μm以上の孔の開孔面積の総和の比として求めた
ものをいう。中空糸内表面孔の最大長径が0.1μm未
満の場合には、十分な濾過流束が得られない。さらには
圧力損失の増大によって、血液成分が溶血などの損傷を
受ける。一方、中空糸内表面孔の最大長径が10μmを
超えると血球成分が漏れ出す。中空糸の内表面積に対す
る、長径が0.1μm以上の孔の開孔率が7%未満の場
合には、十分な濾過流束が得られない。また、開孔率が
23%を超えると物理的強度が十分な中空糸が得られな
い。孔が滑らかな周をなさない場合には、血球成分と孔
の周辺との摩擦によって血球成分が局部的な力を受けて
溶血などの損傷を受ける。
The porosity referred to in the present invention means that the inner surface of the hollow fiber is observed with an electron microscope at ten or more places at a magnification of 3000, an average place is photographed, and image processing is performed on a visual field of 8 × 6 cm. Equipment [for example, PIAS Co., P
IAS III type], and is obtained as the ratio of the total open area of pores having a major axis of 0.1 μm or more to the internal surface area. When the maximum major axis of the inner surface pores of the hollow fiber is less than 0.1 μm, a sufficient filtration flux cannot be obtained. Furthermore, due to the increase in pressure loss, blood components are damaged by hemolysis and the like. On the other hand, when the maximum major axis of the inner surface pores of the hollow fiber exceeds 10 μm, the blood cell component leaks out. When the open area ratio of the pores having a major axis of 0.1 μm or more with respect to the inner surface area of the hollow fiber is less than 7%, a sufficient filtration flux cannot be obtained. If the porosity exceeds 23%, a hollow fiber having sufficient physical strength cannot be obtained. If the hole does not have a smooth circumference, the blood cell component receives a local force due to friction between the blood cell component and the periphery of the hole and is damaged by hemolysis.

【0013】本発明における中空糸の内径、外径、膜
厚、膜の密度などには特別な限定はないが、圧力損失、
有効膜面積、機械的強度などの点から、内径は200〜
1000μm、外径は250〜1500μm、膜厚は2
0〜300μm、膜の密度は0.2〜0.4g/cm3
度であるのが好ましい。また、中空糸の外面にはスキン
層が存在してもよいが、スキン層がなく、外表面に存在
する孔の最大長径が少なくとも0.1μmのものが、精
密濾過や血漿分離などの分野に用いる場合には好まし
い。さらに、中空糸の内表面と外表面との間の部分は、
例えば後記実施例に示す方法により中空糸を製造する
と、通常スポンジ状となる。このスポンジ状の部分の孔
径も最大長径が少なくとも0.1μmであることが、圧
力損失を小さくし、この部分での目づまりを少なくする
点から好ましい。
The inner diameter, outer diameter, film thickness and density of the hollow fiber in the present invention are not particularly limited, but pressure loss,
From the viewpoint of effective membrane area and mechanical strength, the inner diameter is 200 ~
1000 μm, outer diameter 250 to 1500 μm, film thickness 2
It is preferable that the film thickness is 0 to 300 μm and the film density is about 0.2 to 0.4 g / cm 3 . In addition, a skin layer may be present on the outer surface of the hollow fiber, but a skin layer not present and having a maximum major axis of pores present on the outer surface of at least 0.1 μm is suitable for fields such as microfiltration and plasma separation. When used, it is preferable. Furthermore, the part between the inner surface and the outer surface of the hollow fiber is
For example, when a hollow fiber is manufactured by the method described in the below-mentioned example, it usually has a sponge shape. It is preferable that the maximum major axis of the sponge-like portion also has a maximum major axis of at least 0.1 μm in order to reduce pressure loss and reduce clogging in this portion.

【0014】上記のごとき本発明の多孔質ポリスルホン
中空糸は、例えばポリスルホン樹脂を含有する溶液を環
状ノズルから内部芯液とともに押し出し、直ちにまたは
ノズルから適当な乾式距離(通常50cm以下)を経た後
凝固液に接触させる方法において、内部芯液のポリスル
ホンに対する親和性を特定範囲に調整することにより得
られる。すなわち、親和性が高すぎると球状粒子がつな
がったネットワークを形成し、精密濾過や血漿分離など
には不適当となり、また親和性が低すぎるとスリット形
状や不定形状となり分画特性の低下や血球成分の損傷を
引き起こす。ここでいう適度な親和性とは80℃にコン
トロールした溶媒中に前記ポリスルホンを存在させたと
きに溶媒中に溶解したポリスルホン濃度が1時間後にお
よそ0.5〜5%程度となる溶解性をいう。
The porous polysulfone hollow fiber of the present invention as described above is coagulated, for example, by extruding a solution containing a polysulfone resin together with an inner core liquid through an annular nozzle and immediately or after passing an appropriate dry distance (usually 50 cm or less) from the nozzle. In the method of contacting with a liquid, it can be obtained by adjusting the affinity of the inner core liquid for polysulfone within a specific range. That is, if the affinity is too high, a network of spherical particles is formed, which makes it unsuitable for microfiltration or plasma separation, and if the affinity is too low, it becomes a slit shape or an indefinite shape, resulting in a decrease in fractionation characteristics or blood cells. Causes damage to ingredients. The appropriate affinity as used herein means a solubility in which the concentration of polysulfone dissolved in the solvent is about 0.5 to 5% after 1 hour when the polysulfone is present in the solvent controlled at 80 ° C. .

【0015】[0015]

【実施例】次に本発明を実施例及び比較例によってさら
に具体的に説明するが、これらは本発明を限定するもの
ではない。 実施例1 N−メチル−2−ピロリドン61部(重量部、以下同
様)と、プロピレングリコール22部の混合溶剤にポリ
スルホン(アモコ社製、ユーデルポリスルホンP−35
00)17部を溶解したものを紡糸原液とした。芯液と
してはN−メチル−2−ピロリドン70部と、プロピレ
ングリコール30部の混合液を用いた。内径0.4mm、
外径0.6mmの環状吐出口と径0.2mmの芯液吐出口を
有する二重ノズルを用い、紡糸原液を55℃に保ちなが
ら吐出口から4.0g/分で、芯液4.5g/分ととも
に押し出し、ノズル下方6cmにある50℃の温水中で凝
固させながら紡糸速度50m/分で巻き取り、内径33
0μm、外径430μmの中空糸を得た。得られた中空
糸の内表面および外表面の形状の電子顕微鏡写真をそれ
ぞれ図1(5000倍)および図2(5000倍)に示
した。図1に示したように、内表面には長径が0.2〜
1.5μmの楕円形状の孔が開孔率16.4%で分布し
ていた。一方、図2に示したように中空糸の外表面に
は、一部断面のネットワーク(スポンジ)構造をとどめ
た孔が開いていた。中空糸の断面は、外表面から内表面
に向かってほぼ連続的に孔径が大きくなったネットワー
ク構造であった。この中空糸の最大引張り強度は51g
f/mm2 、最大伸びは60%であった。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but these do not limit the present invention. Example 1 Polysulfone (manufactured by Amoco Co., Udel Polysulfone P-35) in a mixed solvent of 61 parts of N-methyl-2-pyrrolidone (parts by weight, the same applies hereinafter) and 22 parts of propylene glycol.
A solution in which 17 parts of (00) was dissolved was used as a spinning dope. As the core liquid, a mixed liquid of 70 parts of N-methyl-2-pyrrolidone and 30 parts of propylene glycol was used. Inner diameter 0.4 mm,
Using a double nozzle with an annular discharge port with an outer diameter of 0.6 mm and a core liquid discharge port with a diameter of 0.2 mm, 4.0 g / min from the discharge port while maintaining the spinning solution at 55 ° C, 4.5 g of core liquid / Min, and wound at a spinning speed of 50 m / min while coagulating in warm water of 50 ° C located 6 cm below the nozzle, with an inner diameter of 33
A hollow fiber having a diameter of 0 μm and an outer diameter of 430 μm was obtained. Electron micrographs of the shapes of the inner surface and the outer surface of the obtained hollow fiber are shown in FIG. 1 (5000 times) and FIG. 2 (5000 times), respectively. As shown in FIG. 1, the inner surface has a major axis of 0.2 to
Ellipsoidal pores of 1.5 μm were distributed at an opening rate of 16.4%. On the other hand, as shown in FIG. 2, the outer surface of the hollow fiber had holes having a network (sponge) structure of a partial cross section. The cross section of the hollow fiber had a network structure in which the pore diameter increased substantially continuously from the outer surface to the inner surface. The maximum tensile strength of this hollow fiber is 51g
f / mm 2 , the maximum elongation was 60%.

【0016】実施例2 N−メチル−2−ピロリドン51部とトリエチレングリ
コール34部の混合溶剤にポリスルホン15部を溶解し
たものを紡糸原液とした。芯液としてはN−メチル−2
−ピロリドン59部と、エチレングリコール41部の混
合液を用いた。内径0.4mm、外径0.6mmの環状吐出
口と径0.2mmの芯液吐出口を有する二重ノズルを用
い、紡糸原液を45℃に保ちながら吐出口から4.4g
/分で、芯液5.0g/分とともに押し出し、ノズル下
方4cmにある50℃の温水中で凝固させながら紡糸速度
55m/分で巻き取り、内径340μm、外径430μ
mの中空糸を得た。得られた中空糸の内表面には長径が
0.3〜1.2μmで長径/短径比が1.4以下の円形
に近い楕円形の孔が開孔率11.2%で分布していた。
中空糸の外表面及び断面の構造は実施例1とほぼ同等で
あった。この中空糸の最大引張り強度は42gf/m
m2 、最大伸びは53%であった。
Example 2 A spinning dope was prepared by dissolving 15 parts of polysulfone in a mixed solvent of 51 parts of N-methyl-2-pyrrolidone and 34 parts of triethylene glycol. N-methyl-2 as core fluid
-A mixed solution of 59 parts of pyrrolidone and 41 parts of ethylene glycol was used. Using a double nozzle with an inner diameter 0.4 mm, an outer diameter 0.6 mm, and a core liquid discharge outlet having a diameter of 0.2 mm, 4.4 g from the discharge outlet while keeping the spinning solution at 45 ° C.
At a spinning speed of 55 m / min while coagulating in warm water of 50 ° C. located 4 cm below the nozzle, and wound at a spinning speed of 55 m / min, an inner diameter of 340 μm, and an outer diameter of 430 μm.
m hollow fibers were obtained. On the inner surface of the obtained hollow fiber, elliptical pores having a major axis of 0.3 to 1.2 μm and a major axis / minor axis ratio of 1.4 or less, which are close to a circle, are distributed at an opening ratio of 11.2%. It was
The outer surface and the cross-sectional structure of the hollow fiber were almost the same as in Example 1. The maximum tensile strength of this hollow fiber is 42 gf / m
The m 2 and the maximum elongation were 53%.

【0017】実施例3 N−メチル−2−ピロリドン55部とプロピレングリコ
ール10部とトリエチレングリコール20部の混合溶剤
にポリスルホン15部を溶解したものを紡糸原液とし
た。芯液としてはN−メチル−2−ピロリドン68部
と、プロピレングリコール32部の混合液を用いた。内
径0.4mm、外径0.6mmの環状吐出口と径0.2mmの
芯液吐出口を有する二重ノズルを用い、紡糸原液を50
℃に保ちながら吐出口から4.0g/分で、芯液4.5
g/分とともに押し出し、ノズル下方4cmにある50℃
の温水中で凝固させながら紡糸速度50m/分で巻き取
り、内径350μm、外径440μmの中空糸を得た。
得られた中空糸の内表面には長径が0.3〜3.2μm
で長径/短径比が2.1以下の楕円形の孔が開孔率2
0.8%で分布していた。中空糸の外表面及び断面の構
造は実施例1とほぼ同等であった。この中空糸の最大引
張り強度は39gf/mm2 、最大伸びは62%であっ
た。
Example 3 A spinning dope was prepared by dissolving 15 parts of polysulfone in a mixed solvent of 55 parts of N-methyl-2-pyrrolidone, 10 parts of propylene glycol and 20 parts of triethylene glycol. As the core liquid, a mixed liquid of 68 parts of N-methyl-2-pyrrolidone and 32 parts of propylene glycol was used. Using a double nozzle having an inner diameter of 0.4 mm and an outer diameter of 0.6 mm, and a core liquid discharge outlet of 0.2 mm, 50
While maintaining at ℃, 4.0 g / min from the discharge port, the core liquid 4.5
Extruded with g / min, 50 ° C 4 cm below the nozzle
While being coagulated in warm water, it was wound at a spinning speed of 50 m / min to obtain a hollow fiber having an inner diameter of 350 μm and an outer diameter of 440 μm.
The inner diameter of the obtained hollow fiber has a major axis of 0.3 to 3.2 μm.
The elliptical hole with a major axis / minor axis ratio of 2.1 or less has an open area ratio of 2
It was distributed at 0.8%. The outer surface and the cross-sectional structure of the hollow fiber were almost the same as in Example 1. The maximum tensile strength of this hollow fiber was 39 gf / mm 2 , and the maximum elongation was 62%.

【0018】比較例1 N−メチル−2−ピロリドン49部と、トリエチレング
リコール36部の混合溶剤に実施例1で用いたポリスル
ホン15部を溶解したものを紡糸原液とした。芯液とし
てはN−メチル−2−ピロリドン58部と、トリエチレ
ングリコール42部の混合液を用いた。内径0.4mm、
外径0.6mmの環状吐出口と径0.2mmの芯液吐出口を
有する二重ノズルを用い、紡糸原液を35℃に保ちなが
ら吐出口から4.0g/分で、芯液4.5g/分ととも
に押し出し、ノズル下方2cmにある30℃の温水中で凝
固させながら紡糸速度50m/分で巻き取り、内径34
0μm、外径460μmの中空糸を得た。得られた中空
糸の内表面の形状の電子顕微鏡写真を図3(5000
倍)に示した。図3に示したように、内表面には長径が
0.2〜1.5μmのほぼ楕円形状の孔が開孔率5.4
%で分布していた。一方、中空糸の外表面には、実施例
1の外表面と同等の孔が開いていた。中空糸の断面は、
外表面から内表面に向かってほぼ連続的に孔径が大きく
なったネットワーク構造であった。この中空糸の最大引
張り強度は31gf/mm2 、最大伸びは67%であっ
た。
Comparative Example 1 A spinning solution was prepared by dissolving 15 parts of the polysulfone used in Example 1 in a mixed solvent of 49 parts of N-methyl-2-pyrrolidone and 36 parts of triethylene glycol. As the core liquid, a mixed liquid of 58 parts of N-methyl-2-pyrrolidone and 42 parts of triethylene glycol was used. Inner diameter 0.4 mm,
Using a double nozzle having an annular discharge port with an outer diameter of 0.6 mm and a core liquid discharge port with a diameter of 0.2 mm, 4.0 g / min from the discharge port while keeping the spinning solution at 35 ° C, 4.5 g of core liquid At a spinning speed of 50 m / min while coagulating in 30 ° C. warm water located 2 cm below the nozzle, and with an inner diameter of 34
A hollow fiber having a diameter of 0 μm and an outer diameter of 460 μm was obtained. An electron micrograph of the shape of the inner surface of the obtained hollow fiber is shown in FIG.
Times). As shown in FIG. 3, a substantially elliptical hole having a major axis of 0.2 to 1.5 μm was formed on the inner surface with a porosity of 5.4.
It was distributed in%. On the other hand, the outer surface of the hollow fiber had the same pores as the outer surface of Example 1. The cross section of the hollow fiber is
It was a network structure in which the pore size increased almost continuously from the outer surface to the inner surface. The maximum tensile strength of this hollow fiber was 31 gf / mm 2 , and the maximum elongation was 67%.

【0019】比較例2 N−メチル−2−ピロリドン61.7部と、プロピレン
グリコール24.8部の混合溶剤に実施例1で用いたポ
リスルホン13.5部を溶解したものを紡糸原液とし
た。芯液としてはN−メチル−2−ピロリドン70部
と、プロピレングリコール30部の混合液を用いた。内
径0.4mm、外径0.6mmの環状吐出口と径0.2mmの
芯液吐出口を有する二重ノズルを用い、紡糸原液を60
℃に保ちながら吐出口から5.0g/分で、芯液5.6
g/分とともに押し出し、ノズル下方2cmにある60℃
の温水中で凝固させながら紡糸速度62.5m/分で巻
き取り、内径340μm、外径460μmの中空糸を得
た。得られた中空糸の内表面の形状の電子顕微鏡写真を
図4(2000倍)に示した。図4に示したように、内
表面には長径が1〜10μmの楕円形状の孔が開孔率2
9.4%で分布していた。中空糸の外表面には、実施例
1と同等の孔が開いていた。中空糸の断面は、外表面か
ら内表面に向かってほぼ連続的に孔径が大きくなったネ
ットワーク構造であった。この中空糸の最大引張り強度
は18gf/mm2 、最大伸びは48%であった。
Comparative Example 2 A spinning dope was prepared by dissolving 13.5 parts of the polysulfone used in Example 1 in a mixed solvent of 61.7 parts of N-methyl-2-pyrrolidone and 24.8 parts of propylene glycol. As the core liquid, a mixed liquid of 70 parts of N-methyl-2-pyrrolidone and 30 parts of propylene glycol was used. Using a double nozzle having an inner diameter 0.4 mm and an outer diameter 0.6 mm, an annular discharge port and a 0.2 mm diameter core liquid discharge port
Core liquid 5.6 at 5.0 g / min from the discharge port while maintaining at ℃
Extruded with g / min, 60 ° C 2 cm below the nozzle
While being coagulated in warm water, the fiber was wound at a spinning speed of 62.5 m / min to obtain a hollow fiber having an inner diameter of 340 μm and an outer diameter of 460 μm. An electron micrograph of the shape of the inner surface of the obtained hollow fiber is shown in FIG. 4 (2000 times). As shown in FIG. 4, an elliptical hole having a major axis of 1 to 10 μm is formed on the inner surface with a porosity of 2
It was distributed at 9.4%. The outer surface of the hollow fiber had the same holes as in Example 1. The cross section of the hollow fiber had a network structure in which the pore diameter increased substantially continuously from the outer surface to the inner surface. The maximum tensile strength of this hollow fiber was 18 gf / mm 2 , and the maximum elongation was 48%.

【0020】比較例3 N−メチル−2−ピロリドン61部と、プロピレングリ
コール22部の混合溶剤に実施例1で用いたポリスルホ
ン17部を溶解したものを紡糸原液とした。芯液として
はジメチルホルムアミド90部と水10部の混合液を用
いた。内径0.4mm、外径0.6mmの環状吐出口と径
0.2mmの芯液吐出口を有する二重ノズルを用い、紡糸
原液を55℃に保ちながら吐出口から4.0g/分で、
芯液4.5g/分とともに押し出し、ノズル下方6cmに
ある50℃の温水中で凝固させながら紡糸速度50m/
分で巻き取り、内径330μm、外径430μmの中空
糸を得た。得られた中空糸の内表面には直径が0.5μ
m以下の大小様々な粒径の球状粒子が集合した繊維がネ
ットワーク構造(スポンジ構造、2〜5μmの開孔)を
形成していた。この構造は三次元的な凹凸を有するた
め、内表面開孔率は特定しがたいがネットワークを形成
する繊維自身球状粒子表面のため凹凸を含み、明らかに
滑らかな周を有するものではない。
Comparative Example 3 A spinning dope was prepared by dissolving 17 parts of polysulfone used in Example 1 in a mixed solvent of 61 parts of N-methyl-2-pyrrolidone and 22 parts of propylene glycol. As the core liquid, a mixed liquid of 90 parts of dimethylformamide and 10 parts of water was used. Using a double nozzle having an inner diameter 0.4 mm, an outer diameter 0.6 mm, and a core liquid discharge outlet having a diameter of 0.2 mm, 4.0 g / min from the discharge outlet while maintaining the spinning solution at 55 ° C,
Extruded together with 4.5 g / min of core liquid and spinning speed 50 m / m while coagulating in warm water of 50 ° C 6 cm below the nozzle.
It was wound up in minutes to obtain a hollow fiber having an inner diameter of 330 μm and an outer diameter of 430 μm. The inner surface of the obtained hollow fiber has a diameter of 0.5μ.
Fibers in which spherical particles having various particle sizes of m or less were aggregated to form a network structure (sponge structure, open pores of 2 to 5 μm). Since this structure has three-dimensional irregularities, it is difficult to specify the internal surface porosity, but the fibers forming the network themselves include spherical irregularities on the surface of the spherical particles, and therefore do not have apparently smooth perimeters.

【0021】比較例4 芯液をジメチルホルムアミド80部と水20部の混合液
とした他は比較例3と同様の操作で内径330μm、外
径430μmの中空糸を得た。得られた中空糸の内表面
の形状の電子顕微鏡写真を図5(10000倍)に示し
た。図5に示したように、内表面には孔径を特定しがた
いスリット状の孔が分布していた。
Comparative Example 4 A hollow fiber having an inner diameter of 330 μm and an outer diameter of 430 μm was obtained in the same manner as in Comparative Example 3, except that the core liquid was a mixed liquid of 80 parts of dimethylformamide and 20 parts of water. An electron micrograph of the shape of the inner surface of the obtained hollow fiber is shown in FIG. 5 (10000 times). As shown in FIG. 5, slit-shaped holes whose pore diameters were difficult to specify were distributed on the inner surface.

【0022】比較例5 芯液をN−メチル−2−ピロリドン70部と水30部の
混合液とした他は比較例3と同様の操作で内径330μ
m、外径430μmの中空糸を得た。得られた中空糸の
内表面の形状の電子顕微鏡写真を図6(3000倍)に
示した。図6に示したように、内表面には大小様々な不
定形状の孔が分布していた。
Comparative Example 5 The same operation as in Comparative Example 3 was carried out except that the core liquid was a mixed liquid of 70 parts of N-methyl-2-pyrrolidone and 30 parts of water, and an inner diameter of 330 μm.
m, and an outer diameter of 430 μm was obtained. An electron micrograph of the shape of the inner surface of the obtained hollow fiber is shown in FIG. 6 (3000 times). As shown in FIG. 6, pores of various sizes and irregular shapes were distributed on the inner surface.

【0023】比較例6 芯液をN−メチル−2−ピロリドン85部とプロピレン
グリコール15部の混合溶剤とし、ノズルと凝固温水間
の距離を1cmとした他は比較例1と同様の操作で内径3
30μm、外径430μmの中空糸を得た。得られた中
空糸の内表面の形状の電子顕微鏡写真を図7(1000
倍)に示した。図7に示したように、内表面には径が
0.5〜1μmの孔のネットワーク構造の中に大きな空
洞(直径10μm前後で最大長径は13μm)が見られ
るマクロボイド構造となっていた。この内表面のネット
ワーク部分は比較例3と同様に三次元的であるために開
孔率は特定しがたい。しかしながら、ネットワークを構
成する繊維で囲まれた部分はあくまでも連続的で滑らか
な曲線ではない。またマクロボイド部分の周囲には微小
なポリマー粒子が不規則に集積していた。
Comparative Example 6 Inner diameter was the same as Comparative Example 1 except that the core liquid was a mixed solvent of 85 parts of N-methyl-2-pyrrolidone and 15 parts of propylene glycol, and the distance between the nozzle and the hot water for coagulation was 1 cm. Three
A hollow fiber having a diameter of 30 μm and an outer diameter of 430 μm was obtained. An electron micrograph of the shape of the inner surface of the obtained hollow fiber is shown in FIG.
Times). As shown in FIG. 7, the inner surface had a macrovoid structure in which large cavities (maximum major diameter of 13 μm at a diameter of about 10 μm) were found in a network structure of holes having a diameter of 0.5 to 1 μm. Since the network portion of the inner surface is three-dimensional like Comparative Example 3, it is difficult to specify the porosity. However, the part surrounded by the fibers constituting the network is not a continuous and smooth curve. In addition, minute polymer particles were irregularly accumulated around the macro void portion.

【0024】応用例1 実施例1で得られた中空糸240本を内径9mm、外径1
3mm、長さ21cmのポリカーボネートパイプに収納し、
両端をウレタン樹脂でポッティングすることにより動物
用血漿分離装置(モジュール)を作製した。このモジュ
ールの両端には血液の導入口および排出口を有し、かつ
血液導入口と反対側でかつウレタンポッティング部分の
内側に血液の濾液排出口を有する構造とした。このモジ
ュールの有効長は18cmとした。このモジュールに、3
7℃に保持した新鮮な牛血を毎分5mlで中空糸の内表面
側に流しながら濾過したところ、濾過速度が毎分2.2
ml、濾過圧が10mmHgで2時間安定して濾過を続けるこ
とが可能であった。一方、同型のモジュールに37℃に
保持した新鮮な牛血を、2分間に濾過圧が10mmHgずつ
上昇させるように濾過速度を徐々に高め、濾過圧を35
0mmHgまで上昇させたが、牛血の溶血を認めなかった。
Application Example 1 240 hollow fibers obtained in Example 1 were used, with an inner diameter of 9 mm and an outer diameter of 1
Stored in a 3mm, 21cm long polycarbonate pipe,
An animal plasma separator (module) was produced by potting both ends with urethane resin. This module has a blood inlet and a blood outlet at both ends, and a blood filtrate outlet on the opposite side of the blood inlet and inside the urethane potting portion. The effective length of this module was 18 cm. 3 in this module
When fresh bovine blood kept at 7 ° C was filtered at a flow rate of 5 ml per minute while flowing on the inner surface side of the hollow fiber, the filtration rate was 2.2 per minute.
It was possible to continue the filtration stably at a filtration pressure of 10 mmHg for 2 hours. On the other hand, the filtration rate of fresh bovine blood kept at 37 ° C in the same type module was gradually increased so that the filtration pressure was increased by 10 mmHg in 2 minutes.
The blood pressure was raised to 0 mmHg, but no hemolysis of bovine blood was observed.

【0025】応用例2、3 実施例2及び3で得られた中空糸を用いて、応用例1と
同様に牛血濾過試験を行ったところ、全く同様の結果と
なった。
Application Examples 2 and 3 Using the hollow fibers obtained in Examples 2 and 3, a bovine blood filtration test was conducted in the same manner as in Application Example 1, and the same results were obtained.

【0026】応用比較例1 比較例1で得られた中空糸を用いて応用例1と同様に牛
血濾過試験を行ったところ、濾過速度が毎分1.5ml、
濾過圧が10mmHgで2時間安定して濾過を続けることが
できた。しかしながら、同型のモジュールを用い、濾過
速度を毎分2.2mlとすると、濾過開始当初から連続し
て濾過圧が上昇を続け、一定条件で牛血濾過を行なうこ
とができなかった。一方、同型のモジュールを用い、当
初の濾過速度を毎分1.5mlとし、2分間に濾過圧が1
0mmHgずつ上昇させるように濾過速度を徐々に高め、濾
過圧を35mmHgまで上昇させたが牛血の溶血を認めなかっ
た。
Application Comparative Example 1 A bovine blood filtration test was conducted in the same manner as in Application Example 1 using the hollow fiber obtained in Comparative Example 1. The filtration rate was 1.5 ml / min.
The filtration pressure was 10 mmHg, and the filtration could be stably continued for 2 hours. However, when a module of the same type was used and the filtration rate was set to 2.2 ml / min, the filtration pressure continued to increase from the beginning of filtration, and bovine blood filtration could not be performed under certain conditions. On the other hand, using the same type of module, the initial filtration rate was 1.5 ml / min, and the filtration pressure was 1 minute in 2 minutes.
The filtration rate was gradually increased so as to increase by 0 mmHg and the filtration pressure was increased to 35 mmHg, but hemolysis of bovine blood was not observed.

【0027】応用比較例2 比較例2で得られた中空糸を用いて応用例1と同様のモ
ジュールの作成を試みたが、中空糸の機械的強度が不十
分で、モジュールを作ることができなかった。
Application Comparative Example 2 An attempt was made to make a module similar to Application Example 1 using the hollow fiber obtained in Comparative Example 2, but the mechanical strength of the hollow fiber was insufficient and a module could be made. There wasn't.

【0028】応用比較例3、4 比較例4、5で得られた中空糸を用いて応用例1と同様
に牛血濾過試験を行ったところ、濾過速度が毎分2.2
ml、濾過圧が10mmHgで2時間安定して濾過を続けるこ
とができた。しかしながら、同型のモジュールを用い、
2分間に濾過圧を10mmHgずつ上昇させるように徐々に
濾過速度を高めていくと、約100mmHgで溶血を生じ
た。
Application Comparative Examples 3 and 4 A bovine blood filtration test was conducted in the same manner as in Application Example 1 using the hollow fibers obtained in Comparative Examples 4 and 5, and the filtration rate was 2.2 per minute.
ml, and the filtration pressure was 10 mmHg, and the filtration could be continued stably for 2 hours. However, using the same type of module,
When the filtration rate was gradually increased so that the filtration pressure was increased by 10 mmHg in 2 minutes, hemolysis occurred at about 100 mmHg.

【0029】なお、比較例3及び6で製造された中空糸
については、濾過中あるいは濾過原液中への異物(微粒
子など)の混入が懸念されるため、本発明の目的とする
精密濾過、血漿分離などの分野に不適当と判断し、牛血
濾過による比較検討を実施しなかった。
Regarding the hollow fibers produced in Comparative Examples 3 and 6, it is feared that foreign matter (fine particles, etc.) may be mixed into the hollow fiber during filtration or in the undiluted solution of the filtration. We judged that it was unsuitable for fields such as separation and did not carry out a comparative study using bovine blood filtration.

【0030】[0030]

【発明の効果】本発明の特定の内表面構造を有する中空
糸は、内表面孔が滑らかな楕円形から円形状化している
ため、溶質成分を損傷させることなく濾過できる。ま
た、本発明の中空糸は特定範囲の孔の最大長径と開孔率
を有し、これにより充分な機械的強度及び適度の濾過流
束を具備する。かくして、本発明の多孔質ポリスルホン
中空糸は、精密濾過や血液の濾過などのための濾過膜と
して利用価値が高い。
INDUSTRIAL APPLICABILITY Since the hollow fiber having a specific inner surface structure of the present invention has the inner surface pores changed from a smooth elliptical shape to a circular shape, it can be filtered without damaging the solute component. Further, the hollow fiber of the present invention has a maximum major axis of pores and a porosity of a specific range, and thus has sufficient mechanical strength and an appropriate filtration flux. Thus, the porous polysulfone hollow fiber of the present invention has a high utility value as a filtration membrane for microfiltration or blood filtration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の中空糸の内表面の繊維の形状を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the shape of fibers on the inner surface of a hollow fiber of Example 1.

【図2】実施例1の中空糸の外表面の繊維の形状を示す
電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing the shape of fibers on the outer surface of the hollow fiber of Example 1.

【図3】比較例1の中空糸の内表面の繊維の形状を示す
電子顕微鏡写真である。
3 is an electron micrograph showing the shape of fibers on the inner surface of the hollow fiber of Comparative Example 1. FIG.

【図4】比較例2の中空糸の内表面の繊維の形状を示す
電子顕微鏡写真である。
FIG. 4 is an electron micrograph showing the shape of fibers on the inner surface of the hollow fiber of Comparative Example 2.

【図5】比較例4の中空糸の内表面の繊維の形状を示す
電子顕微鏡写真である。
5 is an electron micrograph showing the shape of fibers on the inner surface of the hollow fiber of Comparative Example 4. FIG.

【図6】比較例5の中空糸の外表面の繊維の形状を示す
電子顕微鏡写真である。
6 is an electron micrograph showing the shape of fibers on the outer surface of the hollow fiber of Comparative Example 5. FIG.

【図7】比較例6の中空糸の外表面の繊維の形状を示す
電子顕微鏡写真である。
FIG. 7 is an electron micrograph showing the shape of fibers on the outer surface of the hollow fiber of Comparative Example 6.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/00 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location D01F 6/00 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 芳香族ポリスルホンからなる中空糸であ
って、その内表面に存在する孔形状が滑らかな周をなす
楕円形から円形で、孔の最大長径が0.1〜10μmの
範囲にあり、内表面積に対する、長径が0.1μm以上
の内表面孔の開孔面積の総和の比である開孔率が7〜2
3%である多孔質ポリスルホン中空糸。
1. A hollow fiber made of aromatic polysulfone, wherein the pores present on its inner surface are elliptical to circular with a smooth circumference, and the maximum major axis of the pores is in the range of 0.1 to 10 μm. The open area ratio, which is the ratio of the total open area of the inner surface holes having a major axis of 0.1 μm or more to the inner surface area, is 7 to 2
3% porous polysulfone hollow fiber.
【請求項2】 中空糸の外表面にはスキン層がなく、外
表面に存在する孔の最大長径が少なくとも0.1μmで
ある請求項1記載の多孔質ポリスルホン中空糸。
2. The porous polysulfone hollow fiber according to claim 1, wherein there is no skin layer on the outer surface of the hollow fiber, and the maximum major axis of the pores present on the outer surface is at least 0.1 μm.
JP7005094A 1994-03-14 1994-03-14 Porous polysulfone hollow yarn Pending JPH07258915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7005094A JPH07258915A (en) 1994-03-14 1994-03-14 Porous polysulfone hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7005094A JPH07258915A (en) 1994-03-14 1994-03-14 Porous polysulfone hollow yarn

Publications (1)

Publication Number Publication Date
JPH07258915A true JPH07258915A (en) 1995-10-09

Family

ID=13420358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7005094A Pending JPH07258915A (en) 1994-03-14 1994-03-14 Porous polysulfone hollow yarn

Country Status (1)

Country Link
JP (1) JPH07258915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875957A1 (en) * 2006-07-07 2008-01-09 Gambro Lundia AB Plasma separation membrane
EP1875956A1 (en) * 2006-07-07 2008-01-09 Gambro Lundia AB Plasma separation membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2016182015A1 (en) * 2015-05-13 2016-11-17 東洋紡株式会社 Porous hollow fiber membrane and manufacturing method therefor
CN110438576A (en) * 2019-09-01 2019-11-12 安徽同光邦飞生物科技有限公司 A kind of spinneret, the pipe tobacco prepared using the spinneret and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875957A1 (en) * 2006-07-07 2008-01-09 Gambro Lundia AB Plasma separation membrane
EP1875956A1 (en) * 2006-07-07 2008-01-09 Gambro Lundia AB Plasma separation membrane
WO2008003608A1 (en) * 2006-07-07 2008-01-10 Gambro Lundia Ab Plasma separation membrane
US7931154B2 (en) 2006-07-07 2011-04-26 Gambro Lundia Ab Plasma separation membrane
US8051991B2 (en) 2006-07-07 2011-11-08 Gambro Lundia Ab Plasma separation membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2016182015A1 (en) * 2015-05-13 2016-11-17 東洋紡株式会社 Porous hollow fiber membrane and manufacturing method therefor
CN110438576A (en) * 2019-09-01 2019-11-12 安徽同光邦飞生物科技有限公司 A kind of spinneret, the pipe tobacco prepared using the spinneret and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
CN106573203B (en) Porous membrane
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP3047403B2 (en) Permeation-selective asymmetric membrane suitable for hemodialysis and method for producing the membrane
JP2782583B2 (en) Asymmetric microporous hollow fiber
EP0121911A2 (en) Hollow fiber filter medium and process for preparing the same
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP4265701B2 (en) Polysulfone porous membrane
JPH07258915A (en) Porous polysulfone hollow yarn
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JPH0929078A (en) Production of hollow yarn membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3431622B1 (en) High-performance plasma purification membrane
CN109922876B (en) Cellulose acetate hollow fiber membrane
JP2805873B2 (en) Hollow fiber type plasma separation membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JPS63130103A (en) Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
JPH09220455A (en) Hollow yarn type selective separation membrane
WO1983001632A1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP2005007004A (en) Hollow fiber type body fluid treatment apparatus, hollow fiber bundle used therefor, and method for producing them

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105