JP3431622B1 - High-performance plasma purification membrane - Google Patents

High-performance plasma purification membrane

Info

Publication number
JP3431622B1
JP3431622B1 JP2002267266A JP2002267266A JP3431622B1 JP 3431622 B1 JP3431622 B1 JP 3431622B1 JP 2002267266 A JP2002267266 A JP 2002267266A JP 2002267266 A JP2002267266 A JP 2002267266A JP 3431622 B1 JP3431622 B1 JP 3431622B1
Authority
JP
Japan
Prior art keywords
membrane
film
hollow fiber
plasma
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002267266A
Other languages
Japanese (ja)
Other versions
JP2004097703A (en
Inventor
輝彦 大石
Original Assignee
旭メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭メディカル株式会社 filed Critical 旭メディカル株式会社
Priority to JP2002267266A priority Critical patent/JP3431622B1/en
Application granted granted Critical
Publication of JP3431622B1 publication Critical patent/JP3431622B1/en
Priority to AU2003261571A priority patent/AU2003261571A1/en
Priority to PCT/JP2003/011715 priority patent/WO2004024216A1/en
Priority to AT03795429T priority patent/ATE511868T1/en
Priority to MXPA05002747A priority patent/MXPA05002747A/en
Priority to CNB038234785A priority patent/CN100503020C/en
Priority to US10/527,802 priority patent/US7563376B2/en
Priority to CA2498244A priority patent/CA2498244C/en
Priority to EP03795429A priority patent/EP1547628B1/en
Publication of JP2004097703A publication Critical patent/JP2004097703A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

【要約】 【課題】 内圧濾過による血漿浄化のための、目詰ま
りが少なく、且つ、高強度で、しかも透水性能および分
画性能にも優れた血漿浄化膜を提供する。 【解決手段】 膜の外表面から内表面に向かって孔径が
連続的に小さくなるスポンジ構造からなり、膜の破断強
度が50kgf/cm以上で、且つ牛血漿を内圧濾過
した時の総タンパク質の透過率が50%以上、イムノグ
ロブリンの透過率が90%以下であることを特徴とする
血漿浄化膜。
An object of the present invention is to provide a plasma purification membrane which is less clogged, has high strength, and has excellent water permeability and fractionation performance, for plasma purification by internal pressure filtration. SOLUTION: The membrane has a sponge structure in which the pore size continuously decreases from the outer surface to the inner surface, the membrane has a breaking strength of 50 kgf / cm 2 or more, and the total protein when bovine plasma is subjected to internal pressure filtration. A plasma purification membrane having a transmittance of 50% or more and an immunoglobulin transmittance of 90% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内圧濾過による血
漿浄化のための、目詰まりが少なく、且つ、高強度であ
る優れた血漿浄化膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excellent plasma purification membrane for plasma purification by internal pressure filtration, which has low clogging and high strength.

【0002】[0002]

【従来の技術】中空糸状膜は、精密濾過から限外濾過ま
での工業的用途に広く使われており、膜の素材としてポ
リエチレン、酢酸セルロース、ポリスルホン、ポリフッ
化ビニリデン、ポリカーボネート、ポリアクリロニトリ
ル等が用いられている。これらの素材からなる従来の中
空糸状膜は、濾過性能の向上に注力して開発されたもの
であるため、中空糸状膜の破断強度や破断時の伸びが小
さく、急激な温度変化や逆洗時の圧力変化により、しば
しば中空糸状膜が破断することが指摘されている。
Hollow fiber membranes are widely used for industrial applications from microfiltration to ultrafiltration. Polyethylene, cellulose acetate, polysulfone, polyvinylidene fluoride, polycarbonate, polyacrylonitrile, etc. are used as membrane materials. Has been. Conventional hollow fiber membranes made of these materials were developed with a focus on improving filtration performance, so the hollow fiber membranes have a small breaking strength and elongation at break, and do not undergo rapid temperature changes or backwashing. It has been pointed out that the hollow fiber membrane is often ruptured due to the pressure change.

【0003】この点を解決するため種々の試みがなされ
てきたが、一般的には特許文献1に記載された発明に示
唆されているように、製膜原液中のポリマー濃度を高く
して、中空糸状膜全体のポリマー密度を上げる方法が考
えられる。しかしながら、この方法では膜の強度が向上
する反面、膜の孔径が小さくなるとともに膜の透水量が
大幅に低下するため、強度と透水性能のバランスに優れ
た中空糸状膜は得られていない。
Various attempts have been made to solve this point, but generally, as suggested by the invention described in Patent Document 1, the polymer concentration in the membrane-forming stock solution is increased to A method of increasing the polymer density of the entire hollow fiber membrane can be considered. However, in this method, the strength of the membrane is improved, but the pore diameter of the membrane is reduced and the water permeation rate of the membrane is significantly reduced. Therefore, a hollow fiber membrane having an excellent balance between strength and water permeation performance has not been obtained.

【0004】一方、膜の透水性能を向上させるために
は、膜の孔径を大きくする方法が一般的に行なわれる
が、孔径の増大は一般に膜の分画性能と膜強度の低下を
招く。以上のように、従来技術では、強度、透水性能及
び分画性能のバランスがとれた高性能の中空糸状膜は得
られていなかった。例えば、特許文献2には、高強度で
かつ透水性能に優れた膜の製法が提案されているが、こ
の製法によって作られた膜は孔径が大きく、透水性能と
分画性能とのバランスがとれていない。
On the other hand, in order to improve the water permeability of the membrane, a method of enlarging the pore size of the membrane is generally carried out, but an increase in the pore size generally leads to a reduction in the membrane fractionation performance and the membrane strength. As described above, according to the prior art, a high performance hollow fiber membrane having a good balance of strength, water permeability and fractionation performance has not been obtained. For example, Patent Document 2 proposes a method for producing a membrane having high strength and excellent water permeability. However, the membrane produced by this method has a large pore size, and water permeability and fractionation performance are well balanced. Not not.

【0005】特許文献3には、膜の外表面から内部に向
かって孔径が連続的に小さくなり内部の最小孔径を経て
再び連続的に孔径が大きくなり内表面に開孔する中空糸
状精密濾過膜が開示されている。しかしながら、この構
造の膜を用いて膜の中空部側(内表面側)から液体等を
濾過した場合、急激な目詰まりを起こし長時間安定的に
濾過を行なうことができない。
In Patent Document 3, a hollow fiber type microfiltration membrane in which the pore diameter continuously decreases from the outer surface of the membrane toward the inside thereof, and the pore diameter continuously increases again through the minimum pore diameter of the inner portion to open on the inner surface. Is disclosed. However, when liquid or the like is filtered from the hollow side (inner surface side) of the membrane using the membrane of this structure, rapid clogging occurs and stable filtration cannot be performed for a long time.

【0006】以上のごとく、従来、中空糸膜において、
所望の強度と透水性能および分画性能とをバランスよく
有しており、且つ中空部側(内表面側)から液体を濾過
しても目詰まりがないという特性を有しているものは提
供されていなかった。
As described above, in the conventional hollow fiber membrane,
There is provided a product that has desired strength, water permeability and fractionation performance in a well-balanced manner, and that does not cause clogging even when liquid is filtered from the hollow side (inner surface side). Didn't.

【0007】[0007]

【特許文献1】特開昭59−228016号公報[Patent Document 1] JP-A-59-228016

【特許文献2】特開平4−260424号公報[Patent Document 2] Japanese Patent Laid-Open No. 4-260424

【特許文献3】特開平2−102722号公報[Patent Document 3] Japanese Patent Laid-Open No. 2-102722

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、前記
の問題点を解決するものであって、内圧濾過における血
漿浄化において、目詰まりが少なく、高強度で、且つ透
水性能および分画性能にも優れた血漿浄化膜を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and in plasma purification in internal pressure filtration, there is little clogging, high strength, and water permeability and fractionation performance. It is also to provide an excellent plasma purification membrane.

【0009】[0009]

【課題を解決するための手段】上記の如く、膜の中空部
側から液体等を濾過(以下「内圧濾過」ともいう)した
場合、目詰まりが少ない、優れたタンパク分離性を有す
る血漿浄化膜はこれまでなかった。何故ならば、膜の外
表面から内表面に向かって孔径が連続的に小さくなる傾
斜構造の膜の膜内表面に、膜強度を高く維持したまま、
血漿タンパク質を問題なく通過させるような大孔径(精
密濾過膜領域の孔径)を開口させることは、従来不可能
であったからである。
[Means for Solving the Problems] As described above, when a liquid or the like is filtered from the hollow side of the membrane (hereinafter also referred to as "internal pressure filtration"), the plasma purification membrane has less clogging and excellent protein separation properties. Was never here. Because, while maintaining high film strength on the inner surface of the film of the inclined structure, the pore diameter of which gradually decreases from the outer surface to the inner surface of the film,
This is because it has hitherto been impossible to open a large pore size (pore size of the microfiltration membrane region) that allows plasma proteins to pass through without problems.

【0010】そこで本発明者は、基本的に、1)目詰ま
りを防止するために、膜の外表面から内表面に向かって
孔径が連続的に小さくなる傾斜構造にすることと、2)
特に濾過する液体が接する膜内表面の親水性を高めた膜
にしてタンパク質等が疎水吸着を起こさないようにしな
がら、上記の課題を解決するために鋭意研究を進めた結
果、特定の製造方法により上記の所望の膜を得ることが
できることを見出し、本発明に至ったものである。
Therefore, the present inventor basically 1) uses a gradient structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the membrane in order to prevent clogging, and 2).
In particular, as a result of conducting intensive research to solve the above problems while preventing the hydrophobic adsorption of proteins and the like in a membrane with an increased hydrophilicity on the inner surface of the membrane that is in contact with the liquid to be filtered, as a result of a specific manufacturing method, The inventors of the present invention have found that the desired film described above can be obtained and have reached the present invention.

【0011】すなわち本発明は、(1)膜の外表面から
内表面に向かって孔径が連続的に小さくなるスポンジ構
造からなり、膜の破断強度が50kgf/cm以上
で、且つ牛血漿を内圧濾過した時の総タンパク質の透過
率が50%以上、イムノグロブリンの透過率が90%以
下であることを特徴とする中空糸状血漿浄化膜、(2)
膜の外表面に平均孔径が1μm以上の円形状あるいは楕
円形状の孔を有することを特徴とする(1)に記載の中
空糸状血漿浄化膜、(3)膜の外表面の開孔率が10%
以上であることを特徴とする(1)又は(2)に記載の
中空糸状血漿浄化膜、(4)膜の内径に対する膜厚の比
率が0.15〜0.4であることを特徴とする(1)〜
(3)に記載の中空糸状血漿浄化膜、(5)膜の外径が
400μm以下であることを特徴とする(1)〜(4)
に記載の中空糸状血漿浄化膜、(6)芳香族ポリスルホ
ンとポリビニルピロリドンからなり、膜内表面における
ポリビニルピロリドンの濃度が20〜45重量%である
ことを特徴とする(1)〜(5)に記載の中空糸状血漿
浄化膜、および(7)水に不溶であるポリビニルピロリ
ドンを含むことを特徴とする(1)〜(6)に記載の中
空糸状血漿浄化膜、に関するものである。
That is, the present invention (1) has a sponge structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the membrane, the rupture strength of the membrane is 50 kgf / cm 2 or more, and the bovine plasma has an internal pressure. A hollow fiber plasma purification membrane having a total protein permeability of 50% or more and an immunoglobulin permeability of 90% or less when filtered, (2)
The hollow fiber plasma purification membrane according to (1), which has circular or elliptical pores having an average pore diameter of 1 μm or more on the outer surface of the membrane, and (3) the porosity of the outer surface of the membrane is 10 %
The hollow fiber plasma purification membrane according to (1) or (2) above, characterized in that the ratio of the membrane thickness to the inner diameter of the membrane is 0.15 to 0.4. (1) ~
(3) The hollow fiber plasma purification membrane according to (3), wherein the membrane has an outer diameter of 400 μm or less (1) to (4)
(6) The hollow fiber plasma purification membrane according to (6), which comprises aromatic polysulfone and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane is 20 to 45% by weight. (1) to (5) The present invention relates to the hollow fiber plasma purification membrane described above and (7) the hollow fiber plasma purification membrane according to any one of (1) to (6), which contains water-insoluble polyvinylpyrrolidone.

【0012】[0012]

【発明の実施の形態】以下に、本発明の中空糸状血漿浄
化膜(以下単に「膜」又は「中空糸状膜」ともいう)の
構成について説明する。本発明において、血漿浄化と
は、血漿中の成分を分離することをいう。例えば、血漿
中の有用タンパク質であるアルブミンやγ−グロブリン
は透過させ、不要タンパク質や脂質を除去することをい
うが、疾病によって、除去すべき成分、分画分子量など
は異なってくるので、本発明の血液浄化には、血漿中の
成分分離を行うことを広く包含する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the hollow fiber plasma purification membrane of the present invention (hereinafter also simply referred to as "membrane" or "hollow fiber membrane") will be described below. In the present invention, plasma purification refers to separation of plasma components. For example, it means that albumin and γ-globulin, which are useful proteins in plasma, are permeated and unnecessary proteins and lipids are removed. However, the components to be removed, the molecular weight cut-off, etc. differ depending on the disease. The blood purification of (1) widely includes the separation of components in plasma.

【0013】本発明の中空糸状膜は、膜の一方の表面か
ら他方の表面まで、例えば内表面から外表面まで、一体
的に連続した構造からなっている。膜の一方の表面から
他方の表面までの間、すなわち膜内部は、網目の大きさ
(孔)が10μm以下の網目構造からなっており、か
つ、大きさが10μmを超えるポリマーの欠損部位(巨
大空孔又はボイド)を含まない。この構造を、本発明で
はスポンジ構造という。膜内部の網目構造の孔は、膜の
長さ方向に対して垂直な断面において、膜の外表面から
内表面(又は内表面部位)に向かってその孔径が連続的
に小さくなる傾斜構造を有する。すなわち、中空糸状膜
の長さ方向にのびる中心軸を同心とするいくつかの円筒
状の面を考える場合、それぞれの面の孔の平均孔径は、
膜の外表面から内表面(又は内表面部位)に近づくにつ
れて連続的に小さくなっている。血漿を内圧濾過させる
場合、シャープな分画性能(優れたタンパク分離性)を
発現させるためには本構造にすることが不可欠である。
The hollow fiber membrane of the present invention has an integrally continuous structure from one surface of the membrane to the other surface, for example, from the inner surface to the outer surface. Between one surface of the membrane and the other surface, that is, the inside of the membrane, has a mesh structure having a mesh size (pores) of 10 μm or less, and a polymer deficient site (large size) exceeding 10 μm. Does not include pores or voids. This structure is called a sponge structure in the present invention. The pores of the network structure inside the membrane have a graded structure in which the pore diameter continuously decreases from the outer surface of the membrane toward the inner surface (or inner surface portion) in a cross section perpendicular to the length direction of the membrane. . That is, when considering several cylindrical surfaces having concentric central axes extending in the length direction of the hollow fiber membrane, the average pore diameter of the pores on each surface is:
It becomes smaller continuously from the outer surface of the membrane toward the inner surface (or inner surface portion). When plasma is subjected to internal pressure filtration, this structure is indispensable in order to express sharp fractionation performance (excellent protein separation).

【0014】本発明の膜の代表的な例について、図面を
用いてさらに詳細に説明する。図1は、中空糸状膜の長
さ方向に対して垂直な断面(一部)の電子顕微鏡写真で
ある。さらに図2は、膜内表面の様子を示す電子顕微鏡
写真であり、図3は、膜の外表面の様子を示す電子顕微
鏡写真である。
Representative examples of the film of the present invention will be described in more detail with reference to the drawings. FIG. 1 is an electron micrograph of a cross section (a part) perpendicular to the length direction of the hollow fiber membrane. Further, FIG. 2 is an electron micrograph showing the state of the inner surface of the film, and FIG. 3 is an electron micrograph showing the state of the outer surface of the film.

【0015】この膜は、図1に示されるように、膜の内
表面に近づくに従って、平均孔径が次第に連続的に小さ
くなるという傾斜構造、すなわち孔径についての異方性
を有する網目構造からなっている。膜内表面は緻密な構
造となっているが、本発明の膜は従来より知られている
ような明確なスキン層は持っていない。図2には、緻密
な内表面の様子が示されている。これに対し、図3から
わかるように、外表面上には、円形状あるいは楕円形状
の孔が観察される。
As shown in FIG. 1, this membrane has a graded structure in which the average pore size gradually decreases continuously as it approaches the inner surface of the membrane, that is, a mesh structure having anisotropy in pore size. There is. Although the inner surface of the film has a dense structure, the film of the present invention does not have a clear skin layer as conventionally known. FIG. 2 shows the appearance of the dense inner surface. On the other hand, as can be seen from FIG. 3, circular or elliptical holes are observed on the outer surface.

【0016】膜の内表面に開口する孔は、円形状、楕円
形状、網目状又はスリット状であることが好ましく、外
表面の孔の形状は、円形状又は楕円形状であることが好
ましい。
The pores opening on the inner surface of the membrane are preferably circular, elliptical, mesh-like or slit-like, and the pores on the outer surface are preferably circular or elliptical.

【0017】膜の外表面に開口する孔の平均孔径は1μ
m以上、好ましくは2μm以上30μm以下である。1
μmより小さい孔であると膜同士の固着による成型不良
を起こすことから好ましくない。
The average pore size of the pores opening on the outer surface of the membrane is 1 μm.
m or more, preferably 2 μm or more and 30 μm or less. 1
It is not preferable that the pores are smaller than μm, because molding defects due to the adhesion of the films to each other occur.

【0018】さらに、膜同士の固着を抑えるには、外表
面の孔の開口率も重要である。本発明でいう開口率は、
乾燥膜の外表面の電子顕微鏡写真を画像解析して数値化
することにより求められる。本発明でいう開口率とは、
取り込んだ画像の面積に対する開孔部孔面積の総和の百
分率と定義され、下記の式(1)で与えられる。なお、
10ピクセル以下はノイズとみなして計数から除外し
た。 開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100 (1)
Further, the opening ratio of the holes on the outer surface is also important in order to prevent the films from sticking to each other. The aperture ratio in the present invention is
It is determined by image analysis of the electron micrograph of the outer surface of the dry film and digitization. The aperture ratio in the present invention means
It is defined as the percentage of the sum of the area of the open hole with respect to the area of the captured image, and is given by the following equation (1). In addition,
Below 10 pixels were considered noise and excluded from counting. Open area ratio (%) = (sum of open area of open area / area of captured image) × 100 (1)

【0019】開孔率は膜同士の固着への寄与に大きく関
与し、開孔率が小さいと隣接する膜同士の接触面積が増
えて固着が起こり、ひどい場合は、束全体が棒状に固着
することさえある。このため、開孔率は10%以上を確
保する必要がある。しかし、開孔率を不必要に大きくす
ると、今度は膜の長軸方向へのしなり、すなわち、腰の
強さが損なわれる結果、成型時に接着部での膜流れによ
る成型不良が多発する。従って腰の強さを損なわないた
めに開孔率は60%を上限とすることが好ましい。
The porosity greatly contributes to the adhesion between the membranes, and when the porosity is small, the contact area between adjacent membranes increases and the adhesion occurs. In the worst case, the entire bundle adheres in a rod shape. There are even things. Therefore, it is necessary to secure a porosity of 10% or more. However, if the porosity is unnecessarily increased, this time the film bends in the long axis direction, that is, the strength of the waist is impaired, and as a result, defective molding frequently occurs due to film flow at the bonded portion during molding. Therefore, it is preferable that the upper limit of the porosity is 60% so as not to impair the stiffness of the waist.

【0020】膜の表面に開口した孔の形状や大きさ等
は、電子顕微鏡を用いて観察、測定することができる。
また、内表面及び外表面に開口した孔の平均孔径Dと
は、下記の式(2)で示される値である。 =[{(D )+……+(D )}/{D +……+D }]1/2(2) ここでは平均孔径、Dはi個目の孔の実測径、D
はn個目の孔の実測径である。ただし、D、Dの実
測径は、孔が円形に近い場合は、その直径で表し、孔が
円形でない場合には,その孔と同一面積の円の直径で表
す。
The shape and size of the holes opened on the surface of the film can be observed and measured using an electron microscope.
Further, the average pore diameter D of the holes opened on the inner surface and the outer surface is a value represented by the following formula (2). D = [{(D i 2 ) 2 + ... + (D n 2 ) 2 } / {D i 2 + ... + D n 2 }] 1/2 (2) where D is the average pore diameter and D i is The measured diameter of the i-th hole, D n
Is the measured diameter of the n-th hole. However, the measured diameters of D i and D n are represented by the diameter of the hole when the hole is close to a circle, and by the diameter of a circle having the same area as the hole when the hole is not circular.

【0021】本発明の膜は、牛血漿を内圧濾過した時の
総タンパク質の透過率が50%以上、好ましくは80%
以上の膜である。総タンパク質の透過率が50%未満で
あると、人体に極めて有効なアルブミン(Alb)、γ
−グロブリン(IgG)を大きく損失してしまい、体力
が低下した患者の治療に対して使用し難い。
The membrane of the present invention has a total protein permeability of 50% or more, preferably 80%, when bovine plasma is subjected to internal pressure filtration.
It is the above film. When the total protein permeability is less than 50%, albumin (Alb), which is extremely effective for the human body, γ
-Globulin (IgG) is greatly lost, and it is difficult to use for the treatment of patients with weak physical strength.

【0022】さらに、本発明の膜は牛血漿を内圧濾過し
た時のイムノグロブリン(IgM)の透過率が90%以
下の性能を有する。アルブミン、γ−グロブリンが人体
にとって極めて有効なタンパク質であるのに対し、イム
ノグロブリン等の高分子量のタンパク質又は脂質等は疾
病によっては除去することが必要である。透過率が90
%を超えると高脂血症等の疾病に対して有効でない傾向
にある。
Further, the membrane of the present invention has a performance of immunoglobulin (IgM) permeability of 90% or less when bovine plasma is subjected to internal pressure filtration. Albumin and γ-globulin are extremely effective proteins for the human body, whereas high molecular weight proteins such as immunoglobulins or lipids need to be removed depending on the disease. 90 transmittance
If it exceeds%, it tends to be ineffective against diseases such as hyperlipidemia.

【0023】また、本発明の膜は、膜の外表面から内表
面に向かって孔径が連続的に小さくなる傾斜構造で、且
つ膜内表面に血漿タンパク質を問題なく通過させるよう
な大孔径を有するにも関らず、膜の破断強度は、50k
gf/cm以上、さらには60kgf/cm以上で
ある。膜の破断強度が50kgf/cm未満ではリー
ク等が多発し、実用的でない。本発明でいう破断強度と
は、中空糸状膜1本当たりの破断時の荷重(kgf)を
引っ張る前の膜の断面積(cm)で割ることにより求
められる。
The membrane of the present invention has an inclined structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the membrane, and has a large pore diameter that allows plasma proteins to pass through the inner surface of the membrane without any problem. Nevertheless, the breaking strength of the film is 50k
It is gf / cm 2 or more, and further 60 kgf / cm 2 or more. If the rupture strength of the film is less than 50 kgf / cm 2 , leaks frequently occur, which is not practical. The breaking strength referred to in the present invention is obtained by dividing the load (kgf) at the time of breaking per hollow fiber membrane by the cross-sectional area (cm 2 ) of the membrane before being pulled.

【0024】本発明の中空糸状膜を構成する素材として
は、たとえばポリスルホン系ポリマー、ポリフッ化ビニ
リデン系ポリマー、ポリアクリロニトリル系ポリマー、
ポリメタクリル酸系ポリマー、ポリアミド系ポリマー、
ポリイミド系ポリマー、ポリエーテルイミド系ポリマ
ー、及び酢酸セルロース系ポリマー等が挙げられる。中
でも芳香族ポリスルホンは、その熱安定性、耐酸、耐ア
ルカリ性に加え、製膜原液に親水性ポリマーを添加して
製膜することにより、血液適合性が向上することから好
ましく用いられる。芳香族ポリスルホンとしては、ビス
フェノールA型ポリスルホンが特に好ましく用いられ
る。中空糸状膜を構成する素材が芳香族ポリスルホンで
ある場合、親水性ポリマーとしてはポリビニルピロリド
ンが最も好ましい。
Examples of the material constituting the hollow fiber membrane of the present invention include polysulfone-based polymers, polyvinylidene fluoride-based polymers, polyacrylonitrile-based polymers,
Polymethacrylic acid type polymer, polyamide type polymer,
Examples include polyimide-based polymers, polyetherimide-based polymers, and cellulose acetate-based polymers. Among them, aromatic polysulfone is preferably used because it has improved blood compatibility by adding a hydrophilic polymer to a stock solution for forming a film in addition to its thermal stability, acid resistance and alkali resistance. Bisphenol A type polysulfone is particularly preferably used as the aromatic polysulfone. When the material forming the hollow fiber membrane is aromatic polysulfone, polyvinylpyrrolidone is most preferable as the hydrophilic polymer.

【0025】以上から、本発明の膜は、芳香族ポリスル
ホンとポリビニルピロリドンからなることが最も好まし
い。さらに本発明の血漿浄化膜は、内圧濾過によって用
いられることから、血漿が接触する膜内表面におけるポ
リビニルピロリドンの濃度が20〜45重量%であるこ
とが好ましい。血漿タンパク質は疎水的吸着を起こしや
すい。従って、内圧濾過において目詰まりを抑えるのに
重要な因子は、血漿が接する膜内表面の親水性であり、
ポリビニルピロリドン(以下単に「PVP」ともいう)
を含有するポリスルホン系膜では、膜内表面のPVP濃
度が重要である。膜内表面のPVP濃度が低すぎると膜
内表面が疎水性を示し、血漿タンパク質が吸着しやす
い。逆に膜内表面のPVP濃度が高すぎると、PVPの
血漿への溶出量が増加し好ましくない結果を与える。従
って、血漿を内圧濾過する場合のPVPの濃度は、20
〜45重量%の範囲であり、好ましくは25〜40重量
%である。
From the above, the membrane of the present invention is most preferably composed of aromatic polysulfone and polyvinylpyrrolidone. Further, since the plasma purification membrane of the present invention is used by internal pressure filtration, it is preferable that the concentration of polyvinylpyrrolidone on the inner surface of the membrane which is in contact with plasma is 20 to 45% by weight. Plasma proteins are prone to hydrophobic adsorption. Therefore, an important factor in suppressing clogging in internal pressure filtration is the hydrophilicity of the inner surface of the membrane with which plasma is in contact,
Polyvinylpyrrolidone (hereinafter also simply referred to as "PVP")
In the polysulfone-based membrane containing, the PVP concentration on the inner surface of the membrane is important. If the PVP concentration on the inner surface of the membrane is too low, the inner surface of the membrane becomes hydrophobic and plasma proteins are easily adsorbed. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into plasma increases, giving unfavorable results. Therefore, the concentration of PVP in plasma pressure filtration is 20
The range is from 45 to 45% by weight, preferably 25 to 40% by weight.

【0026】本発明で用いられる芳香族ポリスルホンと
しては、下記の式(3)、または式(4)で示される繰
り返し単位を有するものが挙げられる。なお、式中のA
rはパラ位での2置換のフェニル基を示し、重合度や分
子量については特に限定しない。 −O−Ar−C(CH−Ar−O−Ar−SO−Ar− (3) −O−Ar−SO−Ar− (4)
Examples of the aromatic polysulfone used in the present invention include those having a repeating unit represented by the following formula (3) or formula (4). In addition, A in the formula
r represents a 2-substituted phenyl group at the para position, and the degree of polymerization and the molecular weight are not particularly limited. -O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (3) -O-Ar-SO 2 -Ar- (4)

【0027】ポリビニルピロリドンは高分子量のものほ
ど膜への親水化効果が高いため、高分子量のものほど少
量で十分な効果が発揮できることから、本発明において
は重量平均分子量900,000以上のポリビニルピロ
リドンが使用される。900,000より小さい重量平
均分子量を有するポリビニルピロリドンを用いて膜への
親水化効果を付与するためには大量のポリビニルピロリ
ドンを膜中に残存させる必要があるが、このために膜か
らの溶出物が増加することになる。また、逆に溶出物を
下げるために900,000より小さい重量平均分子量
のポリビニルピロリドンの膜中での残存量を少なくする
と親水化効果が不十分となってしまう。また、重量平均
分子量900,000以上のポリビニルピロリドンを用
いないと膜厚部での親水性が不十分であることから、膜
内表面緻密層(膜内表面部位)を通過した血漿タンパク
質が膜厚部で吸着されてしまい、結果として良好な分離
特性を発揮できない。
Since the higher the molecular weight of polyvinylpyrrolidone is, the higher the hydrophilic effect on the membrane is, the smaller the molecular weight of polyvinylpyrrolidone is, the smaller the amount of polyvinylpyrrolidone is. Is used. A large amount of polyvinylpyrrolidone must be left in the membrane in order to impart a hydrophilic effect to the membrane by using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. On the contrary, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the film is reduced in order to reduce the eluate, the hydrophilic effect becomes insufficient. In addition, since the hydrophilicity in the film thickness portion is insufficient unless polyvinylpyrrolidone having a weight average molecular weight of 900,000 or more is used, the plasma protein that has passed through the inner membrane surface dense layer (inner membrane surface site) has a membrane thickness. It is adsorbed on the part, and as a result, good separation characteristics cannot be exhibited.

【0028】膜内表面のPVP濃度は、エックス線光量
子スペクトル(X−ray Photoelectro
n spectroscopy、以下XPS)によって
決定される。すなわち、膜内表面のXPSの測定は、試
料を両面テープ上に並べた後、カッターで繊維軸方向に
切開し、膜の内側が表になるように押し広げた後、通常
の方法で測定する。すなわち、C1s、O1s、N1
s、S2pスペクトルの面積強度から、装置付属の相対
感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ
オウの表面濃度(イオウ原子濃度)から求めた濃度をい
うものであり、ポリスルホン系ポリマーが(3)式の構
造であるときには(5)式により計算で求めることがで
きる。 PVP濃度(重量%)=C×100/(C+C) (5) ここで、C:窒素原子濃度(%) C:イオウ原子濃度(%) M:PVPの繰り返しユニットの分子量(111) M:ポリスルホン系ポリマーの繰り返しユニットの分
子量(442)
The PVP concentration on the inner surface of the film is determined by X-ray photoelectron spectrum (X-ray Photoelectron spectroscopy).
n spectroscopy, hereinafter XPS). That is, the XPS of the inner surface of the film is measured by arranging the samples on the double-sided tape, incising in the fiber axis direction with a cutter, expanding the inside of the film so that it is on the front side, and then measuring by an ordinary method. . That is, C1s, O1s, N1
It means the concentration obtained from the surface intensity of s, S2p spectrum and the surface concentration of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (sulfur atom concentration) using the relative sensitivity coefficient attached to the device. When is the structure of equation (3), it can be calculated by equation (5). PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (5) where C 1 : nitrogen atom concentration (%) C 2 : sulfur atom concentration (%) M 1 : Molecular weight of PVP repeating unit (111) M 2 : Molecular weight of repeating unit of polysulfone polymer (442)

【0029】さらに、本発明の膜は、水に不溶であるP
VPを有する。膜中のPVP全てが水に可溶であると膜
からの溶出量が多いため好ましくなく、PVP全てが水
に不溶であると血漿濾過時において膜内表面(又は内表
面部位)の膨潤性が悪いために優れたタンパク分離性能
を発現しない。故に、本発明の膜は、水に不溶であるP
VPを適度に含むことから優れた膜性能を有する。
Further, the membrane of the present invention contains P which is insoluble in water.
Have a VP. When all PVP in the membrane is soluble in water, the amount eluted from the membrane is large, which is not preferable, and when all PVP is insoluble in water, the swelling property of the inner surface (or inner surface portion) of the membrane during plasma filtration may be poor. It does not exhibit excellent protein separation performance because it is bad. Therefore, the membranes of the present invention are P-insoluble in water.
It has excellent film performance because it contains VP in an appropriate amount.

【0030】以下、本発明の中空糸状膜の製造方法の代
表例について述べる。本発明の中空糸状膜は、製膜原液
と内部液を2重環状ノズルから吐出させた後、エアギャ
ップを通過させてから凝固浴で凝固させる中空糸状膜の
製造方法において、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が30〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が40〜55重量%、 c)ノズル部での製膜原液の温度が50℃以上、 d)凝固浴温度が90℃を超えて100℃以下、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分)である製造方法により得られた膜を膜
孔保持剤を含浸させずに乾燥させることにより製造する
ことが可能である。
A representative example of the method for producing the hollow fiber membrane of the present invention will be described below. The hollow fiber membrane of the present invention is a method for producing a hollow fiber membrane in which a membrane-forming stock solution and an internal solution are discharged from a double annular nozzle, and then passed through an air gap and then solidified in a coagulation bath. Is a film-forming polymer, a solvent for the polymer,
And a hydrophilic polymer, the ratio of the hydrophilic polymer to the film-forming polymer is 30 to 60% by weight, b) the internal liquid is water and at least one kind of solvent, and the water content is 40 to 55% by weight, c) the temperature of the film forming stock solution in the nozzle portion is 50 ° C. or higher, d) the coagulation bath temperature exceeds 90 ° C. and 100 ° C. or lower , and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
It is possible to produce the membrane obtained by the production method of 1 m / (m / min) by drying without impregnating the membrane pore retaining agent.

【0031】本発明の中空糸状膜は、膜形成ポリマー、
該ポリマーの溶剤、及び親水性ポリマーから本質的にな
る製膜原液を、該ポリマーに対する良溶剤の特定濃度の
水溶液からなる内部液とともに2重環状ノズルから吐出
させ、エアギャップを通過させた後、凝固浴で凝固させ
ることにより製造される。
The hollow fiber membrane of the present invention is a film-forming polymer,
A solvent for the polymer and a film-forming stock solution essentially consisting of a hydrophilic polymer are discharged from a double annular nozzle together with an internal solution consisting of an aqueous solution of a good solvent for the polymer at a specific concentration, and after passing through an air gap, It is produced by coagulating in a coagulating bath.

【0032】本発明の製造方法において用いられる膜形
成ポリマーは、湿式製膜により膜を形成することができ
るポリマーであればよく、例えばポリスルホン系ポリマ
ー、ポリフッ化ビニリデン系ポリマー、ポリアクリロニ
トリル系ポリマー、ポリメタクリル酸系ポリマー、ポリ
アミド系ポリマー、ポリイミド系ポリマー、ポリエーテ
ルイミド系ポリマー及び酢酸セルロース系ポリマー等が
挙げられる。中でも芳香族ポリスルホンは、その熱安定
性、耐酸、耐アルカリ性に加え、製膜原液に親水化剤を
添加して製膜することにより、血液適合性が向上するこ
とから好ましく用いられる。芳香族ポリスルホンとして
は、ビスフェノールA型ポリスルホンが特に好ましく用
いられる。
The film-forming polymer used in the production method of the present invention may be any polymer capable of forming a film by wet film formation, and examples thereof include polysulfone-based polymers, polyvinylidene fluoride-based polymers, polyacrylonitrile-based polymers, and polyacrylonitrile-based polymers. Examples thereof include methacrylic acid-based polymers, polyamide-based polymers, polyimide-based polymers, polyetherimide-based polymers and cellulose acetate-based polymers. Among them, aromatic polysulfone is preferably used because it is improved in blood compatibility by adding a hydrophilizing agent to a stock solution for film formation in addition to its thermal stability, acid resistance and alkali resistance. Bisphenol A type polysulfone is particularly preferably used as the aromatic polysulfone.

【0033】親水性ポリマーは、溶剤と相溶性があり、
膜形成ポリマーを溶解しないポリマーが用いられる。膜
形成ポリマーがポリスルホン系ポリマーであれば、親水
性ポリマーとしてはポリビニルピロリドンが好ましく用
いられる。膜形成ポリマーが芳香族ポリスルホンの場
合、ポリビニルピロリドン以外の親水性ポリマーを用い
たのでは本発明の膜は得られにくい。
The hydrophilic polymer is compatible with the solvent,
A polymer that does not dissolve the film-forming polymer is used. If the film-forming polymer is a polysulfone-based polymer, polyvinylpyrrolidone is preferably used as the hydrophilic polymer. When the film-forming polymer is aromatic polysulfone, it is difficult to obtain the film of the present invention by using a hydrophilic polymer other than polyvinylpyrrolidone.

【0034】ポリマーの溶剤としては、N−メチル−2
−ピロリドン、N,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド等の溶剤が挙げられるが、膜形
成ポリマーがポリスルホン系ポリマーの場合、N−メチ
ル−2−ピロリドン(以下単に「NMP」ともいう)が
好ましい。NMPは、ポリスルホン系ポリマーに対して
最も溶解力の高い溶剤である。例えば、他の良溶剤であ
るN,N−ジメチルアセトアミドと比較して室温で約
1.5倍の溶解力を有する。膜の外表面から内表面に向
かって孔径が連続的に小さくなる傾斜構造において膜内
表面に血漿タンパク質を通過させる大孔径を開口させる
には、内部液中の非溶剤により液液相分離が誘発されて
から相分離(凝固)が終了するまでの時間、即ち粒子成
長時間を長くする必要がある。ポリスルホン系ポリマー
においては、非常に高い溶解力を有するNMPを用いる
ことによってこの粒子成長時間をどの溶剤を用いるより
も長くすることが可能である。さらに、NMPはポリス
ルホン系ポリマーにおいて最良溶剤であることから、製
膜原液中のポリスルホン系ポリマーの分子鎖同士の絡み
合いが良く、結果的に高強度の膜を得ることが可能であ
る。以上の理由から、膜形成ポリマーがポリスルホン系
ポリマーの場合、NMP以外の溶剤を用いたのでは本発
明の膜は得られにくい。
As a solvent for the polymer, N-methyl-2
-Pyrrolidone, N, N-dimethylformamide, N, N
Examples of the solvent include dimethylacetamide, and when the film-forming polymer is a polysulfone-based polymer, N-methyl-2-pyrrolidone (hereinafter simply referred to as “NMP”) is preferable. NMP is a solvent having the highest dissolving power for polysulfone-based polymers. For example, it has a dissolving power of about 1.5 times at room temperature as compared with another good solvent, N, N-dimethylacetamide. In order to open a large pore size that allows plasma proteins to pass through the inner surface of the membrane in a gradient structure where the pore size continuously decreases from the outer surface to the inner surface of the membrane, liquid-liquid phase separation is induced by the non-solvent in the inner liquid. It is necessary to lengthen the time from the completion of the separation to the completion of phase separation (solidification), that is, the particle growth time. In polysulfone-based polymers, it is possible to extend the particle growth time by using NMP, which has a very high dissolving power, than by using any solvent. Furthermore, since NMP is the best solvent in the polysulfone-based polymer, the molecular chains of the polysulfone-based polymer in the stock solution for film formation are well entangled with each other, and as a result, a high-strength film can be obtained. For the above reasons, when the film-forming polymer is a polysulfone-based polymer, it is difficult to obtain the film of the present invention by using a solvent other than NMP.

【0035】製膜原液は、本質的に膜形成ポリマー、ポ
リビニルピロリドン等の特定の親水性ポリマー、N−メ
チル−2−ピロリドン等の特定の溶剤からなる。製膜原
液にその他の添加剤、例えば従来添加剤として知られて
いる水や金属塩等を加えると、本発明の膜は得られにく
い。
The film-forming stock solution essentially consists of a film-forming polymer, a specific hydrophilic polymer such as polyvinylpyrrolidone, and a specific solvent such as N-methyl-2-pyrrolidone. If other additives such as water and metal salts, which are conventionally known as additives, are added to the film-forming stock solution, it is difficult to obtain the film of the present invention.

【0036】本発明で用いられる製膜原液のポリマー濃
度は、該原液からの製膜が可能で、かつ得られた膜が膜
としての性能を有するような濃度の範囲であれば特に制
限されず、10〜35重量%、好ましくは10〜30重
量%である。高い透水性能又は大きな分画分子量を達成
するためには、ポリマー濃度は低い方がよく、10〜2
5重量%が好ましい。
The polymer concentration of the stock solution for film formation used in the present invention is not particularly limited as long as it is within a concentration range such that film formation from the stock solution is possible and the obtained film has performance as a film. , 10 to 35% by weight, preferably 10 to 30% by weight. In order to achieve high water permeability or large molecular weight cutoff, it is preferable that the polymer concentration is low,
5% by weight is preferred.

【0037】さらに重要なことは製膜原液中の親水性ポ
リマーの量であり、膜形成ポリマーに対する親水性ポリ
マーの混和比率が27〜60重量%、好ましくは30〜
60重量%である。膜形成ポリマーに対する親水性ポリ
マーの混和比率が27重量%未満では牛血漿を内圧濾過
した時のタンパク質の透過率が低下する傾向にあり、6
0重量%を超えると製膜原液の粘性が高くなり製膜時の
可紡性が悪くなる傾向にあるため好ましくない。
What is more important is the amount of the hydrophilic polymer in the stock solution for film formation, and the mixing ratio of the hydrophilic polymer to the film-forming polymer is 27 to 60% by weight, preferably 30 to 60% by weight.
It is 60% by weight. If the mixing ratio of the hydrophilic polymer to the film-forming polymer is less than 27% by weight, the protein permeability tends to decrease when bovine plasma is subjected to internal pressure filtration.
If it exceeds 0% by weight, the viscosity of the stock solution for film formation becomes high and the spinnability during film formation tends to deteriorate, such being undesirable.

【0038】さらに製膜原液の温度が重要であり、ノズ
ルでの吐出時の製膜原液の温度は50℃以上、好ましく
は60〜100℃である。50℃未満であると製膜時の
可紡性が悪い傾向にある。
Further, the temperature of the film-forming stock solution is important, and the temperature of the film-forming stock solution at the time of discharge by the nozzle is 50 ° C. or higher, preferably 60 to 100 ° C. If it is less than 50 ° C, the spinnability during film formation tends to be poor.

【0039】内部液は、中空糸状膜の中空部を形成させ
るために用いるものであり、水と少なくとも1種類以上
の膜形成ポリマーに対する良溶剤からなる。水の含有量
は、40〜55重量%であることが好ましい。水の含有
量が40重量%未満では製膜時の可紡性が悪く、55重
量%を超えると牛血漿を内圧濾過した時のタンパク質の
透過率が低下する傾向にある。
The internal liquid is used to form the hollow portion of the hollow fiber membrane and is composed of water and a good solvent for at least one kind of the film-forming polymer. The water content is preferably 40 to 55% by weight. If the water content is less than 40% by weight, the spinnability during film formation is poor, and if it exceeds 55% by weight, the protein permeability tends to decrease when bovine plasma is subjected to internal pressure filtration.

【0040】エアギャップとは、ノズルと凝固浴との間
の隙間を意味する。本発明の膜を得るには紡速(m/
分)に対するエアギャップ(m)の比率が極めて重要で
ある。何故ならば本発明の膜構造は、内部液中の非溶剤
が製膜原液と接触することによって該製膜原液の内表面
部位から外表面部位側へと経時的に相分離が誘発され、
さらに該製膜原液が凝固浴に入るまでに膜内表面部位か
ら外表面部位までの相分離が完了しなければ、得られな
いからである。
Air gap means the gap between the nozzle and the coagulation bath. In order to obtain the membrane of the present invention, the spinning speed (m /
The ratio of air gap (m) to minute) is extremely important. Because the membrane structure of the present invention, the non-solvent in the internal solution is contacted with the film-forming stock solution to induce phase separation over time from the inner surface part of the film-forming stock solution to the outer surface part side,
Further, if the phase separation from the inner surface portion to the outer surface portion of the film is not completed by the time the stock solution for film formation enters the coagulation bath, it cannot be obtained.

【0041】紡速に対するエアギャップの比率は、0.
01〜0.1m/(m/分)であることが好ましく、さ
らに好ましくは0.01〜0.05m/(m/分)であ
る。紡速に対するエアギャップの比率が0.010m/
(m/分)未満では、本発明の構造と性能を有する膜を
得ることが難しく、0.1m/(m/分)を超える比率
では、膜へのテンションが高いことからエアギャップ部
で膜切れを多発し製造しにくい傾向にあり好ましくな
い。
The ratio of the air gap to the spinning speed is 0.
It is preferably from 01 to 0.1 m / (m / min), more preferably from 0.01 to 0.05 m / (m / min). The ratio of air gap to spinning speed is 0.010m /
When it is less than (m / min), it is difficult to obtain a film having the structure and performance of the present invention, and when it exceeds 0.1 m / (m / min), the tension to the film is high, so that the film is formed in the air gap portion. It is not preferable because it often breaks and tends to be difficult to manufacture.

【0042】ここで、紡速とはノズルから内部液ととも
に吐出した製膜原液がエアギャップを通過して凝固浴に
て凝固した膜が巻き取られる中空糸状膜の一連の製造工
程において、該工程中に延伸操作が無い時の巻き取り速
度を意味する。また、エアギャップを円筒状の筒などで
囲み、一定の温度と湿度を有する気体を一定の流量でこ
のエアギャップに流すと、より安定した状態で中空糸状
膜を製造することができる。
Here, the spinning speed means a series of manufacturing steps of a hollow fiber membrane in which a membrane-forming raw solution discharged from a nozzle together with an internal solution passes through an air gap and is wound up in a coagulating bath. It means the winding speed when there is no stretching operation inside. Also, by enclosing the air gap with a cylindrical tube or the like and flowing a gas having a constant temperature and humidity at a constant flow rate into the air gap, the hollow fiber membrane can be manufactured in a more stable state.

【0043】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度等をコントロールすることも可能である。
凝固浴の温度は、90〜100℃が好ましい。凝固浴の
温度が90℃未満では牛血漿を内圧濾過した時のタンパ
ク質の透過率が低下する傾向にあり、100℃以上では
製膜時に糸切れ等を多発し好ましくない。
As the coagulation bath, for example, water; methanol,
Liquids such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane that do not dissolve the polymer are used, and water is preferable. Also,
It is also possible to control the coagulation rate and the like by adding a small amount of a solvent that dissolves the polymer to the coagulation bath.
The temperature of the coagulation bath is preferably 90 to 100 ° C. If the temperature of the coagulation bath is lower than 90 ° C., the protein permeability tends to decrease when bovine plasma is subjected to internal pressure filtration, and if the temperature is 100 ° C. or higher, thread breakage and the like frequently occur during film formation, which is not preferable.

【0044】さらに、本発明の膜を得るためには凝固後
の膜の内径に対する膜厚の比率が0.15〜0.4、好
ましくは0.2〜0.3である。膜の内径に対する膜厚
の比率が0.15未満では膜の絶対強度が弱くなる傾向
にある。また、該比率が0.4を超えると本発明の様な
膜の外表面から内表面(又は内表面部位)に向かって孔
径が小さくなる傾斜構造は得られにくい傾向にある。何
故ならば、内部液中の非溶剤量に対する製膜原液中の溶
剤量の割合が多いために、内部液中の非溶剤量のみでは
凝固浴に入るまでに製膜原液の膜内表面部位から外表面
部位までの相分離を完了できないためである。
Further, in order to obtain the film of the present invention, the ratio of the film thickness to the inner diameter of the film after coagulation is 0.15 to 0.4, preferably 0.2 to 0.3. If the ratio of the film thickness to the inner diameter of the film is less than 0.15, the absolute strength of the film tends to be weak. If the ratio exceeds 0.4, it tends to be difficult to obtain a graded structure in which the pore diameter decreases from the outer surface to the inner surface (or the inner surface portion) of the membrane as in the present invention. Because the ratio of the amount of solvent in the film-forming stock solution to the amount of non-solvent in the internal solution is large, only the amount of non-solvent in the internal solution is enough to remove the amount of non-solvent in the internal solution from the inner surface of the film before entering the coagulation bath. This is because the phase separation up to the outer surface part cannot be completed.

【0045】また、膜の外径は400μm以下、好まし
くは300μm以下である。膜の外径が大きくなるとモ
ジュール内の膜面積(充填量)を低下せざるを得ないた
め、結果として単位時間当たりの処理能力が劣り、好ま
しくない。逆に膜の外径を大きくしてモジュール内の膜
面積(充填量)を同一にするにはモジュール容器を大き
くせざるを得ず、結果としてコストアップとなり好まし
くない。本発明の膜は、医療用途で使用されることか
ら、患者の医療費負担を軽減するため高価な大型モジュ
ールにすることは避ける必要がある。以上の処理能力と
コストの関係から膜の外径は400μm以下であること
が好ましい。
The outer diameter of the film is 400 μm or less, preferably 300 μm or less. When the outer diameter of the membrane becomes large, the membrane area (filling amount) in the module is unavoidably reduced, resulting in poor processing capacity per unit time, which is not preferable. On the contrary, in order to increase the outer diameter of the membrane to make the membrane area (filling amount) in the module the same, the module container must be enlarged, resulting in an increase in cost, which is not preferable. Since the membrane of the present invention is used in medical applications, it is necessary to avoid making an expensive large-sized module in order to reduce the burden of medical expenses on the patient. The outer diameter of the film is preferably 400 μm or less in view of the above-mentioned processing capacity and cost.

【0046】さらに、本発明の膜は乾燥させることも可
能であり、乾燥に際しては、グリセリン等の保湿剤を含
浸させてもさせなくても良い。
Further, the membrane of the present invention can be dried, and a humectant such as glycerin may or may not be impregnated at the time of drying.

【0047】さらに、膜に電子線及びγ線等の放射線を
照射することにより、膜中のPVPの一部を水に不溶化
できることから、膜からの溶出量を低減することが可能
である。放射線の照射は、モジュール化前又はモジュー
ル化後のどちらでも良い。本発明でいう水に不溶である
PVPとは、膜中の全PVP量から水に可溶であるPV
P量を差し引いたものである。膜中の全PVP量は、窒
素及びイオウの元素分析により容易に算出することがで
きる。
Furthermore, by irradiating the membrane with radiation such as electron rays and γ rays, a part of PVP in the membrane can be insolubilized in water, so that the amount eluted from the membrane can be reduced. Irradiation may be performed before or after modularization. The water-insoluble PVP referred to in the present invention means PV that is soluble in water from the total amount of PVP in the membrane.
The amount of P is subtracted. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur.

【0048】また、水に可溶であるPVP量は、以下の
方法により求めることができる。例えば、膜形成ポリマ
ーがポリスルホン系ポリマーの場合、膜をN−メチル−
2−ピロリドンで完全に溶解した後、得られたポリマー
溶液に水を添加して膜形成ポリマーを完全に沈殿させ
る。さらに該ポリマー溶液を静置した後、上澄み液中の
PVP量を液体クロマトグラフィーで定量することによ
り水に可溶であるPVPを定量することができる。
The amount of PVP soluble in water can be determined by the following method. For example, when the film-forming polymer is a polysulfone-based polymer, the film is N-methyl-
After completely dissolving with 2-pyrrolidone, water is added to the obtained polymer solution to completely precipitate the film-forming polymer. After allowing the polymer solution to stand still, the amount of PVP in the supernatant can be quantified by liquid chromatography to quantify the PVP soluble in water.

【0049】[0049]

【実施例】以下にこの発明の実施例を示すが、本発明
は、これに限定されるものではない。各測定方法は、下
記のとおりである。なお、測定サンプルとして使用した
中空糸状膜は、すべて乾燥状態のものを用いた。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Each measuring method is as follows. The hollow fiber membranes used as measurement samples were all in a dry state.

【0050】(透水量の測定)両端を接着剤で固定した
有効長180mmの糸束(内表面積換算で110±10
cmになるように膜本数を揃えたミニモジュール)の
内表面から外表面に透過させ、その量をmL(ミリリッ
トル)/(m・hr・mmHg)で表した。ただし、
有効膜面積は内表面換算した。
(Measurement of Water Permeability) A yarn bundle having an effective length of 180 mm with both ends fixed by an adhesive (110 ± 10 in terms of internal surface area)
It was permeated from the inner surface to the outer surface of a mini module (having a uniform number of membranes so as to be cm 2 ), and the amount was expressed in mL (milliliter) / (m 2 · hr · mmHg). However,
The effective film area was converted to the inner surface.

【0051】(破断強度の測定)膜強度は、(株)島津
製作所製のオートグラフAGS−5Dを使用し、サンプ
ル長さ20mm、引張りスピード300mm/分で測定
した。
(Measurement of breaking strength) The film strength was measured by using Autograph AGS-5D manufactured by Shimadzu Corporation at a sample length of 20 mm and a pulling speed of 300 mm / min.

【0052】(牛血漿評価)両端を接着剤で固定した有
効長180mmの糸束(ミニモジュール)の一方の中空
部(内表面側)に牛血漿を0.5mL/分にて供給し、
さらに他方の中空部から0.1mL/分で液を抜き出す
条件でワンパスにてクロスフロー濾過を180分間行っ
た。糸束の膜面積は、0.5mL/分の牛血漿供給量に
対して線速が1cm/分になるように膜本数を調整し
た。180分間濾過した全濾液を均一に攪拌した溶液と
濾過前血漿中の各タンパク質の濃度を求めることにより
膜性能を評価した。また、透過率は下記の(6)で表さ
れる値である。 透過率(%)=(濾液中の濃度)/(元液中の濃度)×100 (6)
(Evaluation of bovine plasma) Bovine plasma was supplied at 0.5 mL / min into one hollow portion (inner surface side) of a yarn bundle (mini module) having an effective length of 180 mm with both ends fixed with an adhesive.
Further, cross-flow filtration was performed for 180 minutes by one pass under the condition that the liquid was extracted from the other hollow portion at 0.1 mL / min. Regarding the membrane area of the yarn bundle, the number of membranes was adjusted so that the linear velocity was 1 cm / min with respect to the bovine plasma supply amount of 0.5 mL / min. The membrane performance was evaluated by determining the concentration of each protein in the solution obtained by uniformly stirring the entire filtrate filtered for 180 minutes and in the plasma before filtration. Further, the transmittance is a value represented by (6) below. Transmittance (%) = (concentration in filtrate) / (concentration in original solution) × 100 (6)

【0053】(総タンパク質量の測定)総タンパク質量
(濃度)は、0.1mLの液(血漿(元液)又は膜から
の濾液)に対して総タンパク発色試薬(和光純薬(株)
製)5mLを混合して30分間放置後、540nmの波
長にて分光光度計により測定した。
(Measurement of total protein amount) The total protein amount (concentration) was determined by measuring the total protein coloring reagent (Wako Pure Chemical Industries, Ltd.) for 0.1 mL of liquid (plasma (original liquid) or filtrate from the membrane).
(Manufactured by K.K.) and mixed with each other for 30 minutes and then measured with a spectrophotometer at a wavelength of 540 nm.

【0054】(イムノグロブリン濃度の測定)血漿(元
液)又は膜からの濾液中のイムノグロブリンの濃度は、
Behring Nephelometer−Anal
yzer BM(デイド ベーリング(株)社製)を用
いて測定した。
(Measurement of Immunoglobulin Concentration) The concentration of immunoglobulin in the plasma (original solution) or the filtrate from the membrane is
Behring Nepherometer-Anal
It measured using yzer BM (made by Dade Behring Co., Ltd.).

【0055】[0055]

【実施例1】(製膜及び残溶剤の除去)ポリスルホン
(Amoco Engineering Polyme
rs社製P−1700)20.0重量%、ポリビニルピ
ロリドン(BASF社製 K90、重量平均分子量1,
200,000)6.0重量%を、N−メチル−2−ピ
ロリドン74.0重量%に溶解して均一な溶液とした。
ここで、製膜原液中のポリスルホンに対するポリビニル
ピロリドンの混和比率は30.0重量%であった。この
製膜原液を60℃に保ち、N−メチル−2−ピロリドン
46重量%と水54重量%の混合溶液からなる内部液
(水の含有量が54重量%)とともに、紡口(2重環状
ノズル 0.1mm−0.2mm−0.3mm、ノズル
温度60℃、ノズル部での製膜原液の温度60℃)から
吐出させ、0.96mのエアギャップを通過させて95
±1℃の水からなる凝固浴へ浸漬した。この時、紡口か
ら凝固浴までを円筒状の筒で囲み、外気が入らないよう
に密閉した。紡速は、80m/分に固定した。ここで、
紡速に対するエアギャップの比率は、0.012m/
(m/分)であった。巻き取った糸束を切断後、糸束の
切断面上方から80℃の熱水シャワーを2時間かけて洗
浄することにより膜中の残溶剤を除去した。この膜をさ
らに87℃の熱風で7時間乾燥することにより含水量が
1%未満の乾燥膜を得た。さらに、2.5Mradのγ
線を照射することにより膜中のPVPの一部を不溶化し
た。
[Example 1] (Film formation and removal of residual solvent) Polysulfone (Amoco Engineering Polymer)
rs P-1700) 20.0 wt%, polyvinylpyrrolidone (BASF K90, weight average molecular weight 1,
6.0% by weight of 200,000) was dissolved in 74.0% by weight of N-methyl-2-pyrrolidone to obtain a uniform solution.
Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 30.0% by weight. This film-forming stock solution was kept at 60 ° C., and the spinneret (double ring) was formed along with an internal solution (water content was 54% by weight) consisting of a mixed solution of 46% by weight of N-methyl-2-pyrrolidone and 54% by weight of water. Nozzle 0.1 mm-0.2 mm-0.3 mm, nozzle temperature 60 ° C., temperature of the stock solution for film formation at the nozzle part 60 ° C.), and the mixture was passed through an air gap of 0.96 m to reach 95
It was immersed in a coagulation bath consisting of water at ± 1 ° C. At this time, the spinneret and the coagulation bath were surrounded by a cylindrical tube and sealed so that outside air did not enter. The spinning speed was fixed at 80 m / min. here,
The ratio of air gap to spinning speed is 0.012m /
(M / min). After cutting the wound yarn bundle, the residual solvent in the film was removed by washing from above the cut surface of the yarn bundle with a hot water shower at 80 ° C. for 2 hours. The film was further dried with hot air at 87 ° C. for 7 hours to obtain a dry film having a water content of less than 1%. Furthermore, 2.5 Mrad γ
A part of PVP in the film was insolubilized by irradiation with a ray.

【0056】得られた膜を電子顕微鏡にて観察したとこ
ろ、膜の外表面から内表面に向かって孔径が連続的に小
さくなるスポンジ構造であることが明らかとなった。図
1〜図3には、本実施例で得られた膜の電子顕微鏡写真
を示した。その他の膜構造及び膜性能等を表1に示す。
膜の破断強度は50kgf/cm以上と高い強度を示
し、牛血漿を内圧濾過した時の総タンパク質の透過率が
50%以上であった。さらに、牛血漿の内圧濾過におい
ても急激な目詰まりがなく長時間安定した濾液量を維持
した。
Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface of the film. 1 to 3 show electron micrographs of the film obtained in this example. Table 1 shows other film structures and film performances.
The rupture strength of the membrane was as high as 50 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0057】[0057]

【実施例2】N−メチル−2−ピロリドン54重量%と
水46重量%の混合溶液からなる内部液(水の含有量が
46重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm以上と高い強度を示し、牛血漿を内圧
濾過した時の総タンパク質の透過率が50%以上であっ
た。さらに、牛血漿の内圧濾過においても急激な目詰ま
りがなく長時間安定した濾液量を維持した。
Example 2 The same operation as in Example 1 except that an internal liquid (water content of 46% by weight) consisting of a mixed solution of 54% by weight of N-methyl-2-pyrrolidone and 46% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
The strength was as high as 0 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0058】[0058]

【実施例3】N−メチル−2−ピロリドン58重量%と
水42重量%の混合溶液からなる内部液(水の含有量が
42重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm以上と高い強度を示し、牛血漿を内圧
濾過した時の総タンパク質の透過率が50%以上であっ
た。さらに、牛血漿の内圧濾過においても急激な目詰ま
りがなく長時間安定した濾液量を維持した。
[Example 3] The same operation as in Example 1 except that an internal solution (content of water was 42% by weight) consisting of a mixed solution of 58% by weight of N-methyl-2-pyrrolidone and 42% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
The strength was as high as 0 kgf / cm 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0059】[0059]

【実施例4】製膜原液中のポリビニルピロリドンを1
0.0重量%、N−メチル−2−ピロリドンを70.0
重量%とした以外は、実施例1と同様な操作を行った。
この時の製膜原液中のポリスルホンに対するポリビニル
ピロリドンの混和比率は50.0重量%であった。得ら
れた膜を電子顕微鏡にて観察したところ、膜の外表面か
ら内表面に向かって孔径が連続的に小さくなるスポンジ
構造であることが明らかとなった。その他の膜構造及び
膜性能等を表1に示す。膜の破断強度は50kgf/c
以上と高い強度を示し、牛血漿を内圧濾過した時の
総タンパク質の透過率が50%以上であった。さらに、
牛血漿の内圧濾過においても急激な目詰まりがなく長時
間安定した濾液量を維持した。
[Example 4] 1 polyvinylpyrrolidone in the film-forming stock solution
0.0 wt%, N-methyl-2-pyrrolidone 70.0
The same operation as in Example 1 was performed except that the content was changed to wt%.
At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 50.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the film is 50kgf / c
It showed a high strength of m 2 or more, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. further,
Even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0060】[0060]

【実施例5】製膜原液中のポリビニルピロリドンを8.
0重量%、N−メチル−2−ピロリドンを70.0重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は40.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表1に示す。膜の破断強度は50kgf/cm
以上と高い強度を示し、牛血漿を内圧濾過した時の総タ
ンパク質の透過率が50%以上であった。さらに、牛血
漿の内圧濾過においても急激な目詰まりがなく長時間安
定した濾液量を維持した。
[Example 5] The polyvinylpyrrolidone in the stock solution for film formation was changed to 8.
The same operation as in Example 1 was performed except that 0% by weight and 70.0% by weight of N-methyl-2-pyrrolidone were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 40.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the film is 50 kgf / cm 2
The strength was high as described above, and the total protein permeability was 50% or more when bovine plasma was subjected to internal pressure filtration. Further, even in the internal pressure filtration of bovine plasma, a stable amount of filtrate was maintained for a long time without sudden clogging.

【0061】[0061]

【比較例1】N−メチル−2−ピロリドン43重量%と
水57重量%の混合溶液からなる内部液(水の含有量が
57重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表2に示す。牛血漿を内圧濾過
した時の総タンパク質の透過率は50%未満であった。
[Comparative Example 1] The same operation as in Example 1 except that an internal solution (water content of 57% by weight) consisting of a mixed solution of 43% by weight of N-methyl-2-pyrrolidone and 57% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0062】[0062]

【比較例2】N−メチル−2−ピロリドン62重量%と
水38重量%の混合溶液からなる内部液(水の含有量が
38重量%)を用いた以外は、実施例1と同様な操作を
行ったが、糸切れが多発し紡糸できなかった。
[Comparative Example 2] The same operation as in Example 1 except that an internal solution (containing 38% by weight of water) consisting of a mixed solution of 62% by weight of N-methyl-2-pyrrolidone and 38% by weight of water was used. However, the yarn was frequently broken and the spinning could not be performed.

【0063】[0063]

【比較例3】製膜原液中のポリビニルピロリドンを5.
0重量%、N−メチル−2−ピロリドンを75.0重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は25.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表2に示す。牛血漿を内圧濾過した時の総タンパ
ク質の透過率は50%未満であった。
[Comparative Example 3] The polyvinylpyrrolidone in the stock solution for film formation was compared with 5.
The same operation as in Example 1 was performed except that 0% by weight and 75.0% by weight of N-methyl-2-pyrrolidone were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 25.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0064】[0064]

【比較例4】実施例1で使用したポリスルホン20重量
%、ポリビニルピロリドンを13重量%、およびN−メ
チル−2−ピロリドンを67重量%を溶解しようとした
均一な溶液にすることができなかった。
COMPARATIVE EXAMPLE 4 20% by weight of the polysulfone used in Example 1, 13% by weight of polyvinylpyrrolidone, and 67% by weight of N-methyl-2-pyrrolidone were not dissolved to form a uniform solution. .

【0065】[0065]

【比較例5】製膜原液の温度を45℃、ノズル温度を4
5℃(ノズル部での製膜原液の温度45℃)にした以外
は、実施例2と同様な操作を行ったが、糸切れが多発し
紡糸できなかった。
[Comparative Example 5] The temperature of the film forming solution was 45 ° C and the nozzle temperature was 4
The same operation as in Example 2 was carried out except that the temperature was 5 ° C. (the temperature of the stock solution for film formation at the nozzle portion was 45 ° C.), but yarn breakage occurred frequently and spinning was not possible.

【0066】[0066]

【比較例6】溶剤をN−メチル−2−ピロリドンから
N,N−ジメチルアセトアミドにした以外は実施例1と
同様な操作を行った。得られた膜を電子顕微鏡にて観察
したところ、膜の外表面から内表面に向かって孔径が連
続的に小さくなるスポンジ構造であることが明らかとな
った。その他の膜構造及び膜性能等を表2に示す。牛血
漿を内圧濾過した時の総タンパク質の透過率は50%未
満であった。
Comparative Example 6 The same operation as in Example 1 was carried out except that the solvent was changed from N-methyl-2-pyrrolidone to N, N-dimethylacetamide. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The permeation rate of total protein was less than 50% when bovine plasma was subjected to internal pressure filtration.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】[0069]

【発明の効果】本発明の膜は、内圧濾過における血漿浄
化において目詰まりが少ない膜であって、高強度で、し
かも透水性能および分画性能にも優れた血漿浄化膜であ
ることから医薬用途、医療用途、及び一般工業用途に用
いることができる。
INDUSTRIAL APPLICABILITY The membrane of the present invention is a membrane having less clogging in plasma purification in internal pressure filtration, has high strength, and is also excellent in water permeability and fractionation performance, and therefore is used in medicine. It can be used for medical applications and general industrial applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の中空糸状膜の長さ方向に対して垂直な
断面の電子顕微鏡写真である(倍率1,500倍)。
FIG. 1 is an electron micrograph of a cross section perpendicular to the length direction of the hollow fiber membrane of the present invention (magnification: 1,500 times).

【図2】本発明の膜内表面の電子顕微鏡写真である(倍
率10,000倍)。
FIG. 2 is an electron micrograph of the inner surface of the film of the present invention (magnification: 10,000 times).

【図3】本発明の膜外表面の電子顕微鏡写真である(倍
率10,000倍)。
FIG. 3 is an electron micrograph of the outer surface of the film of the present invention (magnification: 10,000 times).

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膜の外表面から内表面に向かって孔径が
連続的に小さくなるスポンジ構造からなり、膜の破断強
度が50kgf/cm以上で、且つ牛血漿を内圧濾過
した時の総タンパク質の透過率が50%以上、イムノグ
ロブリンの透過率が90%以下であることを特徴とする
中空糸状血漿浄化膜。
1. A sponge structure having a pore size that continuously decreases from the outer surface to the inner surface of the membrane, the breaking strength of the membrane is 50 kgf / cm 2 or more, and the total protein when the bovine plasma is subjected to internal pressure filtration. Of 50% or more and 90% or less of immunoglobulin permeation rate.
【請求項2】 膜の外表面に平均孔径が1μm以上の円
形状あるいは楕円形状の孔を有する膜であることを特徴
とする請求項1に記載の中空糸状血漿浄化膜。
2. The hollow fiber plasma purification membrane according to claim 1, which is a membrane having circular or elliptical pores having an average pore diameter of 1 μm or more on the outer surface of the membrane.
【請求項3】 膜の外表面の開孔率が10%以上である
ことを特徴とする請求項1又は2に記載の中空糸状血漿
浄化膜。
3. The hollow fiber plasma purification membrane according to claim 1, wherein the porosity of the outer surface of the membrane is 10% or more.
【請求項4】 膜の内径に対する膜厚の比率が0.15
〜0.4であることを特徴とする請求項1〜3のいずれ
かに記載の中空糸状血漿浄化膜。
4. The ratio of the film thickness to the inner diameter of the film is 0.15.
It is -0.4, The hollow fiber plasma purification membrane in any one of Claims 1-3 characterized by the above-mentioned.
【請求項5】 膜の外径が400μm以下であることを
特徴とする請求項1〜4のいずれかに記載の中空糸状血
漿浄化膜。
5. The hollow fiber-like plasma purification membrane according to claim 1, wherein the outer diameter of the membrane is 400 μm or less.
【請求項6】 芳香族ポリスルホンとポリビニルピロリ
ドンからなり、膜内表面におけるポリビニルピロリドン
の濃度が20〜45重量%であることを特徴とする請求
項1〜5のいずれかに記載の中空糸状血漿浄化膜。
6. The hollow fiber plasma purification according to claim 1, which comprises aromatic polysulfone and polyvinylpyrrolidone, and the concentration of polyvinylpyrrolidone on the inner surface of the membrane is 20 to 45% by weight. film.
【請求項7】 水に不溶であるポリビニルピロリドンを
含むことを特徴とする請求項1〜6のいずれかに記載の
中空糸状血漿浄化膜。
7. The hollow fiber plasma purification membrane according to claim 1, which contains polyvinylpyrrolidone which is insoluble in water.
JP2002267266A 2002-09-12 2002-09-12 High-performance plasma purification membrane Expired - Lifetime JP3431622B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002267266A JP3431622B1 (en) 2002-09-12 2002-09-12 High-performance plasma purification membrane
EP03795429A EP1547628B1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
AT03795429T ATE511868T1 (en) 2002-09-12 2003-09-12 PLASMA CLEANING MEMBRANE AND PLASMA CLEANING SYSTEM
PCT/JP2003/011715 WO2004024216A1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
AU2003261571A AU2003261571A1 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
MXPA05002747A MXPA05002747A (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system.
CNB038234785A CN100503020C (en) 2002-09-12 2003-09-12 Plasma purifying membrane and plasma purifying system
US10/527,802 US7563376B2 (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system
CA2498244A CA2498244C (en) 2002-09-12 2003-09-12 Plasma purification membrane and plasma purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267266A JP3431622B1 (en) 2002-09-12 2002-09-12 High-performance plasma purification membrane

Publications (2)

Publication Number Publication Date
JP3431622B1 true JP3431622B1 (en) 2003-07-28
JP2004097703A JP2004097703A (en) 2004-04-02

Family

ID=27655687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267266A Expired - Lifetime JP3431622B1 (en) 2002-09-12 2002-09-12 High-performance plasma purification membrane

Country Status (1)

Country Link
JP (1) JP3431622B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211071B2 (en) * 2007-12-06 2013-06-12 旭化成メディカル株式会社 Porous hollow fiber membrane for blood treatment
JPWO2013147001A1 (en) * 2012-03-28 2015-12-14 東レ株式会社 Polysulfone-based hollow fiber membrane and hollow fiber membrane module for purifying blood products

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2378401T3 (en) * 2006-05-06 2012-04-12 Membrana Gmbh Ultrafiltration membrane
WO2017006293A1 (en) 2015-07-08 2017-01-12 Debiotech S.A. System and method for cleaning a filter
EP4321241A1 (en) * 2021-04-06 2024-02-14 NOK Corporation Method for manufacturing hollow-fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211071B2 (en) * 2007-12-06 2013-06-12 旭化成メディカル株式会社 Porous hollow fiber membrane for blood treatment
JPWO2013147001A1 (en) * 2012-03-28 2015-12-14 東レ株式会社 Polysulfone-based hollow fiber membrane and hollow fiber membrane module for purifying blood products

Also Published As

Publication number Publication date
JP2004097703A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US4935141A (en) Selectively permeable asymmetric membranes suitable for use in hemodialysis and processes for manufacturing such membranes
CA2498244C (en) Plasma purification membrane and plasma purification system
JP5074040B2 (en) Dialysis membrane with improved removal of medium molecules
WO2015046411A1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP4265701B2 (en) Polysulfone porous membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP3431622B1 (en) High-performance plasma purification membrane
JP4873665B2 (en) Hollow fiber membrane for blood purification
JP2005224604A (en) Hemocatharsis membrane and hemocatharsis apparatus using the same
JP2011078920A (en) Permselective hollow fiber membrane
JP3594946B2 (en) High performance microfiltration membrane
JP3431623B1 (en) Method for producing plasma purification membrane
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JP4029312B2 (en) Permselective hollow fiber membrane
JP3281363B1 (en) Blood purification membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH1066725A (en) Selective-permeability hollow fiber membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JPH07289866A (en) Polysulfone-based selective permeable membrane
JP4076144B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP2001038171A (en) Hollow fiber membrane

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3431622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term