JP3464000B1 - Manufacturing method of high performance hollow fiber microfiltration membrane - Google Patents

Manufacturing method of high performance hollow fiber microfiltration membrane

Info

Publication number
JP3464000B1
JP3464000B1 JP2002267273A JP2002267273A JP3464000B1 JP 3464000 B1 JP3464000 B1 JP 3464000B1 JP 2002267273 A JP2002267273 A JP 2002267273A JP 2002267273 A JP2002267273 A JP 2002267273A JP 3464000 B1 JP3464000 B1 JP 3464000B1
Authority
JP
Japan
Prior art keywords
film
membrane
polymer
weight
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267273A
Other languages
Japanese (ja)
Other versions
JP2004098028A (en
Inventor
輝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP2002267273A priority Critical patent/JP3464000B1/en
Application granted granted Critical
Publication of JP3464000B1 publication Critical patent/JP3464000B1/en
Publication of JP2004098028A publication Critical patent/JP2004098028A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

【要約】 【課題】 高い強度と優れた透水性能を有する異方性
構造の精密濾過膜であって、特に内圧濾過において目詰
まりが少ない優れた精密濾過膜の製造方法を提供する。 【解決手段】 製膜原液と内部液を2重環状ノズルから
吐出させた後、エアギャップを通過させてから凝固浴で
凝固させる中空糸状膜の製造方法において、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が20〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が35〜55重量%、 c)ノズル部での製膜原液の温度が50℃以上、 d)凝固浴温度が85〜100℃、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分) であることを特徴とする中空糸状精密濾過膜の製造方
法。
An object of the present invention is to provide a method for producing a microfiltration membrane having an anisotropic structure having high strength and excellent water permeation performance, and in particular, less clogging in internal pressure filtration. SOLUTION: A method for producing a hollow fiber membrane in which a stock solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath, comprising the steps of: A polymer, a solvent for the polymer,
And a hydrophilic polymer, wherein the ratio of the hydrophilic polymer to the film-forming polymer is 20 to 60% by weight; b) the internal liquid is water and at least one or more solvents, and the water content is 35 to 55% by weight; c) The temperature of the stock solution at the nozzle portion is 50 ° C. or more, d) the coagulation bath temperature is 85 to 100 ° C., and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
A method for producing a hollow fiber microfiltration membrane, wherein the filtration rate is 1 m / (m / min).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、異方性の精密濾過
膜であって、特に、高い強度と優れた透水性能を有し、
且つ内圧濾過において目詰まりが少ない精密濾過膜の製
造方法に関する。
TECHNICAL FIELD The present invention relates to an anisotropic microfiltration membrane, which has particularly high strength and excellent water permeability,
In addition, the present invention relates to a method for producing a microfiltration membrane with less clogging in internal pressure filtration.

【0002】[0002]

【従来の技術】中空糸状膜は、精密濾過から限外濾過ま
での工業的用途に広く使われており、膜の素材としてポ
リエチレン、酢酸セルロース、ポリスルホン、ポリフッ
化ビニリデン、ポリカーボネート、ポリアクリロニトリ
ル等が用いられている。これらの素材からなる従来の中
空糸状膜は、濾過性能の向上に注力して開発されたもの
であるため、中空糸状膜の破断強度や破断時の伸びが小
さく、急激な温度変化や逆洗時の圧力変化により、しば
しば中空糸状膜が破断することが指摘されている。
Hollow fiber membranes are widely used for industrial applications from microfiltration to ultrafiltration. Polyethylene, cellulose acetate, polysulfone, polyvinylidene fluoride, polycarbonate, polyacrylonitrile, etc. are used as membrane materials. Has been. Conventional hollow fiber membranes made of these materials were developed with a focus on improving filtration performance, so the hollow fiber membranes have a small breaking strength and elongation at break, and do not undergo rapid temperature changes or backwashing. It has been pointed out that the hollow fiber membrane is often ruptured due to the pressure change.

【0003】この点を解決するため種々の試みがなされ
てきたが、一般的には特許文献1に記載された発明に示
唆されているように、製膜原液中のポリマー濃度を高く
して、中空糸状膜全体のポリマー密度を上げる方法が考
えられる。しかしながら、この方法では膜の強度が向上
する反面、膜の孔径が小さくなるとともに膜の透水量が
大幅に低下するため、強度と透水性能のバランスに優れ
た中空糸状膜は得られていない。
Various attempts have been made to solve this point, but generally, as suggested by the invention described in Patent Document 1, the polymer concentration in the membrane-forming stock solution is increased to A method of increasing the polymer density of the entire hollow fiber membrane can be considered. However, in this method, the strength of the membrane is improved, but the pore diameter of the membrane is reduced and the water permeation rate of the membrane is significantly reduced. Therefore, a hollow fiber membrane having an excellent balance between strength and water permeation performance has not been obtained.

【0004】一方、膜の透水性能を向上させるために
は、膜の孔径を大きくする方法が一般的に行なわれる
が、孔径の増大は一般に膜の分画性能と膜強度の低下を
招く。以上のように、従来技術では、強度、透水性能及
び分画性能のバランスがとれた高性能の中空糸状膜は得
られていなかった。例えば、特許文献2には、高強度で
かつ透水性能に優れた膜の製法が提案されているが、こ
の製法によって作られた膜は孔径が大きく、透水性能と
分画性能とのバランスがとれていない。
On the other hand, in order to improve the water permeability of the membrane, a method of enlarging the pore size of the membrane is generally carried out, but an increase in the pore size generally leads to a reduction in the membrane fractionation performance and the membrane strength. As described above, according to the prior art, a high performance hollow fiber membrane having a good balance of strength, water permeability and fractionation performance has not been obtained. For example, Patent Document 2 proposes a method for producing a membrane having high strength and excellent water permeability. However, the membrane produced by this method has a large pore size, and water permeability and fractionation performance are well balanced. Not not.

【0005】特許文献3には、膜の外表面から内部に向
かって孔径が連続的に小さくなり内部の最小孔径を経て
再び連続的に孔径が大きくなり内表面に開孔する中空糸
状精密濾過膜が開示されている。しかしながら、この構
造の膜を用いて膜の中空部側(内表面側)から液体等を
濾過した場合、急激な目詰まりを起こし長時間安定的に
濾過を行なうことができない。
In Patent Document 3, a hollow fiber type microfiltration membrane in which the pore diameter continuously decreases from the outer surface of the membrane toward the inside thereof, and the pore diameter continuously increases again through the minimum pore diameter of the inner portion to open on the inner surface. Is disclosed. However, when liquid or the like is filtered from the hollow side (inner surface side) of the membrane using the membrane of this structure, rapid clogging occurs and stable filtration cannot be performed for a long time.

【0006】[0006]

【特許文献1】特開昭59−228016号公報[Patent Document 1] JP-A-59-228016

【特許文献2】特開平4−260424号公報[Patent Document 2] Japanese Patent Laid-Open No. 4-260424

【特許文献3】特開平2−102722号公報[Patent Document 3] Japanese Patent Laid-Open No. 2-102722

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、高い
強度と優れた透水性能を有する異方性の精密濾過膜であ
って、特に内圧濾過において目詰まりが少ない優れた精
密濾過膜の製造方法を提供することにある。
The object of the present invention is to produce an anisotropic microfiltration membrane having high strength and excellent water permeability, and particularly excellent microfiltration membrane with less clogging in internal pressure filtration. To provide a method.

【0008】[0008]

【課題を解決するための手段】上記の如く、膜の中空部
側から液体等を濾過(以下「内圧濾過」ともいう)した
場合、目詰まりが少なく、透水性能に優れた高強度の精
密濾過膜はこれまでなかった。何故ならば、膜の外表面
から内表面に向かって孔径が連続的に小さくなる傾斜構
造の膜の膜内表面に、膜強度を高く維持したまま、0.
01μm以上の(精密濾過領域の)孔を開口させること
は、特にポリスルホン等の疎水性ポリマーでは従来不可
能であったからである。
[Means for Solving the Problems] As described above, when a liquid or the like is filtered from the hollow side of the membrane (hereinafter also referred to as "internal pressure filtration"), high-precision microfiltration with less clogging and excellent water permeability. There has never been a membrane. This is because, while maintaining high film strength on the inner surface of the film having a graded structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the film,
This is because opening of pores (in the microfiltration region) of 01 μm or more has heretofore been impossible with a hydrophobic polymer such as polysulfone.

【0009】そこで本発明者は、目詰まりを防止するた
め、膜の外表面から内表面に向かって孔径が連続的に小
さくなる傾斜構造について鋭意研究を進めた結果、本発
明に至ったものである。
In order to prevent clogging, the inventors of the present invention have made extensive studies on an inclined structure in which the pore diameter continuously decreases from the outer surface to the inner surface of the film, and as a result, the present invention has been achieved. is there.

【0010】すなわち本発明は、(1)製膜原液と内部
液を2重環状ノズルから吐出させた後、エアギャップを
通過させてから凝固浴で凝固させる中空糸状膜の製造方
法において、a)製膜原液が、膜形成ポリマー、該ポリ
マーの溶剤、及び親水性ポリマーからなる添加剤からな
り、膜形成ポリマーに対する添加剤の比率が20〜60
重量%、b)内部液が水と少なくとも1種類以上の溶剤
からなり、水の含有量が35〜55重量%、c)ノズル
部での製膜原液の温度が50℃以上、d)凝固浴温度が
85〜100℃、且つe)紡速に対するエアギャップの
比率が0.01〜0.1m/(m/分)であることを特
徴とする中空糸状精密濾過膜の製造方法、(2)さらに
放射線照射することを特徴とする(1)に記載の製造方
法、(3)膜の内径に対する膜厚の比率が0.15〜
0.4であることを特徴とする(1)又は(2)に記載
の製造方法、(4)膜の外径が500μm以下であるこ
とを特徴とする(1)〜(3)に記載の製造方法、
(5)膜形成ポリマーがポリスルホン系ポリマーである
ことを特徴とする(1)〜(4)に記載の製造方法、
(6)親水性ポリマーが重量平均分子量900,000
以上のポリビニルピロリドンであることを特徴とする
(1)〜(5)に記載の製造方法、(7)膜形成ポリマ
ーの溶剤がN−メチル−2−ピロリドンであることを特
徴とする(1)〜(6)に記載の製造方法、および
(8)紡速が60m/分以上であることを特徴とする
(1)〜(7)に記載の製造方法、に関するものであ
る。
That is, the present invention provides (1) a method for producing a hollow fiber membrane in which a stock solution for membrane formation and an internal solution are discharged from a double annular nozzle, and then passed through an air gap and then solidified in a coagulation bath. The stock solution for film formation comprises a film-forming polymer, a solvent for the polymer, and an additive comprising a hydrophilic polymer, and the ratio of the additive to the film-forming polymer is 20 to 60.
% By weight, b) the internal liquid consists of water and at least one or more kinds of solvents, the water content is 35 to 55% by weight, c) the temperature of the stock solution for film formation at the nozzle is 50 ° C. or higher, and d) the coagulation bath. A temperature of 85 to 100 ° C., and e) a ratio of air gap to spinning speed is 0.01 to 0.1 m / (m / min), a method for producing a hollow fiber microfiltration membrane, (2) Further, irradiation is performed with radiation, (3) the manufacturing method according to (1), wherein the ratio of the film thickness to the inner diameter of the film is 0.15 to 0.15.
(1) or (2), wherein the outer diameter of the membrane is 500 μm or less. (1) to (3) Production method,
(5) The production method according to (1) to (4), wherein the film-forming polymer is a polysulfone-based polymer.
(6) The hydrophilic polymer has a weight average molecular weight of 900,000
The production method described in (1) to (5) above, which is polyvinylpyrrolidone, (7) the solvent for the film-forming polymer is N-methyl-2-pyrrolidone (1) To (6), and (8) a spinning method of 60 m / min or more, (1) to (7).

【0011】本発明の製造方法により、膜の外表面から
内表面に向かって孔径が連続的に小さくなるスポンジ構
造からなり、内圧濾過における阻止径が0.015〜1
μmであることを特徴とする優れた中空糸状精密濾過膜
が得られる。
According to the production method of the present invention, the membrane has a sponge structure in which the pore diameter continuously decreases from the outer surface to the inner surface, and the blocking diameter in the internal pressure filtration is 0.015 to 1.
An excellent hollow fiber type microfiltration membrane characterized by having a thickness of μm can be obtained.

【0012】[0012]

【発明の実施の形態】以下に、本発明の中空糸状精密濾
過膜(以下単に「膜」又は「中空糸状膜」ともいう)の
製造方法について説明する。本発明で得られる中空糸精
密濾過膜は、河川水、湖沼水、地下水、海水等の天然水
からの除濁、微生物の除去、及び無菌水の作成等の上水
道分野、電着塗料溶液からの塗料回収分野、電子工業向
け超純水製造分野、医薬・発酵及び食品の分野での使用
など広範囲に応用できる。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing the hollow fiber microfiltration membrane of the present invention (hereinafter also simply referred to as "membrane" or "hollow fiber membrane") will be described below. The hollow fiber microfiltration membrane obtained in the present invention is used for the turbidity of natural water such as river water, lake water, groundwater, and seawater, removal of microorganisms, and the field of waterworks such as preparation of sterile water, and electrodeposition coating solution. It can be applied in a wide range of fields such as paint recovery, ultrapure water production for electronics industry, pharmaceutical / fermentation and food applications.

【0013】本発明の製造方法は、膜形成ポリマー、該
ポリマーの溶剤、及び親水性ポリマーからなる添加剤か
ら本質的になる特定温度の製膜原液を、該ポリマーに対
する良溶剤の特定濃度の水溶液からなる内部液とともに
2重環状ノズルから吐出させ、紡速に対して特定の比率
のエアギャップを通過させた後、特定温度の凝固浴で凝
固させることにより製造される。
In the production method of the present invention, a stock solution for film formation essentially consisting of a film-forming polymer, a solvent for the polymer, and an additive consisting of a hydrophilic polymer is treated with an aqueous solution of a good solvent for the polymer at a specific concentration. Is produced from a double annular nozzle together with an internal liquid consisting of ## STR2 ## and passed through an air gap of a specific ratio to the spinning speed, and then solidified in a coagulating bath at a specific temperature.

【0014】本発明の製造方法において用いられる膜形
成ポリマーは、湿式製膜により膜を形成することができ
るポリマーであればよく、例えばポリスルホン系ポリマ
ー、ポリフッ化ビニリデン系ポリマー、ポリアクリロニ
トリル系ポリマー、ポリメタクリル酸系ポリマー、ポリ
アミド系ポリマー、ポリイミド系ポリマー、ポリエーテ
ルイミド系ポリマー及び酢酸セルロース系ポリマー等が
挙げられる。中でも芳香族ポリスルホンは、その熱安定
性、耐酸、耐アルカリ性および機械的強度に優れるが、
疎水性であるため河川水、湖沼水、地下水、海水等の天
然水からの除濁、微生物の除去や電着塗料溶液からの塗
料回収分野及び医薬・発酵等の一般工業分野においても
目詰まりし易いことが問題であった。製膜原液に親水性
ポリマーを添加して製膜することにより一般工業分野で
の使用を可能にし、さらに医療分野においても血液適合
性を向上できることから好ましく用いられる。芳香族ポ
リスルホンとしては、ビスフェノールA型ポリスルホン
が特に好ましく用いられる。
The film-forming polymer used in the production method of the present invention may be any polymer capable of forming a film by wet film formation, and examples thereof include polysulfone-based polymers, polyvinylidene fluoride-based polymers, polyacrylonitrile-based polymers, and polyacrylonitrile-based polymers. Examples thereof include methacrylic acid-based polymers, polyamide-based polymers, polyimide-based polymers, polyetherimide-based polymers and cellulose acetate-based polymers. Among them, aromatic polysulfone is excellent in its thermal stability, acid resistance, alkali resistance and mechanical strength,
Due to its hydrophobicity, it also clogs river water, lake water, groundwater, seawater, and other natural water, microbial removal, paint recovery from electrodeposition paint solutions, and general industrial fields such as pharmaceuticals and fermentation. The problem was that it was easy. A hydrophilic polymer is added to a film-forming stock solution to form a film, which enables use in the general industrial field and further improves blood compatibility in the medical field, and thus is preferably used. Bisphenol A type polysulfone is particularly preferably used as the aromatic polysulfone.

【0015】本発明で用いられる芳香族ポリスルホンと
しては、下記の式(1)、または式(2)で示される繰
り返し単位を有するものが挙げられる。なお、式中のA
rはパラ位での2置換のフェニル基を示し、重合度や分
子量については特に限定しない。 −O−Ar−C(CH32−Ar−O−Ar−SO2−Ar− (1) −O−Ar−SO2−Ar− (2)
Examples of the aromatic polysulfone used in the present invention include those having a repeating unit represented by the following formula (1) or formula (2). In addition, A in the formula
r represents a 2-substituted phenyl group at the para position, and the degree of polymerization and the molecular weight are not particularly limited. -O-Ar-C (CH 3 ) 2 -Ar-O-Ar-SO 2 -Ar- (1) -O-Ar-SO 2 -Ar- (2)

【0016】添加剤は、溶剤と相溶性があり、膜形成ポ
リマーを溶解しない親水性ポリマーが用いられる。膜形
成ポリマーがポリスルホン系ポリマーであれば、添加剤
としてはポリビニルピロリドンが好ましく用いられる。
ポリビニルピロリドンは親水性ポリマーの中でも特に毒
性が低いので好ましい。膜形成ポリマーが芳香族ポリス
ルホンの場合、ポリビニルピロリドン以外の添加剤を用
いたのでは本発明の膜は得られにくい。
As the additive, a hydrophilic polymer which is compatible with the solvent and does not dissolve the film-forming polymer is used. If the film-forming polymer is a polysulfone-based polymer, polyvinylpyrrolidone is preferably used as an additive.
Polyvinylpyrrolidone is preferable because it has particularly low toxicity among hydrophilic polymers. When the film-forming polymer is aromatic polysulfone, it is difficult to obtain the film of the present invention by using an additive other than polyvinylpyrrolidone.

【0017】ポリビニルピロリドンは高分子量のものほ
ど膜への親水化効果が高いため、高分子量のものほど少
量で十分な効果が発揮できることから、本発明において
は重量平均分子量900,000以上のポリビニルピロ
リドンが使用される。900,000より小さい重量平
均分子量を有するポリビニルピロリドンを用いて膜への
親水化効果を付与するためには大量のポリビニルピロリ
ドンを膜中に残存させる必要があるが、このために膜か
らの溶出物が増加することになる。また、逆に溶出物を
下げるために900,000より小さい重量平均分子量
のポリビニルピロリドンの膜中での残存量を少なくする
と親水化効果が不十分となってしまう。また、重量平均
分子量900,000以上のポリビニルピロリドンを用
いないと膜厚部での親水性が不十分であることから、膜
内表面緻密層(膜内表面部位)を通過した血漿タンパク
質が膜厚部で吸着されてしまい、結果として良好な分離
特性を発揮できない。
The higher the molecular weight of polyvinylpyrrolidone is, the higher the hydrophilic effect on the membrane is. Therefore, the higher the molecular weight of polyvinylpyrrolidone is, the smaller the amount of polyvinylpyrrolidone is. Therefore, the polyvinylpyrrolidone of the present invention has a weight average molecular weight of 900,000 or more. Is used. It is necessary to leave a large amount of polyvinylpyrrolidone in the membrane in order to impart a hydrophilic effect to the membrane by using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000. Will increase. On the contrary, if the residual amount of polyvinylpyrrolidone having a weight average molecular weight of less than 900,000 in the film is reduced in order to reduce the eluate, the hydrophilic effect becomes insufficient. In addition, since the hydrophilicity in the film thickness portion is insufficient unless polyvinylpyrrolidone having a weight average molecular weight of 900,000 or more is used, the plasma protein that has passed through the inner membrane surface dense layer (inner membrane surface site) has a membrane thickness. It is adsorbed on the part, and as a result, good separation characteristics cannot be exhibited.

【0018】ポリマーの溶剤としては、N−メチル−2
−ピロリドン、N,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド等の溶剤が挙げられるが、膜形
成ポリマーがポリスルホン系ポリマーの場合、N−メチ
ル−2−ピロリドン(以下単に「NMP」ともいう)が
好ましい。NMPは、ポリスルホン系ポリマーに対して
最も溶解力の高い溶剤である。例えば、他の良溶剤であ
るN,N−ジメチルアセトアミドと比較して室温で約
1.5倍の溶解力を有する。膜の外表面から内表面に向
かって孔径が連続的に小さくなる傾斜構造において膜内
表面に0.01μm以上の大孔径を開口させるには、内
部液中の非溶剤により液液相分離が誘発されてから相分
離(凝固)が終了するまでの時間、即ち粒子成長時間を
長くする必要がある。ポリスルホン系ポリマーにおいて
は、非常に高い溶解力を有するNMPを用いることによ
ってこの粒子成長時間をどの溶剤を用いるよりも長くす
ることが可能である。さらに、NMPはポリスルホン系
ポリマーにおいて最良溶剤であることから、製膜原液中
のポリスルホン系ポリマーの分子鎖同士の絡み合いが良
く、結果的に高強度の膜を得ることが可能である。以上
の理由から、膜形成ポリマーがポリスルホン系ポリマー
の場合、NMP以外の溶剤を用いたのでは、本発明の膜
は得られにくい。
As a solvent for the polymer, N-methyl-2
-Pyrrolidone, N, N-dimethylformamide, N, N
Examples of the solvent include dimethylacetamide, and when the film-forming polymer is a polysulfone-based polymer, N-methyl-2-pyrrolidone (hereinafter simply referred to as “NMP”) is preferable. NMP is a solvent having the highest dissolving power for polysulfone-based polymers. For example, it has a dissolving power of about 1.5 times at room temperature as compared with another good solvent, N, N-dimethylacetamide. In order to open a large pore size of 0.01 μm or more on the inner surface of the membrane in a graded structure where the pore size decreases continuously from the outer surface of the membrane to the inner surface, liquid-liquid phase separation is induced by the non-solvent in the inner liquid. It is necessary to lengthen the time from the completion of the separation to the completion of phase separation (solidification), that is, the particle growth time. In polysulfone-based polymers, it is possible to extend the particle growth time by using NMP, which has a very high dissolving power, than by using any solvent. Furthermore, since NMP is the best solvent in the polysulfone-based polymer, the molecular chains of the polysulfone-based polymer in the stock solution for film formation are well entangled with each other, and as a result, a high-strength film can be obtained. For the above reason, when the film-forming polymer is a polysulfone-based polymer, it is difficult to obtain the film of the present invention by using a solvent other than NMP.

【0019】製膜原液は、本質的に膜形成ポリマー、ポ
リビニルピロリドン等の特定の添加剤、N−メチル−2
−ピロリドン等の特定のポリマーの溶剤からなる。製膜
原液にその他の添加剤、例えば従来添加剤として知られ
ている水や金属塩等を加えると、本発明の膜は得られに
くい。
The stock solution for film formation is essentially a film-forming polymer, specific additives such as polyvinylpyrrolidone, N-methyl-2.
Consisting of a solvent of a particular polymer such as pyrrolidone. If other additives such as water and metal salts, which are conventionally known as additives, are added to the film-forming stock solution, it is difficult to obtain the film of the present invention.

【0020】以上から、本発明の製造方法から得られた
膜は、芳香族ポリスルホンとポリビニルピロリドンから
なることが最も好ましい。さらに本発明の製造方法から
得られた精密濾過膜は、内圧濾過によって用いられるこ
とから、濾過しようとする液が接触する膜内表面におけ
るポリビニルピロリドンの濃度が20〜45重量%であ
ることが好ましい。濾過しようとする液が血液等の場
合、膜の血液適合性に重要な因子は、血液が接する膜内
表面の親水性であり、ポリビニルピロリドン(以下単に
「PVP」ともいう)を含有するポリスルホン系膜で
は、膜内表面のPVP濃度が重要である。膜内表面のP
VP濃度が低すぎると膜内表面が疎水性を示し、血漿タ
ンパク質が吸着しやすく、血液の凝固も起こりやすい。
すなわち、膜の血液適合性不良となる。逆に膜内表面の
PVP濃度が高すぎると、PVPの血液系への溶出量が
増加し好ましくない結果を与える。従って、血液、血
漿、血清を内圧濾過する場合のPVPの濃度は、20〜
45重量%の範囲であり、好ましくは25〜40重量%
である。
From the above, the membrane obtained by the production method of the present invention is most preferably composed of aromatic polysulfone and polyvinylpyrrolidone. Furthermore, since the microfiltration membrane obtained by the production method of the present invention is used by internal pressure filtration, it is preferable that the concentration of polyvinylpyrrolidone on the inner surface of the membrane with which the liquid to be filtered comes into contact is 20 to 45% by weight. . When the liquid to be filtered is blood or the like, an important factor for the blood compatibility of the membrane is the hydrophilicity of the inner surface of the membrane that comes into contact with blood, and polysulfone containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”). In the membrane, the PVP concentration on the inner surface of the membrane is important. P on the inner surface of the membrane
When the VP concentration is too low, the inner surface of the membrane exhibits hydrophobicity, plasma proteins are easily adsorbed, and blood coagulation easily occurs.
That is, the blood compatibility of the membrane is poor. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system increases, giving unfavorable results. Therefore, the concentration of PVP when blood, plasma, or serum is subjected to internal pressure filtration is 20 to
45% by weight, preferably 25-40% by weight
Is.

【0021】膜内表面のPVP濃度は、エックス線光量
子スペクトル(X−ray Photoelectro
n spectroscopy、以下XPS)によって
決定される。すなわち、膜内表面のXPSの測定は、試
料を両面テープ上に並べた後、カッターで繊維軸方向に
切開し、膜の内側が表になるように押し広げた後、通常
の方法で測定する。すなわち、C1s、O1s、N1
s、S2pスペクトルの面積強度から、装置付属の相対
感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ
オウの表面濃度(イオウ原子濃度)から求めた濃度をい
うものであり、ポリスルホン系ポリマーが(2)式の構
造であるときには(3)式により計算で求めることがで
きる。 PVP濃度(重量%)=C11×100/(C11+C22) (3) ここで、C1:窒素原子濃度(%) C2:イオウ原子濃度(%) M1:PVPの繰り返しユニットの分子量(111) M2:ポリスルホン系ポリマーの繰り返しユニットの分
子量(442)
The PVP concentration on the inner surface of the film is determined by X-ray photoelectron spectroscopy (X-ray Photoelectron spectroscopy).
n spectroscopy, hereinafter XPS). That is, the XPS of the inner surface of the film is measured by arranging the samples on the double-sided tape, incising in the fiber axis direction with a cutter, expanding the inside of the film so that it is on the front side, and then measuring by an ordinary method. . That is, C1s, O1s, N1
It means the concentration obtained from the surface intensity of s, S2p spectrum and the surface concentration of nitrogen (nitrogen atom concentration) and the surface concentration of sulfur (sulfur atom concentration) using the relative sensitivity coefficient attached to the device. When is the structure of equation (2), it can be calculated by equation (3). PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (3) where C 1 : nitrogen atom concentration (%) C 2 : sulfur atom concentration (%) M 1 : Molecular weight of PVP repeating unit (111) M 2 : Molecular weight of repeating unit of polysulfone polymer (442)

【0022】本発明で用いられる製膜原液のポリマー濃
度は、該原液からの製膜が可能で、かつ得られた膜が膜
としての性能を有するような濃度の範囲であれば特に制
限されず、10〜35重量%、好ましくは10〜30重
量%である。高い透水性能又は大きな分画分子量を達成
するためには、ポリマー濃度は低い方がよく、10〜2
5重量%が好ましい。
The polymer concentration of the membrane-forming stock solution used in the present invention is not particularly limited as long as it is within the concentration range in which the membrane can be formed from the stock solution and the obtained membrane has the performance as a membrane. , 10 to 35% by weight, preferably 10 to 30% by weight. In order to achieve high water permeability or large molecular weight cutoff, it is preferable that the polymer concentration is low,
5% by weight is preferred.

【0023】さらに重要なことは製膜原液中の添加剤
(親水性ポリマー)の量であり、ポリマーに対する添加
剤の混和比率が20〜60重量%、好ましくは27〜6
0重量%である。ポリマーに対する添加剤の混和比率が
20重量%未満では膜内表面の孔径が0.01μm以下
の小孔径になる傾向にあり、60重量%を超えると製膜
原液の粘性が高くなり製膜時の可紡性が悪くなる傾向に
あるため好ましくない。
What is more important is the amount of the additive (hydrophilic polymer) in the stock solution for film formation, and the mixing ratio of the additive to the polymer is 20 to 60% by weight, preferably 27 to 6%.
It is 0% by weight. If the mixing ratio of the additive to the polymer is less than 20% by weight, the pore size on the inner surface of the membrane tends to be a small pore size of 0.01 μm or less, and if it exceeds 60% by weight, the viscosity of the membrane-forming stock solution becomes high, and It is not preferable because the spinnability tends to deteriorate.

【0024】さらに製膜原液の温度が重要であり、ノズ
ルでの吐出時の製膜原液の温度は50℃以上、好ましく
は60〜100℃である。50℃未満であると製膜時の
可紡性が悪い。
Further, the temperature of the film-forming stock solution is important, and the temperature of the film-forming stock solution at the time of discharge by the nozzle is 50 ° C. or higher, preferably 60 to 100 ° C. If it is less than 50 ° C, the spinnability during film formation is poor.

【0025】内部液は、中空糸状膜の中空部を形成させ
るために用いるものであり、水と少なくとも1種類以上
の膜形成ポリマーに対する良溶剤からなる。水の含有量
は、35〜55重量%であることが好ましい。水の含有
量が35重量%未満では製膜時の可紡性が悪く、55重
量%を超えると膜内表面の孔径が0.01μm以下の小
孔径となる傾向にある。
The internal liquid is used for forming the hollow portion of the hollow fiber membrane, and is composed of water and a good solvent for at least one or more membrane-forming polymers. The water content is preferably 35 to 55% by weight. If the water content is less than 35% by weight, the spinnability during film formation is poor, and if it exceeds 55% by weight, the pore size on the inner surface of the membrane tends to be 0.01 μm or less.

【0026】エアギャップとは、ノズルと凝固浴との間
の隙間を意味する。本発明の膜を得るには紡速(m/
分)に対するエアギャップ(m)の比率が極めて重要で
ある。何故ならば本発明の膜構造は、内部液中の非溶剤
が製膜原液と接触することによって該製膜原液の内表面
部位から外表面部位側へと経時的に相分離が誘発され、
さらに該製膜原液が凝固浴に入るまでに膜内表面部位か
ら外表面部位までの相分離が完了しなければ、得られな
いからである。
By air gap is meant the gap between the nozzle and the coagulation bath. In order to obtain the membrane of the present invention, the spinning speed (m /
The ratio of air gap (m) to minute) is extremely important. Because the membrane structure of the present invention, the non-solvent in the internal solution is contacted with the film-forming stock solution to induce phase separation over time from the inner surface part of the film-forming stock solution to the outer surface part side,
Further, if the phase separation from the inner surface portion to the outer surface portion of the film is not completed by the time the stock solution for film formation enters the coagulation bath, it cannot be obtained.

【0027】紡速に対するエアギャップの比率は、0.
01〜0.1m/(m/分)であることが好ましく、さ
らに好ましくは0.01〜0.05m/(m/分)であ
る。紡速に対するエアギャップの比率が0.01m/
(m/分)未満では、本発明の構造と性能を有する膜を
得ることが難しく、0.1m/(m/分)を超える比率
では、膜へのテンションが高いことからエアギャップ部
で膜切れを多発し製造しにくい傾向にあり好ましくな
い。
The ratio of air gap to spinning speed is 0.
It is preferably from 01 to 0.1 m / (m / min), more preferably from 0.01 to 0.05 m / (m / min). The ratio of air gap to spinning speed is 0.01m /
When it is less than (m / min), it is difficult to obtain a film having the structure and performance of the present invention, and when it exceeds 0.1 m / (m / min), the tension to the film is high, so that the film is formed in the air gap portion. It is not preferable because it often breaks and tends to be difficult to manufacture.

【0028】また、紡速は生産効率に大きく寄与するこ
とから、早い程良いが、紡速が早くなると共にテンショ
ンが高くなることから早くすることが不可能であった
が、本発明において紡速は60m/分以上、さらには7
0〜120m/分が可能である。ここで、紡速とはノズ
ルから内部液とともに吐出した製膜原液がエアギャップ
を通過して凝固浴にて凝固した膜が巻き取られる中空糸
状膜の一連の製造工程において、該工程中に延伸操作が
無い時の巻き取り速度を意味する。また、エアギャップ
を円筒状の筒などで囲み、一定の温度と湿度を有する気
体を一定の流量でこのエアギャップに流すと、より安定
した状態で中空糸状膜を製造することができる。
Further, the spinning speed contributes greatly to the production efficiency, so that the faster the spinning speed, the better. However, the spinning speed is fast and the tension is high, so that it is impossible to increase the spinning speed. 60m / min or more, and even 7
0 to 120 m / min is possible. Here, the spinning speed is a series of manufacturing steps of a hollow fiber membrane in which a stock solution for film formation discharged from a nozzle together with an internal solution passes through an air gap and a film coagulated in a coagulation bath is wound, and stretched during the process. It means the winding speed when there is no operation. Also, by enclosing the air gap with a cylindrical tube or the like and flowing a gas having a constant temperature and humidity at a constant flow rate into the air gap, the hollow fiber membrane can be manufactured in a more stable state.

【0029】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度等をコントロールすることも可能である。
凝固浴の温度は、85〜100℃、好ましくは90〜1
00℃である。凝固浴の温度が85℃未満では膜内表面
の孔径が0.01μm以下の小孔径となる傾向にあり、
100℃以上では製膜時に糸切れ等を多発し好ましくな
い。
As the coagulation bath, for example, water; methanol,
Liquids such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane that do not dissolve the polymer are used, and water is preferable. Also,
It is also possible to control the coagulation rate and the like by adding a small amount of a solvent that dissolves the polymer to the coagulation bath.
The temperature of the coagulation bath is 85 to 100 ° C., preferably 90 to 1
It is 00 ° C. If the temperature of the coagulation bath is lower than 85 ° C., the pore size on the inner surface of the film tends to be 0.01 μm or less,
If the temperature is 100 ° C. or higher, yarn breakage and the like frequently occur during film formation, which is not preferable.

【0030】さらに、本発明の膜を得るためには凝固後
の膜の内径に対する膜厚の比率が0.15〜0.4、好
ましくは0.2〜0.3である。膜の内径に対する膜厚
の比率が0.15未満では膜の絶対強度が弱くなる傾向
にある。また、該比率が0.4を超えると本発明の様な
膜の外表面から内表面(又は内表面部位)に向かって孔
径が小さくなる傾斜構造は得られにくい傾向にある。何
故ならば、内部液中の非溶剤量に対する製膜原液中の溶
剤量の割合が多いために、内部液中の非溶剤量のみでは
凝固浴に入るまでに製膜原液の膜内表面部位から外表面
部位までの相分離を完了できないためである。
Further, in order to obtain the film of the present invention, the ratio of the film thickness to the inner diameter of the film after coagulation is 0.15 to 0.4, preferably 0.2 to 0.3. If the ratio of the film thickness to the inner diameter of the film is less than 0.15, the absolute strength of the film tends to be weak. If the ratio exceeds 0.4, it tends to be difficult to obtain a graded structure in which the pore diameter decreases from the outer surface to the inner surface (or the inner surface portion) of the membrane as in the present invention. Because the ratio of the amount of solvent in the film-forming stock solution to the amount of non-solvent in the internal solution is large, only the amount of non-solvent in the internal solution is enough to remove the amount of non-solvent in the internal solution from the inner surface of the film before entering the coagulation bath. This is because the phase separation up to the outer surface part cannot be completed.

【0031】また、膜の外径は500μm以下、好まし
くは400μm以下、より好ましくは300μm以下で
ある。膜の外径が大きくなるとモジュール内の膜面積
(充填量)を低下せざるを得ないため、結果として単位
時間当たりの処理能力が劣り、好ましくない。逆に膜の
外径を大きくしてモジュール内の膜面積(充填量)を同
一にするにはモジュール容器を大きくせざるを得ず、結
果としてコストアップとなり好ましくない。特に、医療
用途で使用されるモジュールは患者の医療費負担を軽減
するため高価な大型モジュールにすることは避ける必要
がある。以上の処理能力とコストの関係から膜の外径は
500μm以下であることが好ましい。
The outer diameter of the membrane is 500 μm or less, preferably 400 μm or less, more preferably 300 μm or less. When the outer diameter of the membrane becomes large, the membrane area (filling amount) in the module is unavoidably reduced, resulting in poor processing capacity per unit time, which is not preferable. On the contrary, in order to increase the outer diameter of the membrane to make the membrane area (filling amount) in the module the same, the module container must be enlarged, resulting in an increase in cost, which is not preferable. In particular, it is necessary to avoid making a module used for medical use into an expensive large module in order to reduce the burden of medical expenses on the patient. The outer diameter of the membrane is preferably 500 μm or less in view of the above-mentioned processing capacity and cost.

【0032】さらに、本発明の膜は乾燥させることも可
能であり、乾燥に際しては、グリセリン等の保湿剤を含
浸させなくても良い。また、膜に電子線及びγ線等の放
射線を照射することにより、膜中のPVPの一部を水に
不溶化できることから、膜からの溶出量を低減すること
が可能である。放射線の照射は、モジュール化前又はモ
ジュール化後のどちらでも良い。また、膜中の全PVP
を不溶化してしまうと、膜の膨潤性が悪くなるため分離
性能が悪くなり好ましくない。
Furthermore, the membrane of the present invention can be dried, and it is not necessary to impregnate a humectant such as glycerin at the time of drying. Further, by irradiating the membrane with radiation such as electron rays and γ rays, a part of PVP in the membrane can be insolubilized in water, so that the amount eluted from the membrane can be reduced. Irradiation may be performed before or after modularization. In addition, all PVP in the film
Is insoluble, the swelling property of the membrane deteriorates and the separation performance deteriorates, which is not preferable.

【0033】本発明でいう水に不溶であるPVPとは、
膜中の全PVP量から水に可溶であるPVP量を差し引
いたものである。膜中の全PVP量は、窒素及びイオウ
の元素分析により容易に算出することができる。また、
水に可溶であるPVP量は、以下の方法により求めるこ
とができる。例えば、膜形成ポリマーがポリスルホン系
ポリマーの場合、膜をN−メチル−2−ピロリドンで完
全に溶解した後、得られたポリマー溶液に水を添加して
膜形成ポリマーを完全に沈殿させる。さらに該ポリマー
溶液を静置した後、上澄み液中のPVP量を液体クロマ
トグラフィーで定量することにより水に可溶であるPV
Pを定量することができる。
The water-insoluble PVP referred to in the present invention is
It is obtained by subtracting the amount of PVP soluble in water from the total amount of PVP in the membrane. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur. Also,
The amount of PVP soluble in water can be determined by the following method. For example, when the film-forming polymer is a polysulfone-based polymer, the film is completely dissolved with N-methyl-2-pyrrolidone, and then water is added to the obtained polymer solution to completely precipitate the film-forming polymer. After the polymer solution was allowed to stand still, the amount of PVP in the supernatant was quantified by liquid chromatography to obtain PV that was soluble in water.
P can be quantified.

【0034】[0034]

【実施例】以下にこの発明の実施例を示すが、本発明
は、これに限定されるものではない。各測定方法は、下
記のとおりである。なお、測定サンプルとして使用した
中空糸状膜は、すべて十分に水を含浸させた状態のもの
を用いた。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Each measuring method is as follows. The hollow fiber membranes used as measurement samples were all in the state of being sufficiently impregnated with water.

【0035】(透水量の測定)両端を接着剤で固定した
有効長180mmの糸束(内表面積換算で110±10
cm2になるように膜本数を揃えたミニモジュール)の
内表面から外表面に透過させ、その量をmL(ミリリッ
トル)/(m2・hr・mmHg)で表した。ただし、
有効膜面積は内表面換算した。
(Measurement of water permeation amount) A yarn bundle having an effective length of 180 mm with both ends fixed by an adhesive (110 ± 10 in terms of internal surface area)
A mini-module in which the number of membranes was made uniform so as to be cm 2 ) was permeated from the inner surface to the outer surface, and the amount was expressed in mL (milliliter) / (m 2 · hr · mmHg). However,
The effective film area was converted to the inner surface.

【0036】(破断強度の測定)膜強度は、(株)島津
製作所製のオートグラフAGS−5Dを使用し、サンプ
ル長さ20mm、引張りスピード300mm/分で測定
した。
(Measurement of breaking strength) The film strength was measured by using Autograph AGS-5D manufactured by Shimadzu Corporation at a sample length of 20 mm and a pulling speed of 300 mm / min.

【0037】(阻止径の測定)膜内表面の孔径が0.0
5μmよりも小さい場合やスリット状の孔であると、孔
径の大きさを測定しても誤差が大きくなり意味をなさな
いことから、本発明では内圧濾過時の阻止径を用いて膜
内表面の孔径の指標とした。本発明における内圧濾過に
おける阻止径とは、以下の方法により決定された。1)
0.2重量%のドデシル硫酸ナトリウム水溶液中に、粒
径の精度が±4%以内のポリスチレン系のラテックス粒
子を0.02体積%の濃度で懸濁するように調整した原
液を、両端を接着剤で固定した有効長180mmの糸束
(内表面積換算で110±10cm2になるように膜本
数を揃えたもの)に対して、入り圧と出圧との平均圧力
を0.5kgf/cm2、流体線速=1cm/秒のクロ
スフローの条件で内圧濾過を行い、40分後の濾液と元
液の濃度の阻止率を求めた。この時、阻止率に経時変化
がないことが必要であり、20分後、40分後、及び6
0分後の各々の阻止率の絶対値の偏差が±10%以内で
なければならない。得られた濾液と元液の濃度は、紫外
分光光度計により280nmの波長にて測定し、下記の
式(4)に代入して阻止率を算出する。2)次に、該阻
止率が90%以上となる1)で用いたラテックス粒子の
最小粒径を膜の阻止径とした。 阻止率(%)={1−(濾液の吸光度)/(元液の吸光
度)}×100 (4)阻止径の測定には、0.01
47μm(Magsphere社製、ポリスチレン系ポ
リマー、0.0147μm)、0.028μm(Mag
sphere社製、ポリスチレン系ポリマー、0.02
8μm)、0.037μm(Magsphere社製、
ポリスチレン系ポリマー、0.037μm)、0.06
2μm(Seradyn社製、ポリスチレン系ポリマ
ー、0.062μm)、0.088μm(Serady
n社製、ポリスチレン系ポリマー、0.088μm)及
び0.102μm(Seradyn社製、ポリスチレン
系ポリマー、0.102μm)のラテックス粒子(それ
ぞれの粒径精度±4%)を使用した。
(Measurement of blocking diameter) The pore diameter on the inner surface of the membrane is 0.0
If it is smaller than 5 μm or if it is a slit-shaped hole, it does not make sense because the error becomes large even if the size of the hole diameter is measured. It was used as an index of pore size. The blocking diameter in the internal pressure filtration in the present invention was determined by the following method. 1)
Bond both ends of a stock solution prepared by suspending polystyrene latex particles with a particle size accuracy of ± 4% within a concentration of 0.02% by volume in a 0.2% by weight sodium dodecyl sulfate aqueous solution. The average pressure of the inlet pressure and the outlet pressure is 0.5 kgf / cm 2 for a yarn bundle fixed with an agent and having an effective length of 180 mm (the number of films is arranged so that the inner surface area is 110 ± 10 cm 2 ). Internal pressure filtration was carried out under the condition of a cross flow of fluid linear velocity = 1 cm / sec, and the blocking rate of the concentration of the filtrate and the original solution after 40 minutes was obtained. At this time, it is necessary that the blocking rate does not change with time, and after 20 minutes, 40 minutes, and 6 minutes.
The deviation of the absolute value of each blocking rate after 0 minutes must be within ± 10%. The concentrations of the obtained filtrate and the original solution are measured with an ultraviolet spectrophotometer at a wavelength of 280 nm, and are substituted into the following formula (4) to calculate the blocking rate. 2) Next, the minimum particle size of the latex particles used in 1) where the blocking rate is 90% or more was taken as the blocking diameter of the film. Blocking rate (%) = {1- (absorbance of filtrate) / (absorbance of original solution)} × 100 (4) 0.01 was used for measuring the blocking diameter.
47 μm (Magsphere, polystyrene polymer, 0.0147 μm), 0.028 μm (Magsphere
Sphere, polystyrene-based polymer, 0.02
8 μm), 0.037 μm (manufactured by Magsphere,
Polystyrene polymer, 0.037 μm), 0.06
2 μm (Polymer-based polymer manufactured by Seradyn, 0.062 μm), 0.088 μm (Serady
n latex company polystyrene polymer, 0.088 μm) and 0.102 μm (Seradyn polystyrene polymer, 0.102 μm) latex particles (each particle size accuracy ± 4%) were used.

【0038】(膜表面の開孔率の測定)開口率は、膜の
外表面の電子顕微鏡写真を画像解析して数値化すること
により求めた。本発明でいう開口率とは、取り組んだ画
像の面積に対する開孔部孔面積の総和の百分率と定義さ
れ、下記の式(5)で与えられる。なお、10ピクセル
以下はノイズとみなして計数から除外した。 開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100 (5)
(Measurement of Porosity of Membrane Surface) The aperture ratio was determined by numerically analyzing the electron micrograph of the outer surface of the membrane by image analysis. The aperture ratio referred to in the present invention is defined as a percentage of the total area of the open hole portions with respect to the area of the image that is worked on, and is given by the following formula (5). Note that 10 pixels or less were regarded as noise and were excluded from the counting. Open area ratio (%) = (sum of open area of open area / area of captured image) × 100 (5)

【0039】(膜表面の平均孔径の測定)膜の表面に開
口した孔の形状や大きさ等は、電子顕微鏡を用いて観
察、測定した。また、内表面及び外表面に開口した孔の
平均孔径とは、下記の式(6)で示される値である。 =[{(Di 22+……+(Dn 22}/{Di 2+……+Dn 2}]1/2 (6) ここでは平均孔径、Diはi個目の孔の実測径、Dn
n個目の孔の実測径である。ただし、Di、Dnの実測径
は、孔が円形に近い場合は、その直径で表し、孔が円形
でない場合には,その孔と同一面積の円の直径で表す。
(Measurement of Mean Pore Diameter on Membrane Surface) The shape and size of pores opened on the surface of the membrane were observed and measured using an electron microscope. Further, the average pore diameter D of the holes opened on the inner surface and the outer surface is a value represented by the following formula (6). D = [{(D i 2 ) 2 + ... + (D n 2 ) 2 } / {D i 2 + ... + D n 2 }] 1/2 (6) where D is the average pore size and D i is The measured diameter of the i-th hole and D n are the measured diameter of the n- th hole. However, the measured diameters of D i and D n are represented by the diameter of the hole when the hole is close to a circle, and by the diameter of a circle having the same area as the hole when the hole is not circular.

【0040】[0040]

【実施例1】(製膜及び残溶剤の除去)ポリスルホン
(Amoco Engineering Polyme
rs社製P−1700)20.0重量%、ポリビニルピ
ロリドン(BASF社製 K90、重量平均分子量1,
200,000)4.4重量%を、N−メチル−2−ピ
ロリドン75.6重量%に溶解して均一な溶液とした。
ここで、製膜原液中のポリスルホンに対するポリビニル
ピロリドンの混和比率は22.0重量%であった。この
製膜原液を60℃に保ち、N−メチル−2−ピロリドン
54重量%と水46重量%の混合溶液からなる内部液
(水の含有量が46重量%)とともに、紡口(2重環状
ノズル 0.1mm−0.2mm−0.3mm、ノズル
温度60℃、ノズル部での製膜原液の温度60℃)から
吐出させ、0.96mのエアギャップを通過させて95
±1℃の水からなる凝固浴へ浸漬した。この時、紡口か
ら凝固浴までを円筒状の筒で囲み、外気が入らないよう
に密閉した。紡速は、80m/分に固定した。ここで、
紡速に対するエアギャップの比率は、0.012m/
(m/分)であった。巻き取った糸束を切断後、糸束の
切断面上方から80℃の熱水シャワーを2時間かけて洗
浄することにより膜中の残溶剤を除去した。さらに、
2.5Mradのγ線を照射することにより膜中のPV
Pの一部を不溶化した。
[Example 1] (Film formation and removal of residual solvent) Polysulfone (Amoco Engineering Polymer)
rs P-1700) 20.0 wt%, polyvinylpyrrolidone (BASF K90, weight average molecular weight 1,
200,000) 4.4% by weight was dissolved in N-methyl-2-pyrrolidone 75.6% by weight to obtain a uniform solution.
Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 22.0% by weight. This film-forming stock solution was kept at 60 ° C., and the spinneret (double ring) was formed together with an internal solution (water content was 46% by weight) consisting of a mixed solution of 54% by weight of N-methyl-2-pyrrolidone and 46% by weight of water. Nozzle 0.1 mm-0.2 mm-0.3 mm, nozzle temperature 60 ° C., temperature of film-forming stock solution at nozzle part 60 ° C.), and air gap of 0.96 m is passed to reach 95
It was immersed in a coagulation bath consisting of water at ± 1 ° C. At this time, the spinneret and the coagulation bath were surrounded by a cylindrical tube and sealed so that outside air did not enter. The spinning speed was fixed at 80 m / min. here,
The ratio of air gap to spinning speed is 0.012m /
(M / min). After cutting the wound yarn bundle, the residual solvent in the film was removed by washing from above the cut surface of the yarn bundle with a hot water shower at 80 ° C. for 2 hours. further,
PV in the film by irradiation with γ-ray of 2.5 Mrad
Part of P was insolubilized.

【0041】得られた膜を電子顕微鏡にて観察したとこ
ろ、膜の外表面から内表面に向かって孔径が連続的に小
さくなるスポンジ構造であることが明らかとなった。そ
の他の膜構造及び膜性能等を表1に示す。膜の破断強度
は50kgf/cm2以上と高い強度を示し、さらに
1,000mL/m2・hr・mmHg以上の優れた透
水性能を有する精密濾過膜であることが明らかとなっ
た。さらに、平均粒径0.062μmのラテックス粒子
の内圧濾過においても急激な目詰まりがなく長時間安定
した濾液量を維持した。
Observation of the obtained film with an electron microscope revealed that the film had a sponge structure in which the pore diameter continuously decreased from the outer surface to the inner surface of the film. Table 1 shows other film structures and film performances. It was revealed that the rupture strength of the membrane was as high as 50 kgf / cm 2 or more, and was a microfiltration membrane having an excellent water permeability of 1,000 mL / m 2 · hr · mmHg or more. Further, even in the internal pressure filtration of latex particles having an average particle diameter of 0.062 μm, the amount of the filtrate was maintained stable for a long time without sudden clogging.

【0042】[0042]

【実施例2】製膜原液中のポリビニルピロリドンを10
重量%、N−メチル−2−ピロリドンを70重量%とし
た以外は、実施例1と同様な操作を行った。この時の製
膜原液中のポリスルホンに対するポリビニルピロリドン
の混和比率は50.0重量%であった。得られた膜を電
子顕微鏡にて観察したところ、膜の外表面から内表面に
向かって孔径が連続的に小さくなるスポンジ構造である
ことが明らかとなった。その他の膜構造及び膜性能等を
表1に示す。膜の破断強度は50kgf/cm 2以上と
高い強度を示し、さらに1,000mL/m2・hr・
mmHg以上の優れた透水性能を有する精密濾過膜であ
ることが明らかとなった。さらに、阻止径測定に使用し
た平均粒径0.037μmのラテックス粒子の内圧濾過
においても急激な目詰まりがなく長時間安定した濾液量
を維持した。
[Example 2] The polyvinylpyrrolidone in the stock solution for film formation was adjusted to 10%.
%, N-methyl-2-pyrrolidone 70% by weight
The same operation as in Example 1 was performed except for the above. Made at this time
Polyvinylpyrrolidone for polysulfone in membrane stock solution
The admixture ratio was 50.0% by weight. The resulting film is charged
When observed with a submicroscope,
It has a sponge structure in which the pore size becomes smaller continuously.
It became clear. Other membrane structures and membrane performance
It shows in Table 1. The breaking strength of the membrane is 50 kgf / cm 2And above
Shows high strength and further 1,000 mL / m2・ Hr ・
A microfiltration membrane with excellent water permeability of mmHg or more.
Became clear. Furthermore, it is used to measure the blocking diameter.
Internal pressure filtration of latex particles with an average particle size of 0.037 μm
The filtrate volume is stable for a long time without sudden clogging
Maintained.

【0043】[0043]

【実施例3】N−メチル−2−ピロリドン63重量%と
水37重量%の混合溶液からなる内部液(水の含有量が
37重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm2以上と高い強度を示し、さらに1,0
00mL/m2・hr・mmHg以上の優れた透水性能
を有する精密濾過膜であることが明らかとなった。さら
に、阻止径測定に使用した平均粒径0.102μmのラ
テックス粒子の内圧濾過においても急激な目詰まりがな
く長時間安定した濾液量を維持した。
Example 3 The same operation as in Example 1 except that an internal liquid (water content of 37% by weight) consisting of a mixed solution of 63% by weight of N-methyl-2-pyrrolidone and 37% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
High strength of 0 kgf / cm 2 or more, and 1,0
It was revealed that the microfiltration membrane has an excellent water permeability of 00 mL / m 2 · hr · mmHg or more. Further, even in the internal pressure filtration of the latex particles having an average particle diameter of 0.102 μm used for the measurement of the inhibition diameter, the amount of the filtrate was stable for a long time without sudden clogging.

【0044】[0044]

【実施例4】N−メチル−2−ピロリドン46重量%と
水54重量%の混合溶液からなる内部液(水の含有量が
54重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表1に示す。膜の破断強度は5
0kgf/cm2以上と高い強度を示し、さらに1,0
00mL/m2・hr・mmHg以上の優れた透水性能
を有する精密濾過膜であることが明らかとなった。さら
に、阻止径測定に使用した平均粒径0.028μmのラ
テックス粒子の内圧濾過においても急激な目詰まりがな
く長時間安定した濾液量を維持した。
Example 4 The same operation as in Example 1 except that an internal solution (water content of 54% by weight) consisting of a mixed solution of 46% by weight of N-methyl-2-pyrrolidone and 54% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 1 shows other film structures and film performances. The breaking strength of the film is 5
High strength of 0 kgf / cm 2 or more, and 1,0
It was revealed that the microfiltration membrane has an excellent water permeability of 00 mL / m 2 · hr · mmHg or more. Further, even in the internal pressure filtration of the latex particles having an average particle diameter of 0.028 μm used for the measurement of the blocking diameter, the amount of the filtrate was maintained stable for a long time without sudden clogging.

【0045】[0045]

【実施例5】製膜原液中のポリビニルピロリドンを6.
6重量%、N−メチル−2−ピロリドンを73.4重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は33.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表1に示す。膜の破断強度は50kgf/cm2
以上と高い強度を示し、さらに1,000mL/m2
hr・mmHg以上の優れた透水性能を有する精密濾過
膜であることが明らかとなった。さらに、阻止径測定に
使用した平均粒径0.088μmのラテックス粒子の内
圧濾過においても急激な目詰まりがなく長時間安定した
濾液量を維持した。
[Example 5] The polyvinylpyrrolidone in the stock solution for film formation was changed to 6.
The same operation as in Example 1 was performed except that 6% by weight and 73.4% by weight of N-methyl-2-pyrrolidone were used. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 33.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 1 shows other film structures and film performances. The breaking strength of the membrane is 50 kgf / cm 2
Shows high strength as above, further 1,000 mL / m 2 ·
It has been clarified that it is a microfiltration membrane having an excellent water permeability of at least hr · mmHg. Further, even in the internal pressure filtration of the latex particles having an average particle diameter of 0.088 μm used for measuring the inhibition diameter, the amount of the filtrate was maintained stable for a long time without sudden clogging.

【0046】[0046]

【比較例1】製膜原液中のポリビニルピロリドンを3.
4重量%、N−メチル−2−ピロリドンを76.6重量
%とした以外は、実施例1と同様な操作を行った。この
時の製膜原液中のポリスルホンに対するポリビニルピロ
リドンの混和比率は17.0重量%であった。得られた
膜を電子顕微鏡にて観察したところ、膜の外表面から内
表面に向かって孔径が連続的に小さくなるスポンジ構造
であることが明らかとなった。その他の膜構造及び膜性
能等を表2に示す。膜内表面の平均孔径は0.01μm
以下であった。また、0.0147μmのラテックス粒
子の阻止率が初期から100%を示したことから、この
膜の阻止径は0.0147μm未満であることが明らか
となった。
[Comparative Example 1] The polyvinylpyrrolidone in the stock solution for film formation was compared with 3.
The same operation as in Example 1 was performed except that 4% by weight and N-methyl-2-pyrrolidone were set to 76.6% by weight. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the film-forming stock solution was 17.0% by weight. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The average pore size on the inner surface of the membrane is 0.01 μm
It was below. Further, since the blocking rate of 0.0147 μm latex particles was 100% from the initial stage, it was revealed that the blocking diameter of this film was less than 0.0147 μm.

【0047】[0047]

【比較例2】実施例1で使用したポリスルホン20重量
%、ポリビニルピロリドンを13重量%、およびN−メ
チル−2−ピロリドンを67重量%を溶解しようとした
均一な溶液にすることができなかった。
Comparative Example 2 The polysulfone used in Example 1 (20% by weight), polyvinylpyrrolidone (13% by weight), and N-methyl-2-pyrrolidone (67% by weight) could not be dissolved into a uniform solution. .

【0048】[0048]

【比較例3】N−メチル−2−ピロリドン43重量%と
水57重量%の混合溶液からなる内部液(水の含有量が
57重量%)を用いた以外は、実施例1と同様な操作を
行った。得られた膜を電子顕微鏡にて観察したところ、
膜の外表面から内表面に向かって孔径が連続的に小さく
なるスポンジ構造であることが明らかとなった。その他
の膜構造及び膜性能等を表2に示す。膜内表面の平均孔
径は0.01μm以下であった。また、0.0147μ
mのラテックス粒子の阻止率が初期から100%を示し
たことから、この膜の阻止径は0.0147μm未満で
あることが明らかとなった。
[Comparative Example 3] The same operation as in Example 1 except that an internal solution (water content of 57% by weight) consisting of a mixed solution of 43% by weight of N-methyl-2-pyrrolidone and 57% by weight of water was used. I went. When the obtained film was observed with an electron microscope,
It was revealed that the sponge structure has a pore size that continuously decreases from the outer surface to the inner surface of the membrane. Table 2 shows other film structures and film performances. The average pore diameter on the inner surface of the membrane was 0.01 μm or less. Also, 0.0147μ
Since the blocking rate of the latex particles of m was 100% from the beginning, it was revealed that the blocking diameter of this film was less than 0.0147 μm.

【0049】[0049]

【比較例4】N−メチル−2−ピロリドン62重量%と
水38重量%の混合溶液からなる内部液(水の含有量が
62重量%)を用いた以外は、実施例1と同様な操作を
行ったが、糸切れが多発し紡糸できなかった。
[Comparative Example 4] The same operation as in Example 1 except that an internal liquid consisting of a mixed solution of 62% by weight of N-methyl-2-pyrrolidone and 38% by weight of water (the content of water was 62% by weight) was used. However, the yarn was frequently broken and the spinning could not be performed.

【0050】[0050]

【比較例5】製膜原液の温度を45℃、ノズル温度を4
5℃(ノズル部での製膜原液の温度45℃)にした以外
は、実施例2と同様な操作を行ったが、糸切れが多発し
紡糸できなかった。
[Comparative Example 5] The temperature of the film forming solution was 45 ° C and the nozzle temperature was 4
The same operation as in Example 2 was carried out except that the temperature was 5 ° C. (the temperature of the stock solution for film formation at the nozzle portion was 45 ° C.), but yarn breakage occurred frequently and spinning was not possible.

【0051】[0051]

【比較例6】溶剤をN−メチル−2−ピロリドンから
N,N−ジメチルアセトアミドにした以外は実施例1と
同様な操作を行った。得られた膜を電子顕微鏡にて観察
したところ、膜の外表面から内表面に向かって孔径が連
続的に小さくなるスポンジ構造であることが明らかとな
った。その他の膜構造及び膜性能等を表2に示す。膜内
表面の平均孔径は0.01μm以下であった。また、
0.0147μmのラテックス粒子の阻止率が初期から
100%を示したことから、この膜の阻止径は0.01
47μm未満であることが明らかとなった。
Comparative Example 6 The same operation as in Example 1 was carried out except that the solvent was changed from N-methyl-2-pyrrolidone to N, N-dimethylacetamide. When the obtained film was observed by an electron microscope, it was revealed that the film had a sponge structure in which the pore size continuously decreased from the outer surface to the inner surface. Table 2 shows other film structures and film performances. The average pore diameter on the inner surface of the membrane was 0.01 μm or less. Also,
Since the blocking rate of 0.0147 μm latex particles was 100% from the beginning, the blocking diameter of this film was 0.01
It was revealed to be less than 47 μm.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】本発明の製造方法から得られた膜は、高
い強度と優れた透水性能を有する異方性構造の精密濾過
膜であって、特に内圧濾過において目詰まりが少ない優
れた精密濾過膜であることから医薬用途、医療用途、及
び一般工業用途に用いることができる。
The membrane obtained by the production method of the present invention is a microfiltration membrane having an anisotropic structure having high strength and excellent water permeability, and excellent microfiltration with less clogging especially in internal pressure filtration. Since it is a film, it can be used for pharmaceutical applications, medical applications, and general industrial applications.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膜の外表面から内表面に向かって孔径が
連続的に小さくなるスポンジ構造からなり、内圧濾過に
おける阻止径が0.015〜1μmであることを特徴と
する中空糸状精密濾過膜の製造方法であって、製膜原液
と内部液を2重環状ノズルから吐出させた後、エアギャ
ップを通過させてから凝固浴で凝固させる中空糸状膜の
製造方法において、 a)製膜原液が、膜形成ポリマー、該ポリマーの溶剤、
及び親水性ポリマーからなり、膜形成ポリマーに対する
親水性ポリマーの比率が27〜60重量%、 b)内部液が水と少なくとも1種類以上の溶剤からな
り、水の含有量が35〜55重量%、 c)ノズル部での製膜原液の温度が60〜100℃以
上、 d)凝固浴温度が90〜100℃、且つ e)紡速に対するエアギャップの比率が0.01〜0.
1m/(m/分)であることを特徴とする中空糸状精密
濾過膜の製造方法。
1. The pore size increases from the outer surface to the inner surface of the membrane.
Consisting of a continuously smaller sponge structure for internal pressure filtration
The blocking diameter is 0.015 to 1 μm.
In the method for producing a hollow fiber microfiltration membrane, the method for producing a hollow fiber membrane in which a membrane-forming stock solution and an internal solution are discharged from a double annular nozzle and then passed through an air gap and then coagulated in a coagulation bath, a) The film-forming stock solution is a film-forming polymer, a solvent for the polymer,
And a hydrophilic polymer, the ratio of the hydrophilic polymer to the film-forming polymer is 27 to 60% by weight, b) the internal liquid is water and at least one solvent, and the water content is 35 to 55% by weight, c) The temperature of the film forming stock solution in the nozzle part is 60 to 100 ° C. or higher, d) the coagulation bath temperature is 90 to 100 ° C., and e) the ratio of the air gap to the spinning speed is 0.01 to 0.
It is 1 m / (m / min), The manufacturing method of the hollow fiber microfiltration membrane characterized by the above-mentioned.
【請求項2】さらに放射線照射することを特徴とする請
求項1に記載の製造方法。
2. The manufacturing method according to claim 1, further comprising irradiation with radiation.
【請求項3】 膜の内径に対する膜厚の比率が0.15
〜0.4であることを特徴とする請求項1又は2に記載
の製造方法。
3. The ratio of the film thickness to the inner diameter of the film is 0.15.
It is-0.4, The manufacturing method of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 膜の外径が500μm以下であることを
特徴とする請求項1〜3のいずれかに記載の製造方法。
4. The manufacturing method according to claim 1, wherein the outer diameter of the film is 500 μm or less.
【請求項5】 膜形成ポリマーがポリスルホン系ポリマ
ーであることを特徴とする請求項1〜4のいずれかに記
載の製造方法。
5. The method according to claim 1, wherein the film-forming polymer is a polysulfone-based polymer.
【請求項6】 親水性ポリマーが重量平均分子量90
0,000以上のポリビニルピロリドンであることを特
徴とする請求項1〜5のいずれかに記載の製造方法。
6. The hydrophilic polymer has a weight average molecular weight of 90.
It is polyvinylpyrrolidone of 10,000 or more, The manufacturing method in any one of Claims 1-5 characterized by the above-mentioned.
【請求項7】 膜形成ポリマーの溶剤がN−メチル−2
−ピロリドンであることを特徴とする請求項1〜6のい
ずれかに記載の製造方法。
7. The solvent for the film-forming polymer is N-methyl-2.
-Pyrrolidone, Process according to any one of claims 1 to 6, characterized in that it is pyrrolidone.
【請求項8】 紡速が60m/分以上であることを特徴
とする請求項1〜7のいずれかに記載の製造方法。
8. The manufacturing method according to claim 1, wherein the spinning speed is 60 m / min or more.
JP2002267273A 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane Expired - Fee Related JP3464000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267273A JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267273A JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Publications (2)

Publication Number Publication Date
JP3464000B1 true JP3464000B1 (en) 2003-11-05
JP2004098028A JP2004098028A (en) 2004-04-02

Family

ID=29545996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267273A Expired - Fee Related JP3464000B1 (en) 2002-09-12 2002-09-12 Manufacturing method of high performance hollow fiber microfiltration membrane

Country Status (1)

Country Link
JP (1) JP3464000B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878288B2 (en) * 2010-07-14 2016-03-08 ユニチカ株式会社 Highly permeable polyamide hollow fiber membrane and method for producing the same
JP5894687B2 (en) * 2015-02-09 2016-03-30 ユニチカ株式会社 Highly permeable polyamide hollow fiber membrane and method for producing the same

Also Published As

Publication number Publication date
JP2004098028A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US5958989A (en) Highly asymmetric ultrafiltration membranes
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP4172819B2 (en) Hollow fiber membrane
CN100457242C (en) Dialysis membrane having improved average molecular distance
EP0121911A2 (en) Hollow fiber filter medium and process for preparing the same
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JP7014714B2 (en) Porous membrane and method for producing porous membrane
JP3934340B2 (en) Blood purifier
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP3594946B2 (en) High performance microfiltration membrane
JP3431622B1 (en) High-performance plasma purification membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP3431623B1 (en) Method for producing plasma purification membrane
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
JP2020171923A (en) Porous film
JPH10337456A (en) Membrane forming stock solution
JPH11244675A (en) Production of membrane
JP2019098334A (en) Porous film
JPH11539A (en) Polyacrylonitrile film and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees