JPH07231278A - Reke receiver by direct spread spectrum communication system - Google Patents

Reke receiver by direct spread spectrum communication system

Info

Publication number
JPH07231278A
JPH07231278A JP6020787A JP2078794A JPH07231278A JP H07231278 A JPH07231278 A JP H07231278A JP 6020787 A JP6020787 A JP 6020787A JP 2078794 A JP2078794 A JP 2078794A JP H07231278 A JPH07231278 A JP H07231278A
Authority
JP
Japan
Prior art keywords
signals
signal
level
direct
spread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6020787A
Other languages
Japanese (ja)
Inventor
Satoshi Nakamura
中村  聡
Norio Kubo
徳郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6020787A priority Critical patent/JPH07231278A/en
Publication of JPH07231278A publication Critical patent/JPH07231278A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference

Abstract

PURPOSE:To form the REKE receiver in the direct spread spectrum communication system in which the reception characteristic is improved even when many multi-paths exist and low power consumption is realized. CONSTITUTION:Direct spread modulation signals S30 whose path number is N are received by 1st-N-th inverse spread means 501-50N and 1st-N-th spread series synchronously with the N-sets of signals S30 whose reception timing differs from each other apply inverse spread demodulation to each reception signal S30 and a multiplexer means 51 multiplexes demodulated data D401-D40N. Through the constitution above, a control means 52 obtains individually a level difference between a signal of a highest level and each of other signals among the levels of the N-sets of the signals $30 and controls an inverse spread means (e.g. 50N-2, 50N-1, 50N) to be inactive, which applies inverse spread demodulation to signals having a level difference more than a threshold level T with respect to the signal of a highest level when the level difference is a prescribed threshold level T.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直接拡散スペクトル拡散
通信方式によるレイク受信機に関する。近年、「いつで
も、どこでも、誰とでも」通信したいと言う要望が高ま
り、自動車電話機及び携帯電話機等の移動通信電話機の
加入者が増加している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rake receiver using a direct spread spectrum communication system. In recent years, there is an increasing demand for "anytime, anywhere, with anyone" communication, and the number of subscribers of mobile communication phones such as car phones and mobile phones is increasing.

【0002】自動車電話機についてみると、電波の見通
し内で通信することはまれで、一般に建物等で、反射・
回析して様々な経路を経た電波が重なって受信される。
これは多重路(マルチパス)伝搬と呼ばれ、更に走行に
よって受信状態が大きく変動し、フェージングが発生す
る。
When it comes to car telephones, it is rare to communicate within the line of sight of radio waves, and in general, in buildings, etc.
Radio waves that have been diffracted and passed through various routes are received in an overlapping manner.
This is called multipath propagation, and the reception state greatly changes due to traveling, and fading occurs.

【0003】特に直接拡散スペクトル拡散通信方式のよ
うな広帯域の通信方式では、マルチパスの伝搬遅延時間
の広がりによる周波数選択性フェージング(伝搬路の周
波数特性が帯域では平坦ではないフェージング)の対策
が必要である。
Particularly in a wide band communication system such as a direct spread spectrum spread communication system, it is necessary to take measures against frequency selective fading (fading in which the frequency characteristic of the propagation path is not flat in the band) due to the spread of the propagation delay time of multipath. Is.

【0004】但し、直接拡散スペクトル拡散通信方式
は、通常のアナログ変調又はディジタル変調した信号
を、更に特殊なディジタル符号系列〔PN(Pseudo Nois
e)符号:疑似雑音符号〕である拡散系列で変調すること
により、100倍とか1000倍にスペクトルを拡散す
る方式で、受信側では送信側で拡散に使用した任意のデ
ータ系列である拡散系列と同じもので復調することによ
って、拡散されて散らばっていた情報電力が集められ
て、それをアナログ復調又はディジタル復調することに
より元の情報が得られるというものである。
However, in the direct sequence spread spectrum communication system, an ordinary analog or digitally modulated signal is converted into a special digital code sequence [PN (Pseudo Nois).
e) code: pseudo-noise code] is used to spread the spectrum 100 times or 1000 times by modulating with a spreading sequence. At the receiving side, a spreading sequence that is an arbitrary data sequence used for spreading at the transmitting side By demodulating with the same, the information power that has been spread and scattered is collected, and the original information can be obtained by analog demodulation or digital demodulation.

【0005】周波数選択性フェージングの対策として、
良く知られている方式の一つにREKE(レイク)受信
方式と呼ばれる方式がある。これは、マルチパスを時間
的に分離し、それぞれのパスを通った信号を逆拡散復調
して再合成することにより性能改善する方式であり、発
明のレイク受信機はその方式が採用されたものである。
As a measure against frequency selective fading,
One of the well known systems is a system called REKE (rake) reception system. This is a method for improving performance by separating multipaths in time and despreading and demodulating the signals that have passed through the paths, and the rake receiver of the invention adopts that method. Is.

【0006】ちなみに、RAKEとは「熊手」の意味が
ありマルチパスによりばらばらになった電波をかき集め
ると言う意味で名付けられた。
[0006] Incidentally, RAKE means "rake", and is named to collect radio waves separated by multipath.

【0007】[0007]

【従来の技術】図3に従来例のレイク受信機のブロック
構成図を示し、その説明を行う。但し、このレイク受信
機は携帯電話機に用いられているものとする。
2. Description of the Related Art FIG. 3 shows a block diagram of a conventional rake receiver, which will be described. However, it is assumed that this rake receiver is used in a mobile phone.

【0008】図3において、1はアンテナ、2はミキ
サ、3は発振器、4は相関器、5はPN発生回路、6は
遅延差検出回路、7はレベル検出回路、8,9,10は
第1〜第3ミキサ、11,12,13は第1〜第3復調
器、14,15,16は第1〜第3遅延補正回路、1
7,18,19は第1〜第3乗算器、20は加算回路で
ある。但し、第1〜第3乗算器17〜19は、各々ミキ
サで構成されるが、ここでは第1〜第3ミキサ8〜10
との区別を明確にするためにその機能を名称として付し
た。
In FIG. 3, 1 is an antenna, 2 is a mixer, 3 is an oscillator, 4 is a correlator, 5 is a PN generating circuit, 6 is a delay difference detecting circuit, 7 is a level detecting circuit, and 8, 9 and 10 are First to third mixers 11, 12, 13 are first to third demodulators, 14, 15, 16 are first to third delay correction circuits, 1
Reference numerals 7, 18 and 19 are first to third multipliers, and 20 is an adder circuit. However, although the first to third multipliers 17 to 19 are each composed of a mixer, here, the first to third mixers 8 to 10 are used.
The function is given as a name to clarify the distinction from.

【0009】また、第1ミキサ8、第1復調器11、第
1遅延補正回路14及び第1乗算器17の接続経路を第
1ブランチと呼び、第2ミキサ9、第2復調器12、第
2遅延補正回路15及び第2乗算器18の経路を第2ブ
ランチ、第3ミキサ10、第3復調器13、第3遅延補
正回路16及び第3乗算器19の経路を第3ブランチと
呼ぶことにする。
The connection path of the first mixer 8, the first demodulator 11, the first delay correction circuit 14 and the first multiplier 17 is called the first branch, and the second mixer 9, the second demodulator 12 and the second branch are connected. The path of the second delay correction circuit 15 and the second multiplier 18 is called the second branch, and the path of the third mixer 10, the third demodulator 13, the third delay correction circuit 16 and the third multiplier 19 is called the third branch. To

【0010】ミキサ2は、アンテナ1で受信された図示
せぬ基地局より送信されてくる直接拡散変調波(DS変
調波)R1を、発振器3から出力される所定周波数の発
振信号S1と乗算することによってベースバンド信号S
2に変換して出力する。但し、DS変調波R1は、マル
チパス信号であるものとする。
The mixer 2 multiplies a direct spread modulated wave (DS modulated wave) R1 received by the antenna 1 and transmitted from a base station (not shown) by an oscillation signal S1 of a predetermined frequency output from the oscillator 3. The baseband signal S
Convert to 2 and output. However, it is assumed that the DS modulated wave R1 is a multipath signal.

【0011】相関器4は、ベースバンド信号S2の中か
ら受信電力の大きい3つのパスの信号(相関器出力信号
と呼ぶ)S3,S4,S5を検出し、その第1〜第3相
関器出力信号S3,S4,S5の受信タイミングを含め
て出力する。第1〜第3相関器出力信号S3,S4,S
5のレベル及び受信タイミングの例を図4に示す。この
図4において、第1相関器出力信号S3は直接波である
とし、他の相関器出力信号S4,S5は、建物等で反射
・回析して様々な経路を経てきた信号波であるとする。
また、各相関器出力信号S3,S4,S5の時間的ずれ
は移動通信システムのシステムクロック信号の1ビット
内であるものとする。
The correlator 4 detects signals (referred to as correlator output signals) S3, S4, S5 of three paths having a large received power from the baseband signal S2, and outputs the first to third correlator outputs thereof. The signals S3, S4 and S5 are output together with the reception timing. First to third correlator output signals S3, S4, S
FIG. 4 shows an example of 5 levels and reception timing. In FIG. 4, it is assumed that the first correlator output signal S3 is a direct wave, and the other correlator output signals S4 and S5 are signal waves that have been reflected and diffracted by a building or the like and have gone through various paths. To do.
Further, it is assumed that the time lag of each correlator output signal S3, S4, S5 is within 1 bit of the system clock signal of the mobile communication system.

【0012】PN発生回路5は、各々の相関器出力信号
S3,S4,S5に同期したPN信号、即ち基地局で拡
散復調に用いられたPN信号と同符号のPN信号P1,
P2,P3を出力する。
The PN generating circuit 5 is a PN signal synchronized with each of the correlator output signals S3, S4 and S5, that is, a PN signal P1 having the same code as the PN signal used for spread demodulation in the base station.
Output P2 and P3.

【0013】遅延補正回路6は、第1相関器出力信号S
3と第2及び第3相関器出力信号S4,S5との遅延差
を取って出力する。第1相関器出力信号S3と第2相関
器出力信号S4との遅延差を第1遅延差信号DS2と
し、第1相関器出力信号S3と第3相関器出力信号S5
との遅延差を第2遅延差信号DS3とする。
The delay correction circuit 6 includes a first correlator output signal S
3 and the delay differences between the second and third correlator output signals S4 and S5 are calculated and output. A delay difference between the first correlator output signal S3 and the second correlator output signal S4 is defined as a first delay difference signal DS2, and the first correlator output signal S3 and the third correlator output signal S5
And the delay difference between and is the second delay difference signal DS3.

【0014】レベル検出回路7は、各相関器出力信号S
3,S4,S5のレベルを検出して出力する。第1相関
器出力信号S3のレベルを第1レベル信号L1、第2相
関器出力信号S4のレベルを第2レベル信号L2、第3
相関器出力信号S5のレベルを第3レベル信号L3とす
る。
The level detection circuit 7 is provided for each correlator output signal S.
The levels of 3, S4 and S5 are detected and output. The level of the first correlator output signal S3 is the first level signal L1, the level of the second correlator output signal S4 is the second level signal L2, and the third level
The level of the correlator output signal S5 is the third level signal L3.

【0015】第1〜第3ミキサ8〜10は、第1〜第3
PN信号P1,P2,P3とベースバンド信号S2とを
乗算することによって逆拡散を行い、第1〜第3逆拡散
信号S6,S7,S8を出力する。
The first to third mixers 8 to 10 are composed of the first to third mixers.
Despreading is performed by multiplying the PN signals P1, P2, P3 and the baseband signal S2, and the first to third despreading signals S6, S7, S8 are output.

【0016】第1〜第3復調器11は、各逆拡散信号S
6,S7,S8の復調を行うことにより各パスのデータ
D1,D2,D3を再生する。第1遅延補正回路14
は、データD1をシステムクロック信号の1ビット分遅
延させ、データD4として出力する。例えば1ビット分
の遅延時間は、図4に示す時刻t1からt4間の遅延時
間であるとし、固定遅延時間t5と呼ぶことにする。
The first to third demodulators 11 are provided for each despread signal S.
By demodulating S6, S7 and S8, the data D1, D2 and D3 of each path are reproduced. First delay correction circuit 14
Outputs the data D1 as data D4 by delaying the data D1 by one bit of the system clock signal. For example, the delay time for one bit is assumed to be the delay time from time t1 to t4 shown in FIG. 4, and will be referred to as fixed delay time t5.

【0017】第2遅延補正回路15は、図4に示すよう
に固定遅延時間t5から遅延差信号DS2に対応する遅
延時間t6を減算し、この減算により得られる第1遅延
時間t7分、データD2を遅延させ、データD5として
出力する。
As shown in FIG. 4, the second delay correction circuit 15 subtracts the delay time t6 corresponding to the delay difference signal DS2 from the fixed delay time t5, and the data D2 corresponding to the first delay time t7 obtained by this subtraction. Are delayed and output as data D5.

【0018】第3遅延補正回路16は、図4に示すよう
に固定遅延時間t5から遅延差信号DS3に対応する遅
延時間t8を減算し、この減算により得られる第2遅延
時間t9分、データD3を遅延させ、データD6として
出力する。
As shown in FIG. 4, the third delay correction circuit 16 subtracts the delay time t8 corresponding to the delay difference signal DS3 from the fixed delay time t5, and the second delay time t9 obtained by this subtraction, the data D3. Are delayed and output as data D6.

【0019】この遅延処理によって、マルチパスの信号
(相関器出力信号)S3,S4,S5の位相が同相とな
る。第1〜第3乗算器17,18,19は、各データD
4,D5,D6と、第1〜第3レベル信号L1,L2,
L3とを乗算することにより、各パスの受信レベルに応
じた重み付けを各パスのデータに対して行う。このよう
に重み付けを行うことによって、SN比の大きい成分の
データがより明確となる。また、重み付けの行われたデ
ータをD7,D8,D9とする。
By this delay processing, the phases of the multipath signals (correlator output signals) S3, S4 and S5 become in phase. The first to third multipliers 17, 18 and 19 are configured to output the data D
4, D5, D6 and the first to third level signals L1, L2
By multiplying by L3, weighting according to the reception level of each path is performed on the data of each path. By weighting in this way, the data of the component with a large SN ratio becomes clearer. Also, the weighted data are defined as D7, D8, and D9.

【0020】加算回路20は、各ブランチの最終段のデ
ータD7,D8,D9を加算することにより合成し、合
成データD10として出力する。
The adder circuit 20 adds the data D7, D8, D9 at the final stage of each branch to add them and outputs them as combined data D10.

【0021】[0021]

【発明が解決しようとする課題】上述したようなレイク
受信機においては、ブランチ数を多くするほどにレイク
ゲインが向上することが知られている。しかし、ハード
ウエアの規模、低消費電力化の観点から上述した従来例
のように3ブランチが最適であるとされていた。
In the rake receiver as described above, it is known that the rake gain improves as the number of branches increases. However, from the viewpoints of hardware scale and low power consumption, 3 branches were considered to be optimal as in the above-mentioned conventional example.

【0022】ところが、最近の調査により郊外では3ブ
ランチで充分であるが、都市部では図5に符号S10〜
15でその一例を示すようにマルチパスの数が多いた
め、3ブランチでは、ブランチ数が不十分であるとの結
果が得られている。
However, according to a recent survey, 3 branches are sufficient in the suburbs, but in urban areas, the symbols S10 to S10 in FIG.
Since the number of multi-paths is large as shown in 15 as an example, the result is obtained that the number of branches is insufficient in 3 branches.

【0023】その理由としては、3ブランチレイクの場
合、受信した信号の内、電力の大きい3つのパスは合成
されるが、他のパスについては干渉となってしまうた
め、マルチパスの数が多いと受信特性が劣化してしま
う。
The reason for this is that in the case of the 3-branch lake, the three paths with high power in the received signal are combined, but the other paths cause interference, and therefore the number of multipaths is large. And the reception characteristics will deteriorate.

【0024】しかし、多いマルチパスに対応すべくレイ
ク受信機のブランチ数を増やした場合、消費電力が大き
くなる問題がある。これは特に年々その需要が増加して
いる携帯電話機において問題となる。何故ならば携帯電
話機への要望は小型化、低消費電力化であるからであ
る。
However, when the number of branches of the rake receiver is increased to cope with a large number of multipaths, there is a problem that the power consumption becomes large. This becomes a problem especially in mobile phones whose demand is increasing year by year. This is because the demands for mobile phones are miniaturization and low power consumption.

【0025】本発明は、このような点に鑑みてなされた
ものであり、マルチパスの数が多い場合でも受信特性を
向上させることができ、かつ低消費電力化を実現するこ
とができる直接拡散スペクトル拡散通信方式におけるレ
イク受信機を提供することを目的としている。
The present invention has been made in view of the above points, and is capable of improving reception characteristics even when the number of multipaths is large, and direct diffusion capable of realizing low power consumption. An object is to provide a rake receiver in a spread spectrum communication system.

【0026】[0026]

【課題を解決するための手段】図1に本発明の原理図を
示す。この図において、501 〜50N は第1〜第N逆
拡散手段であり、パス数がNの直接拡散変調信号S30
を受信し、この受信されたタイミングが各々異なるN個
の直接拡散変調信号S30に同期した第1〜第N拡散系
列で、各々の受信直接拡散変調信号S30を逆拡散復調
するものである。
FIG. 1 shows the principle of the present invention. In this figure, 50 1 to 50 N are first to Nth despreading means, and the direct spread modulation signal S30 having N paths
Is received, and each of the received direct spread modulation signals S30 is subjected to despread demodulation with the first to Nth spreading sequences synchronized with the N direct spread modulation signals S30 having different received timings.

【0027】51が合成手段であり、第1〜第N逆拡散
手段501 〜50N の出力データD401 〜D40N
合成するものである。52は本発明の特徴要素の制御手
段であり、N個の直接拡散変調信号S30のレベルの
内、最高レベルの信号とそれ以外の各信号とのレベル差
を個々に求め、この求められた個々のレベル差が所定の
閾値T以上ある場合に、最高レベルの信号に対して閾値
T以上のレベル差を有する信号の逆拡散復調を行う逆拡
散手段(例えば50N-2,50N-1,50N )をオフ状態に
制御するものである。
[0027] 51 is a synthesizing means is for combining the output data D40 1 ~D40 N of the first to N despreading means 50 1 to 50 N. Reference numeral 52 is a control means of a characteristic element of the present invention, and among the levels of the N direct spread modulation signals S30, the level difference between the highest level signal and the other signals is individually calculated, and the calculated individual Despreading means for despreading and demodulating a signal having a level difference equal to or higher than the threshold T with respect to the highest level signal when the level difference is equal to or higher than a predetermined threshold T (for example, 50 N-2 , 50 N-1 , 50 N ) is controlled to an off state.

【0028】また、閾値Tは、直接拡散変調信号S30
の内、合成によるパスダイバーシチ効果が得られない信
号と、最高レベルの信号とのレベル差に対応する値にす
るのが好ましい。
The threshold value T is the direct spread modulation signal S30.
Among these, it is preferable to set the value to a value corresponding to the level difference between the signal in which the path diversity effect due to synthesis is not obtained and the highest level signal.

【0029】[0029]

【作用】上述した本発明によれば、パス数がNの直接拡
散変調信号S30を、各パス毎に逆拡散復調する場合
に、制御手段52によって、合成によるパスダイバーシ
チ効果が得られない信号を逆拡散復調する逆拡散手段
(例えば50N-2,50N-1,50N )をオフ状態とするよ
うにしたので、パスの数が多い場合でも受信特性を向上
させることができ、かつ低消費電力化を実現することが
できる。
According to the present invention described above, when the direct spread modulation signal S30 having the number of paths N is subjected to the despread demodulation for each path, the control means 52 produces a signal for which the path diversity effect by combining cannot be obtained. Since the despreading means for despreading demodulation (for example, 50 N-2 , 50 N-1 , 50 N ) is turned off, it is possible to improve the reception characteristic even when the number of paths is large, and to reduce the reception characteristic. It is possible to realize power consumption.

【0030】[0030]

【実施例】以下、図面を参照して本発明の一実施例につ
いて説明する。図2は本発明の一実施例の直接拡散スペ
クトル拡散通信方式によるレイク受信機のブロック構成
図である。但し、図2に示す実施例において図3に示し
た従来例の各部に対応する部分には同一符号を付し、そ
の説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of a rake receiver according to a direct spread spectrum spread communication system according to an embodiment of the present invention. However, in the embodiment shown in FIG. 2, the portions corresponding to the respective portions of the conventional example shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

【0031】図2に示すレイク受信機は、数の多いマル
チパス信号を処理できるN段のブランチを設け、そのブ
ランチをマルチパスの数に応じて作動させるようにした
ものであり、その特徴要素はパワー制御回路30であ
る。
The rake receiver shown in FIG. 2 is provided with N stages of branches capable of processing a large number of multipath signals, and the branches are operated according to the number of multipaths. Is a power control circuit 30.

【0032】パワー制御回路30は、レベル検出回路7
で検出されたレベル信号L1〜LNの内、最もレベルの
高い信号(これはメインパスの信号であり例えばL1と
する)と他の信号L2〜LNとのレベル差を個々に求
め、その各々のレベル差がスレショルドレベル値(例え
ば10dB)SR以上ある場合に、該当ブランチへ、ブ
ランチの構成要素をオフ状態とする第1〜第N制御信号
C2〜CNを出力し、該当ブランチをオフとするもので
ある。
The power control circuit 30 includes a level detection circuit 7
Among the level signals L1 to LN detected in step 1, the level difference between the highest level signal (this is the main path signal, for example, L1) and the other signals L2 to LN is individually calculated, and each of them is calculated. When the level difference is a threshold level value (for example, 10 dB) SR or more, the first to Nth control signals C2 to CN for turning off the components of the branch are output to the corresponding branch to turn off the corresponding branch. Is.

【0033】このようにブランチ構成要素をオフとする
のは、メインパスとのレベル差が所定値以上ある場合に
は合成したことによるパスダイバーシチ効果が期待でき
ないためである。
The reason why the branch component is turned off is that the path diversity effect due to the combination cannot be expected when the level difference from the main path is a predetermined value or more.

【0034】ブランチは、第1〜第Nブランチまであ
り、各ブランチの構成要素は図3の従来例で説明した通
りであるが、図2においてはその各要素に付す符号が変
更してある。
The branches are the first to Nth branches, and the constituent elements of each branch are as described in the conventional example of FIG. 3. However, in FIG. 2, the reference numerals assigned to the respective elements are changed.

【0035】即ち、第1ブランチの構成要素は、第1ミ
キサ311 、第1復調器321 、第1遅延補正回路33
1 及び第1乗算器341 であり、第2ブランチの構成要
素は、第2ミキサ312 、第2復調器322 、第2遅延
補正回路332 及び第2乗算器342 、……、第Nブラ
ンチの構成要素は、第Nミキサ31N 、第N復調器32
N 、第N遅延補正回路33N 及び第N乗算器34N であ
る。
That is, the constituent elements of the first branch are the first mixer 31 1 , the first demodulator 32 1 , and the first delay correction circuit 33.
1 and the first multiplier 34 1 , and the components of the second branch are the second mixer 31 2 , the second demodulator 32 2 , the second delay correction circuit 33 2 and the second multiplier 34 2 ,. The components of the Nth branch are the Nth mixer 31 N and the Nth demodulator 32.
N Nth delay correction circuit 33 N and Nth multiplier 34 N.

【0036】また、制御信号C2は、第2ブランチの第
2復調器322 及び第2遅延補正回路332 へ出力され
るようになっており、……、第N制御信号CNは第Nブ
ランチの第N復調器32N 及び第N遅延補正回路33N
へ出力されるようになっている。
Further, the control signal C2 is adapted to be output to the second demodulator 32 2 and the second delay correction circuit 33 2 of the second branch, and the Nth control signal CN is the Nth branch. Nth demodulator 32 N and Nth delay correction circuit 33 N
It is designed to be output to.

【0037】これは各復調器321 〜32N 及び各遅延
補正回路331 〜33N がディジタル回路で構成され、
他のミキサ311 〜31N 及び乗算器341 〜34N
アナログ回路で構成されているためであるが、ブランチ
の構成要素全てがディジタル回路で構成されておれば全
ての構成要素に制御信号を供給するように構成する。
This is because the demodulators 32 1 to 32 N and the delay correction circuits 33 1 to 33 N are digital circuits.
This is because the other mixers 31 1 to 31 N and the multipliers 34 1 to 34 N are composed of analog circuits, but if all the constituent elements of the branch are composed of digital circuits, control signals will be sent to all the constituent elements. Is configured to supply.

【0038】このような構成のレイク受信機が、信号パ
ス数の多い都市部で使用されている場合の動作を説明す
る。但し、パス数は、ブランチ数N若しくはそれ以下で
あるとする。
The operation when the rake receiver having such a configuration is used in an urban area where the number of signal paths is large will be described. However, it is assumed that the number of paths is the number of branches N or less.

【0039】まず、アンテナ1により受信されたDS変
調波R1は、ミキサ2によりベースバンド信号S2に変
換され、相関器4及び第1〜第Nミキサ311 〜31N
へ出力される。
First, the DS modulated wave R1 received by the antenna 1 is converted into a baseband signal S2 by the mixer 2, and the correlator 4 and the first to Nth mixers 31 1 to 31 N are used.
Is output to.

【0040】相関器4においては、受信電力の大きい順
に、ブランチ数Nに対応する数の信号S1〜SNが受信
タイミング順に検出される。この検出された相関器出力
信号S1〜SNに基づき、PN発生回路5において逆拡
散用のPN信号P1,P2,…,PNが生成され、遅延
差検出回路6において遅延差信号DS2,…,DSNが
検出され、レベル検出回路7においてレベル信号L1,
L2,…,LNが検出される。
In the correlator 4, the signals S1 to SN of the number corresponding to the number N of branches are detected in the order of reception timing in descending order of received power. Based on the detected correlator output signals S1 to SN, PN signals P1, P2, ..., PN for despreading are generated in the PN generation circuit 5, and delay difference signals DS2 ,. Is detected and the level signal L1,
L2, ..., LN are detected.

【0041】各レベル信号L1,L2,…,LNはパワ
ー制御回路30に入力される。パワー制御回路30にお
いては、レベル検出回路7で検出されたレベル信号L1
〜LNの内、最もレベルの高いメインパスのレベル信号
L1と他のレベル信号L2〜LNとのレベル差が個々に
求められ、この求められた個々のレベル差がスレショル
ドレベル値と比較される。この比較により例えば図示せ
ぬ6番目以降のレベル信号L6とメインパスレベル信号
L1とのレベル差がスレショルドレベル値SR以上ある
場合、6番目以降の受信信号を処理する第6〜第Nブラ
ンチの復調器326 (図示せず)〜32N 及び遅延補正
回路336 (図示せず)〜33N へ、第6〜第N制御信
号C1〜CNが供給されてオフとされる。
The level signals L1, L2, ..., LN are input to the power control circuit 30. In the power control circuit 30, the level signal L1 detected by the level detection circuit 7
.. LN, the level difference between the level signal L1 of the main path having the highest level and the other level signals L2 to LN is individually calculated, and the calculated individual level difference is compared with the threshold level value. In this comparison, if the level difference between the sixth level signal L6 and the main path level signal L1 (not shown) is equal to or more than the threshold level value SR, the demodulation of the sixth to Nth branches for processing the sixth and subsequent received signals is performed. The sixth to Nth control signals C1 to CN are supplied to the devices 32 6 (not shown) to 32 N and the delay correction circuits 33 6 (not shown) to 33 N to be turned off.

【0042】この結果、各ミキサ311 〜31N で逆拡
散された第1〜第N信号Sa1〜SaNの内、第1〜第5信
号Sa1〜Sa5が後段のブランチ回路で処理され、最後に
加算回路35で加算されて合成データDDとして出力さ
れる。
As a result, of the first to Nth signals S a1 to S aN despread by the mixers 31 1 to 31 N , the first to fifth signals S a1 to S a5 are processed by the branch circuit in the subsequent stage. Then, finally, the addition circuit 35 performs addition and outputs the synthesized data DD.

【0043】以上説明したように、実施例のレイク受信
機によれば、パス数が多くても有効なレベルの受信信号
のみを合成してデータを得ることができるので受信特性
を向上させることができ、またNパス化したことによる
消費電力の増加を抑制することによって低消費電力化を
実現することができる。
As described above, according to the rake receiver of the embodiment, even if the number of paths is large, it is possible to combine only received signals of effective levels to obtain data, so that the receiving characteristics can be improved. In addition, it is possible to reduce the power consumption by suppressing an increase in the power consumption due to the N paths.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
マルチパスの数が多い場合でも受信特性を向上させるこ
とができ、かつ低消費電力化を実現することができる効
果がある。
As described above, according to the present invention,
Even when the number of multipaths is large, there is an effect that the reception characteristic can be improved and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明の本発明の一実施例の直接拡散スペクト
ル拡散通信方式によるレイク受信機のブロック構成図で
ある。
FIG. 2 is a block diagram of a rake receiver using a direct spread spectrum spread communication system according to an embodiment of the present invention.

【図3】従来例の直接拡散スペクトル拡散通信方式によ
るレイク受信機のブロック構成図である。
FIG. 3 is a block diagram of a rake receiver according to a conventional direct spread spectrum communication system.

【図4】相関器出力時間波形図である。FIG. 4 is a correlator output time waveform diagram.

【図5】他の相関器出力時間波形図である。FIG. 5 is another correlator output time waveform diagram.

【符号の説明】[Explanation of symbols]

501 〜50N 第1〜第N逆拡散手段 51 合成手段 52 制御手段 S30 直接拡散変調信号 D401 〜D40N 拡散復調後のデータ50 1 to 50 N 1st to Nth despreading means 51 Combining means 52 Control means S30 Direct spread modulation signal D40 1 to D40 N Data after spread demodulation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パス数がNの直接拡散変調信号(S30) を
受信し、この受信されたタイミングが各々異なるN個の
直接拡散変調信号(S30) に同期した第1〜第N拡散系列
で逆拡散復調する第1〜第N逆拡散手段(501〜50N )
と、該第1〜第N逆拡散手段(501〜50N ) の出力データ
(D401 〜 D40N ) を合成する合成手段(51)とを有して成
る直接拡散スペクトル拡散通信方式によるレイク受信機
において、 該N個の直接拡散変調信号(S30) のレベルの内、最高レ
ベルの信号とそれ以外の各信号とのレベル差を個々に求
め、この求められた個々のレベル差が所定の閾値(T) 以
上ある場合に、該最高レベルの信号に対して該閾値(T)
以上のレベル差を有する信号の逆拡散復調を行う逆拡散
手段( 例えば50N-2,50 N-1, 50N ) をオフ状態に制御す
る制御手段(52)を設けたことを特徴とする直接拡散スペ
クトル拡散通信方式によるレイク受信機。
1. A first to N-th spreading sequence synchronized with N direct-spread modulation signals (S30), each of which receives a direct-spread modulation signal (S30) with N paths and has different received timings. First to Nth despreading means (50 1 to 50 N ) for despreading demodulation
And the output data of the first to N-th despreading means (50 1 to 50 N ).
In a rake receiver by a direct spread spectrum communication system comprising a combining means (51) for combining (D40 1 to D40 N ), the highest of the levels of the N direct spread modulation signals (S30) If the level difference between the level signal and each of the other signals is individually calculated, and the calculated level difference is equal to or greater than a predetermined threshold value (T), the threshold value (T )
It is characterized in that a control means (52) for controlling the despreading means (for example, 50 N-2 , 50 N-1 , 50 N ) for performing despreading demodulation of signals having the above level differences to an off state is provided. Rake receiver using direct sequence spread spectrum communication.
【請求項2】 前記閾値(T) を、前記直接拡散変調信号
(S30) の内、合成によるパスダイバーシチ効果が得られ
ない信号と、該最高レベルの信号とのレベル差に対応す
る値にすることを特徴とする請求項1記載の直接拡散ス
ペクトル拡散通信方式によるレイク受信機。
2. The direct spread modulation signal is defined as the threshold (T).
The direct spread spectrum spread communication system according to claim 1, wherein a value corresponding to a level difference between a signal in which a path diversity effect due to synthesis is not obtained in (S30) and the signal of the highest level is set. Rake receiver.
JP6020787A 1994-02-18 1994-02-18 Reke receiver by direct spread spectrum communication system Withdrawn JPH07231278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020787A JPH07231278A (en) 1994-02-18 1994-02-18 Reke receiver by direct spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020787A JPH07231278A (en) 1994-02-18 1994-02-18 Reke receiver by direct spread spectrum communication system

Publications (1)

Publication Number Publication Date
JPH07231278A true JPH07231278A (en) 1995-08-29

Family

ID=12036818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020787A Withdrawn JPH07231278A (en) 1994-02-18 1994-02-18 Reke receiver by direct spread spectrum communication system

Country Status (1)

Country Link
JP (1) JPH07231278A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997009793A1 (en) * 1995-09-04 1997-03-13 Matsushita Electric Industrial Co., Ltd. Spread spectrum radio transmission digital mobile communication device
WO1997020400A1 (en) * 1995-11-29 1997-06-05 Ntt Mobile Communications Network Inc. Diversity receiver and control method therefor
EP0940926A2 (en) * 1998-03-04 1999-09-08 Nec Corporation Spectrum spreading communication system using single spreading code
EP0991200A2 (en) * 1998-09-29 2000-04-05 Nec Corporation Receiving circuit, mobile terminal with receiving circuit, and method of receiving data
WO2000041335A1 (en) * 1998-12-28 2000-07-13 Kabushiki Kaisha Toshiba Cdma mobile radio terminal
US6157687A (en) * 1997-06-16 2000-12-05 Nec Corporation Rake receiving system with fingers selectively participating rake synthesis
WO2001020832A1 (en) * 1999-09-14 2001-03-22 Fujitsu Limited Cdma receiver
US6229840B1 (en) 1997-03-04 2001-05-08 Nec Corporation Diversity circuit
WO2002087101A1 (en) * 2001-04-18 2002-10-31 Nec Corporation Cdma reception apparatus and path protection method
US6515979B1 (en) 1998-06-09 2003-02-04 Nec Corporation Baseband signal processor capable of dealing with multirate and multiuser communication with a small structure
AU764264B2 (en) * 1999-06-02 2003-08-14 Nec Corporation CDMA mobile communication system, searcher circuit and communication method
JP2003249971A (en) * 2002-02-25 2003-09-05 Nec Corp Symbol data conversion circuit
US6625202B1 (en) 1998-07-13 2003-09-23 Hitachi, Ltd. Mobile station for spread spectrum communication
US6628698B1 (en) 1998-12-10 2003-09-30 Nec Corporation CDMA reception apparatus and power control method therefor
US6768729B1 (en) 1998-09-24 2004-07-27 Nec Corporation CDMA receiver, path detection method, and recording medium on which path detection control program is recorded
US6795422B2 (en) 1998-09-30 2004-09-21 Nec Corporation Method of providing hysteresis in detection of path timing by multiplying delay profile by weighting coefficient
WO2005013505A1 (en) * 2003-07-30 2005-02-10 Mitsubishi Denki Kabushiki Kaisha Reception device
US7062287B2 (en) 1999-09-22 2006-06-13 Fujitsu Limited Transmission power control apparatus
US7245681B1 (en) 1999-09-06 2007-07-17 Nec Corporation Receiving terminal, receiver and receiving method for CDMA system
JP2008508811A (en) * 2004-07-29 2008-03-21 クゥアルコム・インコーポレイテッド System and method for reducing rake finger processing
JP2008533932A (en) * 2005-03-18 2008-08-21 クゥアルコム・インコーポレイテッド Improved channel estimation for single carrier systems
JP2010504005A (en) * 2006-09-12 2010-02-04 マーベル ワールド トレード リミテッド Multi lake receiver

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128333A (en) * 1995-09-04 2000-10-03 Matsushita Electrical Industrial Co., Ltd. Spread spectrum radio transmission digital mobile communication
US6430215B1 (en) 1995-09-04 2002-08-06 Matsushita Electric Industrial Co., Ltd. Spread spectrum radio transmission digital mobile communication device
WO1997009793A1 (en) * 1995-09-04 1997-03-13 Matsushita Electric Industrial Co., Ltd. Spread spectrum radio transmission digital mobile communication device
WO1997020400A1 (en) * 1995-11-29 1997-06-05 Ntt Mobile Communications Network Inc. Diversity receiver and control method therefor
US6229840B1 (en) 1997-03-04 2001-05-08 Nec Corporation Diversity circuit
US6157687A (en) * 1997-06-16 2000-12-05 Nec Corporation Rake receiving system with fingers selectively participating rake synthesis
US6827483B2 (en) 1998-03-04 2004-12-07 Nec Corporation Spectrum spreading communication system using single spreading code
EP0940926A3 (en) * 1998-03-04 2002-12-11 Nec Corporation Spectrum spreading communication system using single spreading code
EP0940926A2 (en) * 1998-03-04 1999-09-08 Nec Corporation Spectrum spreading communication system using single spreading code
US6480523B1 (en) 1998-03-04 2002-11-12 Nec Corporation Spectrum spreading communication system using single spreading code
US6515979B1 (en) 1998-06-09 2003-02-04 Nec Corporation Baseband signal processor capable of dealing with multirate and multiuser communication with a small structure
US6625202B1 (en) 1998-07-13 2003-09-23 Hitachi, Ltd. Mobile station for spread spectrum communication
US6768729B1 (en) 1998-09-24 2004-07-27 Nec Corporation CDMA receiver, path detection method, and recording medium on which path detection control program is recorded
US6904080B1 (en) 1998-09-29 2005-06-07 Nec Corporation Receiving circuit, mobile terminal with receiving circuit, and method of receiving data
EP0991200A3 (en) * 1998-09-29 2004-07-21 Nec Corporation Receiving circuit, mobile terminal with receiving circuit, and method of receiving data
EP0991200A2 (en) * 1998-09-29 2000-04-05 Nec Corporation Receiving circuit, mobile terminal with receiving circuit, and method of receiving data
US6795422B2 (en) 1998-09-30 2004-09-21 Nec Corporation Method of providing hysteresis in detection of path timing by multiplying delay profile by weighting coefficient
US6628698B1 (en) 1998-12-10 2003-09-30 Nec Corporation CDMA reception apparatus and power control method therefor
WO2000041335A1 (en) * 1998-12-28 2000-07-13 Kabushiki Kaisha Toshiba Cdma mobile radio terminal
GB2350978B (en) * 1998-12-28 2003-11-05 Toshiba Kk Cdma mobile radio terminal
US7020122B1 (en) 1998-12-28 2006-03-28 Kabushiki Kaisha Toshiba CDMA system mobile radio terminal equipment
GB2350978A (en) * 1998-12-28 2000-12-13 Toshiba Kk Cdma mobile radio terminal
AU764264B2 (en) * 1999-06-02 2003-08-14 Nec Corporation CDMA mobile communication system, searcher circuit and communication method
US7245681B1 (en) 1999-09-06 2007-07-17 Nec Corporation Receiving terminal, receiver and receiving method for CDMA system
WO2001020832A1 (en) * 1999-09-14 2001-03-22 Fujitsu Limited Cdma receiver
US7170925B2 (en) 1999-09-14 2007-01-30 Fujitsu Limited CDMA receiver
US7062287B2 (en) 1999-09-22 2006-06-13 Fujitsu Limited Transmission power control apparatus
WO2002087101A1 (en) * 2001-04-18 2002-10-31 Nec Corporation Cdma reception apparatus and path protection method
US7359399B2 (en) 2001-04-18 2008-04-15 Nec Corporation CDMA path protection method based on path protection information
JP2003249971A (en) * 2002-02-25 2003-09-05 Nec Corp Symbol data conversion circuit
WO2005013505A1 (en) * 2003-07-30 2005-02-10 Mitsubishi Denki Kabushiki Kaisha Reception device
JP2008508811A (en) * 2004-07-29 2008-03-21 クゥアルコム・インコーポレイテッド System and method for reducing rake finger processing
JP2010148117A (en) * 2004-07-29 2010-07-01 Qualcomm Inc System and method for reducing rake finger processing
JP2008533932A (en) * 2005-03-18 2008-08-21 クゥアルコム・インコーポレイテッド Improved channel estimation for single carrier systems
JP2010504005A (en) * 2006-09-12 2010-02-04 マーベル ワールド トレード リミテッド Multi lake receiver
JP2014014127A (en) * 2006-09-12 2014-01-23 Marvell World Trade Ltd Receiver
US9143191B2 (en) 2006-09-12 2015-09-22 Marvell World Trade Ltd. Method and apparatus for filtering and combining multipath components of a signal received at multiple antennas according to a wireless communication protocol standard designed for a receiver having only a single receive antenna

Similar Documents

Publication Publication Date Title
JPH07231278A (en) Reke receiver by direct spread spectrum communication system
JP3681230B2 (en) Spread spectrum communication equipment
US5694388A (en) CDMA demodulator and demodulation method
JPH10247869A (en) Diversity circuit
US6904076B1 (en) Interference canceller device and radio communication device
US6625202B1 (en) Mobile station for spread spectrum communication
KR19990036012A (en) Adaptive despreader
JP2002530003A (en) Motion estimator for CDMA mobile station
JP3335900B2 (en) Interference removal apparatus and interference removal method
JP3891373B2 (en) Demodulator and demodulation method
KR100302942B1 (en) CD receiving device and method
US20020064208A1 (en) Spread spectrum wireless communications device
US7003022B2 (en) Matched filter and receiver for mobile radio communication system
JP2973416B1 (en) RAKE receiving circuit
US8532080B2 (en) Method and system for single weight (SW) antenna system for single channel (SC) MIMO
US5832023A (en) Spread spectrum receiver using absolute-value determination for code tracking
JP3320655B2 (en) Spread spectrum wireless communication equipment
US6690713B1 (en) Tracking loop for a code division multiple access (CDMA) system
JPH0774726A (en) Demodulator
JPH0774694A (en) Demodulator
JP3228311B2 (en) Receiver
JPH10242935A (en) Processing gain variable cdma communication system and transceiver-receiver
KR20020039424A (en) High Performance Space-Time Array Receive System and Method Using Fading Rate Indicator
JP3271066B2 (en) Receiver
JP3147112B2 (en) Direct spread receiver

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508