JPH07220989A - Exposure apparatus and manufacture of device using the same - Google Patents

Exposure apparatus and manufacture of device using the same

Info

Publication number
JPH07220989A
JPH07220989A JP761894A JP761894A JPH07220989A JP H07220989 A JPH07220989 A JP H07220989A JP 761894 A JP761894 A JP 761894A JP 761894 A JP761894 A JP 761894A JP H07220989 A JPH07220989 A JP H07220989A
Authority
JP
Japan
Prior art keywords
illuminance
light
exposure
wafer
reticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP761894A
Other languages
Japanese (ja)
Inventor
Kinya Yamaguchi
欣也 山口
Teruya Sato
光弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP761894A priority Critical patent/JPH07220989A/en
Publication of JPH07220989A publication Critical patent/JPH07220989A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To immediately sense a malfunction of an illuminance unevenness by providing means for measuring an intensity distribution of an exposure light during real exposing of a wafer. CONSTITUTION:When an exposure operation of one chip exposure area on a wafer 13 is started, a reticle stage 9 and a wafer stage 14 are cooperatively moved in a direction perpendicular to an illuminating direction of an illumination light 7, scanned on a luminous flux of the light 7, and a pattern on a reticle 8 is started to be transferred on a surface of the wafer 13. A photosensor 10 detects the flux of the light 7 during transferring to sequentially measure illuminances corresponding to positions at each predetermined sampling time interval, and its each illumination data is Ui. The illuminance of the light 3 is sequentially detected by an illuminometer 5 at the same time as the time for detecting the illuminance, and its each illuminance data is Li. In order to remove flicker of an illumination light source and influence of aging change of the illuminance, when each illumination ratio value Ii is represented by Ii = Ui/Li, an illuminance distribution curve of the light 7 of the Ii is obtained by executing one exposure operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば集積回路等のデバ
イスを製造するためにウエハ上に回路パターンを焼き付
ける時に用いられる露光装置及びこれを用いたデバイス
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus used when a circuit pattern is printed on a wafer for manufacturing a device such as an integrated circuit, and a device manufacturing method using the same.

【0002】[0002]

【従来の技術】従来、露光装置の露光光の照度ムラを計
測する方法として、ウエハー移動手段側に照度測定器を
配置して、あらかじめ実露光工程とは別に一定の期間、
前記照度測定器を含むウエハー移動手段がウエハーの露
光領域内を移動することによりウエハー面の複数点の照
度を検出して照度むらを計測する時間を設けていた。
2. Description of the Related Art Conventionally, as a method for measuring the illuminance unevenness of the exposure light of an exposure apparatus, an illuminance measuring device is arranged on the side of the wafer moving means, and a predetermined period of time is set separately from the actual exposure process.
The wafer moving means including the illuminance measuring device is moved within the exposure area of the wafer to detect the illuminance at a plurality of points on the wafer surface, thereby providing time for measuring the illuminance unevenness.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、従
来の照度むら計測時間が実露光動作期間とは別の一定期
間に行う計測であるために、実露光動作期間中に照度む
らに異常が生じても直ちに検出ができない。
However, since the conventional illuminance nonuniformity measurement time is measured in a fixed period other than the actual exposure operation period, even if the illuminance nonuniformity is abnormal during the actual exposure operation period. It cannot be detected immediately.

【0004】また、従来の照度むら計測が実露光動作と
は別に一定の長時間を要するために、装置のスループッ
トが低下する。
Further, since the conventional illuminance unevenness measurement requires a constant long time in addition to the actual exposure operation, the throughput of the apparatus is lowered.

【0005】[0005]

【課題を解決するための手段】本発明の目的は上記従来
の問題点を解決する露光装置及びこれを用いたデバイス
製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an exposure apparatus and a device manufacturing method using the same which solve the above-mentioned conventional problems.

【0006】上記目的を達成するため、本発明の露光装
置及びこれを用いたデバイス製造方法は、露光光により
レチクルのパターンを介してウエハを露光する露光装置
において、ウエハーへの実露光動作中に露光光の強度分
布(照度分布)を計測する手段を備える事を特徴として
おり、実露光動作中に照度むらの計測を行なうので、ス
ループットが上がり、照度むらの異常をすぐに感知でき
る。
In order to achieve the above object, an exposure apparatus and a device manufacturing method using the same according to the present invention are provided in an exposure apparatus which exposes a wafer through a pattern of a reticle by exposure light during an actual exposure operation on the wafer. It is characterized in that it is provided with means for measuring the intensity distribution (illuminance distribution) of the exposure light. Since the illuminance unevenness is measured during the actual exposure operation, the throughput is increased and an abnormality in the illuminance unevenness can be immediately sensed.

【0007】上記目的を達成するため、本発明の露光装
置及びこれを用いたデバイス製造方法の好ましい形態
は、前記実露光が前記露光光に対して前記レチクルとウ
エハを走査することにより行なわれ、前記計測手段は、
前記レチクルを移動する手段に設けられることを特徴と
する。これにより、上記効果に加え、構成が簡単である
という効果が生じる。
In order to achieve the above object, in a preferred embodiment of an exposure apparatus and a device manufacturing method using the same according to the present invention, the actual exposure is performed by scanning the reticle and the wafer with respect to the exposure light, The measuring means is
It is characterized in that it is provided in a means for moving the reticle. As a result, in addition to the above effects, an effect that the configuration is simple occurs.

【0008】また、更に好ましい形態は、前記レチクル
の移動方向と交差する方向に前記露光光の両端部の光を
受光する受光素子を複数備えることを特徴としており、
前記レチクルの移動方向と交差する方向の照度むらが計
測できる。
Further, a more preferable mode is characterized in that a plurality of light receiving elements for receiving light at both ends of the exposure light are provided in a direction intersecting with a moving direction of the reticle,
It is possible to measure the illuminance unevenness in the direction intersecting the moving direction of the reticle.

【0009】また、より好ましい形態は、前記計測手段
は計測される各点の光強度(照度)を前記露光光の予め
決めた部分の光強度と比較する手段を備え、これにより
露光光の強度変動による計測誤差を無くすことが可能に
なる。
In a more preferred form, the measuring means comprises means for comparing the light intensity (illuminance) of each measured point with the light intensity of a predetermined portion of the exposure light, whereby the intensity of the exposure light is increased. It is possible to eliminate measurement errors due to fluctuations.

【0010】[0010]

【実施例】図1は、本発明の実施例の露光装置の概略図
である。同図において1は露光用の照明光源、2は照明
光源1からの照明光をその断面が所定の大きさの長方形
をしたスリット形状にする光学変換器、3は光学変換器
2から出力される長方形をしたスリット形状の照明光で
照度データの基準光となる。4は照明光3を折り曲げる
ためのミラー、5は照明光3の照度領域のうち、中心付
近の1点の照度を検出する位置に配置してある照度計で
照度データの基準値を得る。
1 is a schematic view of an exposure apparatus according to an embodiment of the present invention. In the figure, 1 is an illumination light source for exposure, 2 is an optical converter that makes illumination light from the illumination light source 1 into a slit shape having a rectangular cross section, and 3 is output from the optical converter 2. The rectangular slit-shaped illumination light serves as the reference light for the illuminance data. Reference numeral 4 denotes a mirror for bending the illumination light 3 and reference numeral 5 denotes an illuminance meter arranged at a position for detecting the illuminance of one point in the illuminance area of the illumination light 3 near the center to obtain the reference value of the illuminance data.

【0011】6は照明系内光学素子、7は照明光3が照
明系内光学素子6を通過後、レチクル8に照射される断
面が長方形をしたスリット形状の照明光である。8はレ
チクル、9はレチクル8を保持するレチクルステージ
で、露光時には照明光7の照射方向に対して垂直方向に
動作することにより照明光7がレチクル上を走査する。
Reference numeral 6 is an optical element in the illumination system, and reference numeral 7 is illumination light in the shape of a slit having a rectangular cross section with which the reticle 8 is irradiated with the illumination light 3 after passing through the optical element 6 in the illumination system. Reference numeral 8 is a reticle, and 9 is a reticle stage that holds the reticle 8. The exposure light 7 scans the reticle by operating in the direction perpendicular to the irradiation direction of the illumination light 7 during exposure.

【0012】10はレチクルステージ9上に固定したホ
トセンサーで、露光時にレチクル面を走査して照射する
照明光7の照度領域外部に配置してあり、実露光動作時
にレチクルステージ9の移動(走査)に伴い走査方向に
関して照明光7の照度を複数時点で検出する。本実施例
では、レチクルとウエハーの移動方向と同方向の走査方
向に対して垂直の方向に1対(合計2個)配置してあ
る。
A photosensor 10 fixed on the reticle stage 9 is arranged outside the illuminance area of the illumination light 7 that scans and irradiates the reticle surface during exposure, and moves (scans) the reticle stage 9 during actual exposure operation. ), The illuminance of the illumination light 7 in the scanning direction is detected at a plurality of points. In this embodiment, one pair (two in total) are arranged in a direction perpendicular to the scanning direction which is the same as the moving direction of the reticle and the wafer.

【0013】11は照明光7の光束をホトセンサーに導
くためのレチクルステージ9上に固定したミラーであ
る。本実施例では、照明光7の光束領域内の走査方向に
対して垂直方向の左右両端に1対配置して、実露光動作
時に長方形のスリット形状をした照明光7の左右両端の
それぞれの光束を各ホトセンサー10に導く。12は縮
小投影光学系、13は照明光7によるレチクル8のパタ
ーン像が転写されるウエハー、14はウエハー12を保
持するウエハーステージである。
Reference numeral 11 is a mirror fixed on the reticle stage 9 for guiding the luminous flux of the illumination light 7 to the photo sensor. In the present embodiment, a pair of light beams is arranged at the left and right ends of the illumination light 7 in the vertical direction with respect to the scanning direction within the light flux region, and has a rectangular slit shape during the actual exposure operation. To each photo sensor 10. Reference numeral 12 is a reduction projection optical system, 13 is a wafer onto which the pattern image of the reticle 8 by the illumination light 7 is transferred, and 14 is a wafer stage which holds the wafer 12.

【0014】図2は、照明光3の照度分布曲線である。
同図において、照度分布曲線101は前記照明光3の照
明領域内のある1点の時間経過における照度変化曲線を
表わし、実際には図のように照明光源のちらつきや照度
の経時変化によって照度値は逐時変化する。照度分布曲
線102は前記照明光7の走査方向側における照度分布
の断面形状である。また照度分布曲線103は照明光7
の走査方向と垂直な方向における照度分布の断面形状で
ある。
FIG. 2 is an illuminance distribution curve of the illumination light 3.
In the figure, an illuminance distribution curve 101 represents an illuminance change curve of one point in the illumination area of the illumination light 3 over time. Actually, as shown in the figure, the illuminance value is caused by flickering of the illumination light source or aging of the illuminance. Changes from moment to moment. The illuminance distribution curve 102 is a cross-sectional shape of the illuminance distribution on the scanning direction side of the illumination light 7. Further, the illuminance distribution curve 103 is the illumination light 7
3 is a cross-sectional shape of the illuminance distribution in a direction perpendicular to the scanning direction of.

【0015】レチクルステージ9上の左右2個のホトセ
ンサー10は、露光動作開始後レチクルステージ9が照
明光7を走査していくと、照明光7の走査方向側に対し
ては図2の照度分布曲線102のような照度を検出して
いく。また、照明光7の走査方向と垂直な方向に対して
は図2の照度分布曲線103のうち左右両端の2点の照
度を繰り返し検出する。
When the reticle stage 9 scans the illumination light 7 after the exposure operation is started, the two left and right photosensors 10 on the reticle stage 9 scan the illumination light 7 in the scanning direction, and the illuminance in FIG. The illuminance like the distribution curve 102 is detected. Further, with respect to the direction perpendicular to the scanning direction of the illumination light 7, the illuminance at two points on the left and right ends of the illuminance distribution curve 103 in FIG. 2 is repeatedly detected.

【0016】このとき照度むらがあると照度分布曲線1
02および103は歪んだ曲線になる。すなわち図2の
照度分布曲線103を例にとると、光学機構が正しく調
整されていれば左右対称である。しかし調整が不良の場
合、左右非対称となる。2個のホトセンサー10で光束
の左右両端の照度を検出することにより照明光7の走査
方向に垂直な方向側の照度差による照度むらを検出でき
る。精度を上げるために、さらに多数のホトセンサーを
配置してもよい。
If there is uneven illuminance at this time, the illuminance distribution curve 1
02 and 103 are distorted curves. That is, taking the illuminance distribution curve 103 of FIG. 2 as an example, it is bilaterally symmetric if the optical mechanism is properly adjusted. However, if the adjustment is not correct, it will be asymmetrical. By detecting the illuminances at the left and right ends of the light flux with the two photosensors 10, it is possible to detect the illuminance unevenness due to the illuminance difference in the direction perpendicular to the scanning direction of the illumination light 7. A large number of photosensors may be arranged to increase the accuracy.

【0017】本実施例では照度むらを計測する手順とし
てまず、ウエハー13上の1チップ露光領域分の露光動
作が始まるとレチクルステージ9とウエハーステージ1
4が照明光7の照射方向に対して垂直方向に連動して動
きだし、照明光7の光束上を走査してレチクル8上のパ
ターンをウエハー13面上に転写しはじめる。転写中の
一時期にホトセンサー10が照明光7の光束を検出でき
るタイミングがあり、所定のサンプリング時間間隔tご
とに逐時各位置に対応する照度を計測する。このときの
露光動作による各照度データをUiとする。また、ホト
センサー10が照度を検出する時間と同時刻に逐時照度
計5で照明光3の照度を検出する。このときの各照度デ
ータをLiとする。
In the present embodiment, as a procedure for measuring the illuminance unevenness, first, when the exposure operation for one chip exposure area on the wafer 13 starts, the reticle stage 9 and the wafer stage 1
4 starts to move in a direction perpendicular to the irradiation direction of the illumination light 7, and scans the luminous flux of the illumination light 7 to start transferring the pattern on the reticle 8 onto the surface of the wafer 13. There is a timing at which the photosensor 10 can detect the luminous flux of the illumination light 7 at one time during the transfer, and the illuminance corresponding to each position is measured at every predetermined sampling time interval t. Each illuminance data by the exposure operation at this time is Ui. In addition, the illuminance of the illumination light 3 is detected by the illuminance meter 5 at the same time as the time when the photo sensor 10 detects the illuminance. Let each illuminance data at this time be Li.

【0018】照明光源に起因する光源のちらつきや照度
の経時変化の影響を排除するためにこの露光動作におけ
る各照度比率値をLiを基準値にして Ii=Ui/Li ・・・(1) で表す。
In order to eliminate the influence of the flicker of the light source due to the illumination light source and the change of the illuminance with time, each illuminance ratio value in this exposure operation is set to Li as a reference value and Ii = Ui / Li (1) Represent

【0019】1回の露光動作を実行することにより、サ
ンプリング数をNとするとN個の照度比率値Iiからな
る前記図2の照度分布曲線102に相当するような照明
光7の走査方向側における照度分布曲線が得られる。
By performing one exposure operation, assuming that the number of samplings is N, the illumination light 7 in the scanning direction side corresponds to the illuminance distribution curve 102 of FIG. 2 consisting of N illuminance ratio values Ii. An illuminance distribution curve is obtained.

【0020】ここで、この照度分布曲線のうち、照度む
らのない基準照度分布曲線をあらかじめ設定しておく。
そしてこの基準照度分布曲線のうち、前記Iiと同時刻
の各照度比率値をSIiとする。このときの照明光7の
各計測位置における照度むらの値を Di=(|Ii−SIi|)/SIi ・・・(2) とする。
Here, of these illuminance distribution curves, a reference illuminance distribution curve without unevenness in illuminance is set in advance.
Then, in this reference illuminance distribution curve, each illuminance ratio value at the same time as Ii is set as SIi. The value of the illuminance unevenness at each measurement position of the illumination light 7 at this time is Di = (| Ii-SIi |) / SIi (2).

【0021】実際のDiの値は照度むらに加えて照明光
7を生成する光学素子6に起因する照度劣化分が加味さ
れる。仮にIiに照度むら且つ照度劣化分がないとする
とIiとSIiの値は同じになり、Di=0となる。
In addition to the illuminance unevenness, the actual value of Di takes into consideration the illuminance deterioration caused by the optical element 6 that generates the illumination light 7. If Ii has uneven illuminance and there is no illuminance deterioration, the values of Ii and SIi are the same, and Di = 0.

【0022】また、露光装置にはあらかじめ実際の露光
動作に影響する各照度むらの許容値MAX(Di)を設
定しておく。一般に照度むら値は急激に変化するわけで
はなく、長時間露光動作を繰り返し実行していくうちに
次第に変化していく。
Further, the exposure apparatus is set in advance with an allowable value MAX (Di) of each illuminance unevenness that affects the actual exposure operation. Generally, the uneven illuminance value does not change rapidly, but gradually changes as the long-time exposure operation is repeatedly executed.

【0023】ここで、 Di>|MAX(Di)−Ki−Ji| (Kiは各計測位置における一定値) (Jiは前記の各計測位置における照度劣化分) になると照度むらが許容値に近づいたものと予測して、
露光動作中直ちに露光装置にその旨を知らせる。
Here, when Di> | MAX (Di) -Ki-Ji | (Ki is a constant value at each measurement position) (Ji is the illuminance deterioration amount at each measurement position), the illuminance unevenness approaches the allowable value. Predicting that
Immediately during the exposure operation, the exposure apparatus is informed accordingly.

【0024】また、1回の露光動作で左右1対2個のホ
トセンサーによって光束7の左右両端の2ケ所の照明光
7の照度値が同時に求められる。このときの露光動作に
よる左右の各照度データをそれぞれUli、Uriとす
る。このとき前記図2の照度分布曲線103に相当する
ような、照明光7の走査方向と垂直な方向における照度
分布曲線のうち、左右2端の照度値が得られる。
Further, the illuminance values of the illumination light 7 at the two left and right ends of the light beam 7 are simultaneously obtained by one-to-two photosensors on the left and right sides in one exposure operation. The left and right illuminance data resulting from the exposure operation at this time are Uli and Uri, respectively. At this time, the illuminance values at the right and left ends of the illuminance distribution curve in the direction perpendicular to the scanning direction of the illumination light 7 that corresponds to the illuminance distribution curve 103 in FIG. 2 are obtained.

【0025】次に、前記の式(1)と同様にLiを基準
値にして左右2端の照度比率値をそれぞれ、 Ili=Uli/Li ・・・(3) Iri=Uri/Li ・・・(4) で表す。
Next, similarly to the above formula (1), the illuminance ratio values at the two right and left ends are set with Li as a reference value, Ili = Uli / Li (3) Iri = Uri / Li. It is represented by (4).

【0026】ここで、両者の差分Eiをとって、 Ei=|Ili−Iri| ・・・(5) として、この値を照度むらの値とする。仮に照度むらが
ないとするとホトセンサー10による左右の照度比率値
の差分EiはEi=0となる。
Here, the difference Ei between the two is taken, and Ei = | Ili-Iri | (5), and this value is taken as the value of uneven illuminance. If there is no unevenness in illuminance, the difference Ei between the left and right illuminance ratio values by the photosensor 10 is Ei = 0.

【0027】ここで露光装置に、あらかじめ実際の露光
動作に影響する許容値MAX(Ei)を設定しておく。
即ち、 Ei>|MAX(Ei)−Mi| ・・・(6) (Miは各計測位置における一定値)であると照明光7
の照度値が許容値に近づいたものと予測して、露光動作
中直ちに露光装置にその旨を知らせる。露光装置は前記
各照度むらの値DiもしくはEiが許容値外にあるとい
う通知を受けると、この状況をオペレータに通知して露
光動作を中断するようになっている。また、本発明の露
光装置はあらかじめオペレーションコンソール(図示せ
ず)から特定の設定を行うことにより、上記露光動作の
中断はせずにオペレータに通知をするだけの機能にして
用いる事も可能となっている。
Here, the allowable value MAX (Ei) which affects the actual exposure operation is set in advance in the exposure apparatus.
That is, if Ei> | MAX (Ei) -Mi | (6) (where Mi is a constant value at each measurement position), the illumination light 7
It is predicted that the illuminance value of is approaching the allowable value, and the exposure apparatus is immediately notified during the exposure operation. When the exposure apparatus receives the notification that the value Di or Ei of the uneven illuminance is outside the allowable value, it notifies the operator of this situation and interrupts the exposure operation. Further, the exposure apparatus of the present invention can be used with a function of notifying the operator without interrupting the exposure operation by making a specific setting in advance from an operation console (not shown). ing.

【0028】ウェハーステージ14上のウエハー13の
外部に走査方向に沿って露光領域長(スリット幅)をカ
バーする照度むら測定用センサー素子アレイを配置し、
実露光前後にウエハー13を照射する光の走査方向の強
度分布(即ちウエハー13上に照度分布)を得る際に、
レチクルステージ上のホトセンサー10を利用できる。
Outside the wafer 13 on the wafer stage 14, a sensor element array for illuminance unevenness measurement is arranged along the scanning direction to cover the exposure area length (slit width),
When obtaining the intensity distribution in the scanning direction of the light irradiating the wafer 13 before and after the actual exposure (that is, the illuminance distribution on the wafer 13),
The photo sensor 10 on the reticle stage can be used.

【0029】センサー素子アレイで光強度分布を測定す
る場合、各センサー素子間の感度のばらつき補正しなけ
れば正確に照度分布曲線が描けない。そこで前記レチク
ルステージ上のミラー11をハーフミラーとし、レチク
ルステージ9を移動させることによりホトセンサー10
を各センサー素子の位置に対応する位置に位置付け、ホ
トセンサー10でハーフミラーからの反射光を検出しな
がらセンサー素子アレイでハーフミラーからの透過光を
検出することにより、ホトセンサー10の出力を基準と
して各センサー素子間の感度のばらつきを計測する。
When measuring the light intensity distribution with the sensor element array, the illuminance distribution curve cannot be accurately drawn unless the variation in the sensitivity between the sensor elements is corrected. Therefore, the mirror 11 on the reticle stage is set to a half mirror, and the reticle stage 9 is moved to move the photo sensor 10
Is positioned at a position corresponding to the position of each sensor element, and the sensor element array detects the transmitted light from the half mirror while detecting the reflected light from the half mirror by the photo sensor 10, and the output of the photo sensor 10 is used as a reference. As a result, the variation in sensitivity between the sensor elements is measured.

【0030】[0030]

【発明の効果】本発明によれば、実露光動作中に照度む
らを測定でき、従って直ちに照度むらが許容値を越える
ことを検出できる。従って 続く露光におけるウエハー
上の露光パターンの欠陥を未然に防止することができ
る。さらに実露光工程以外での照度むら計測を省略で
き、装置のスループットを低下させないという効果があ
る。
According to the present invention, the illuminance unevenness can be measured during the actual exposure operation, and therefore, it can be immediately detected that the illuminance unevenness exceeds the allowable value. Therefore, it is possible to prevent defects in the exposure pattern on the wafer in the subsequent exposure. Further, it is possible to omit the measurement of the illuminance unevenness in the steps other than the actual exposure step, and there is an effect that the throughput of the apparatus is not reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した露光装置の主要概略図。FIG. 1 is a main schematic diagram of an exposure apparatus embodying the present invention.

【図2】スリット形状をした照明光の照度分布図。FIG. 2 is an illuminance distribution diagram of illumination light having a slit shape.

【符号の説明】[Explanation of symbols]

1 照明光源 2 光学変換器 3 照明光 4 ミラー 5 照度計 6 照明系内光学素子 7 照明光 8 レチクル 9 レチクルステージ 10 ホトセンサー 11 ミラー 12 縮小投影光学系 13 ウエハー 14 ウエハーステージ 1 Illumination Light Source 2 Optical Converter 3 Illumination Light 4 Mirror 5 Illuminometer 6 Illumination System Optical Element 7 Illumination Light 8 Reticle 9 Reticle Stage 10 Photosensor 11 Mirror 12 Reduced Projection Optical System 13 Wafer 14 Wafer Stage

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 露光光によりレチクルのパターンを介し
てウエハを露光する露光装置において、ウエハーへの実
露光動作中に露光光の強度分布(照度分布)を計測する
手段を備える事を特徴とする露光装置。
1. An exposure apparatus for exposing a wafer with exposure light through a pattern of a reticle, comprising means for measuring an intensity distribution (illuminance distribution) of the exposure light during an actual exposure operation on the wafer. Exposure equipment.
【請求項2】 前記実露光が前記露光光に対して前記レ
チクルとウエハを走査することにより行なわれることを
特徴とする請求項1の露光装置。
2. The exposure apparatus according to claim 1, wherein the actual exposure is performed by scanning the reticle and the wafer with respect to the exposure light.
【請求項3】 前記計測手段は、前記レチクルを移動す
る手段に設けられることを特徴とする請求項2の露光装
置。
3. The exposure apparatus according to claim 2, wherein the measuring unit is provided in a unit that moves the reticle.
【請求項4】 前記計測手段は、前記レチクルの移動方
向と交差する方向に前記露光光の両端部の光を受光する
受光素子を複数備えることを特徴とする請求項2、3の
露光装置。
4. The exposure apparatus according to claim 2, wherein the measuring unit includes a plurality of light receiving elements that receive light at both ends of the exposure light in a direction intersecting a moving direction of the reticle.
【請求項5】 前記計測手段は計測される各点の光強度
(照度)を前記露光光の予め決めた部分の光強度と比較
する手段を備える請求項1乃至4の露光装置。
5. The exposure apparatus according to claim 1, wherein the measuring means includes means for comparing the light intensity (illuminance) of each measured point with the light intensity of a predetermined portion of the exposure light.
【請求項6】 請求項1乃至請求項5の露光装置により
デバイスパターンを基板上に転写する段階を有すること
を特徴とするデバイス製造方法。
6. A device manufacturing method, comprising the step of transferring a device pattern onto a substrate by the exposure apparatus according to claim 1.
JP761894A 1994-01-27 1994-01-27 Exposure apparatus and manufacture of device using the same Withdrawn JPH07220989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP761894A JPH07220989A (en) 1994-01-27 1994-01-27 Exposure apparatus and manufacture of device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP761894A JPH07220989A (en) 1994-01-27 1994-01-27 Exposure apparatus and manufacture of device using the same

Publications (1)

Publication Number Publication Date
JPH07220989A true JPH07220989A (en) 1995-08-18

Family

ID=11670808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP761894A Withdrawn JPH07220989A (en) 1994-01-27 1994-01-27 Exposure apparatus and manufacture of device using the same

Country Status (1)

Country Link
JP (1) JPH07220989A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303928A (en) * 1995-07-28 1997-03-05 Nec Corp Exposure method and exposure system
EP0875790A2 (en) * 1997-04-30 1998-11-04 Svg Lithography Systems, Inc. Lamp instability detecting system
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2018531412A (en) * 2015-09-23 2018-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Method of operating a microlithographic projection apparatus and illumination system for such an apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2303928B (en) * 1995-07-28 1998-10-28 Nec Corp Exposure method and exposure system
US5999247A (en) * 1995-07-28 1999-12-07 Nec Corporation Exposure method and exposure system
GB2303928A (en) * 1995-07-28 1997-03-05 Nec Corp Exposure method and exposure system
EP0875790A2 (en) * 1997-04-30 1998-11-04 Svg Lithography Systems, Inc. Lamp instability detecting system
EP0875790A3 (en) * 1997-04-30 2000-09-13 Svg Lithography Systems, Inc. Lamp instability detecting system
US6235438B1 (en) 1997-10-07 2001-05-22 Nikon Corporation Projection exposure method and apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2018531412A (en) * 2015-09-23 2018-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー Method of operating a microlithographic projection apparatus and illumination system for such an apparatus
US10444631B2 (en) 2015-09-23 2019-10-15 Carl Zeiss Smt Gmbh Method of operating a microlithographic projection apparatus and illumination system of such an apparatus

Similar Documents

Publication Publication Date Title
JP2893778B2 (en) Exposure equipment
JP3181050B2 (en) Projection exposure method and apparatus
TWI278016B (en) System and method for automated focus measuring of a lithography tool
JP3360760B2 (en) Exposure amount unevenness measurement method, exposure method and exposure apparatus
JPH07220989A (en) Exposure apparatus and manufacture of device using the same
JPH0265222A (en) Exposure apparatus of semiconductor device
JP3762102B2 (en) Scanning projection exposure apparatus and device manufacturing method using the same
US20100103393A1 (en) Scanning exposure apparatus and device manufacturing method
JP2000003874A (en) Exposure method and aligner
JP3591922B2 (en) Light intensity measurement device
JPH01187817A (en) Aligning method
US20100007864A1 (en) Scanning exposure apparatus and method of manufacturing device
JP2000294480A (en) Method for controlling exposure, exposure system, and manufacture of device
JPH06232030A (en) Method and device for exposure
JP7114370B2 (en) Exposure apparatus and article manufacturing method
JP3376219B2 (en) Surface position detecting device and method
JPH11251218A (en) Method and device for detecting position and aligner equipped with the same
JPH11219892A (en) Scanning type exposure system and measuring method of visual field stop position
JP4029134B2 (en) Projection exposure equipment
JP3590825B2 (en) Projection exposure equipment
JP3282178B2 (en) Scanning exposure method and device manufacturing method using the method
JPH09171956A (en) Exposure system
JPH0850359A (en) Aligner
JPH0640539B2 (en) Pattern detection method and projection optical apparatus using the method
KR0161439B1 (en) Device for measuring a lens distortion of exposure apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403