JPH0697880B2 - Excitation control device for synchronous machine - Google Patents

Excitation control device for synchronous machine

Info

Publication number
JPH0697880B2
JPH0697880B2 JP62286167A JP28616787A JPH0697880B2 JP H0697880 B2 JPH0697880 B2 JP H0697880B2 JP 62286167 A JP62286167 A JP 62286167A JP 28616787 A JP28616787 A JP 28616787A JP H0697880 B2 JPH0697880 B2 JP H0697880B2
Authority
JP
Japan
Prior art keywords
signal
control
synchronous machine
power system
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62286167A
Other languages
Japanese (ja)
Other versions
JPH01129800A (en
Inventor
実 萬城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62286167A priority Critical patent/JPH0697880B2/en
Publication of JPH01129800A publication Critical patent/JPH01129800A/en
Publication of JPH0697880B2 publication Critical patent/JPH0697880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期機の励磁制御装置に係り、特に電力系統の
動態安定度向上を行なうのに好適な電力系統安定化装置
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excitation control device for a synchronous machine, and more particularly to a power system stabilizing device suitable for improving dynamic stability of a power system.

〔従来の技術〕[Conventional technology]

従来の電力系統の動態安定度向上を目的としたものに、
日立評論VoL.56,No.12(1974-12)第35頁から第40頁に
述べられているように電力動揺抑制を目的とした電力系
統安定化装置(Power System Stabilizer以下Pssと略
す)がある。
For the purpose of improving the dynamic stability of the conventional power system,
Hitachi Review VoL.56, No.12 (1974-12) As described on pages 35 to 40, a power system stabilizer (Power System Stabilizer, abbreviated as Pss) for the purpose of suppressing power fluctuation is is there.

この動作原理は次のようなものである。The operating principle is as follows.

第2図はリアクトルXe24を介して無限大母線23に接続さ
れた1つの同期機22を示すところの、1機無限大系と呼
ばれる系統モデルで、この電力動揺は同期機22の運転特
性と系統インピーダンスとの関係により説明される。こ
の動作を微少電力動揺について線形近似化するとトルク
ΔT及び速度Δω,相差角Δδ,端子電圧ΔVgとして第
3図に示すブロック図のように表わすことができる。こ
こでΔは変化分を示した以下同様である。第3図におい
てK1〜K6であらわされるゲイン特性のうち、K3のみが同
期機22と系統のインピーダンスのみで定まるが、残りは
全てインピーダンスの他に同期機22の運転状態によつて
変わる。そこで同期機22の運動を振動系として取扱い相
差角δと同相の同期化トルクΔTs及び速度Δωと同相の
制動トルクΔTdで表わせば第4図に示したブロツク図と
なり、その振動特性は振動周波数 制動特性ρを有し、次式で示される。
Fig. 2 shows one synchronous machine 22 connected to the infinite bus 23 via the reactor Xe24, which is a system model called a one-machine infinity system. It is explained in relation to the impedance. When this operation is linearly approximated to the minute electric power fluctuation, it can be expressed as the torque ΔT and the speed Δω, the phase difference angle Δδ, and the terminal voltage ΔVg as shown in the block diagram of FIG. Here, Δ is the same as the change amount. Of the gain characteristics represented by K 1 to K 6 in FIG. 3, only K 3 is determined only by the impedance of the synchronous machine 22 and the system, and the rest depends on the operating state of the synchronous machine 22 in addition to the impedance. . Therefore, if the motion of the synchronous machine 22 is treated as an oscillating system, the phase difference angle δ and the in-phase synchronizing torque ΔTs and the speed Δω and the in-phase braking torque ΔTd represent the block diagram shown in FIG. It has a braking characteristic ρ and is expressed by the following equation.

ここで S:微分演算子(d/dt) D:制動トルク係数 K1 :同期化トルク係数 M:同期機の慣性定数 ω :ベース回転角速度 通常この角周波数ωは5〜10rad/s程度であり系統構
成が大きく変つてもせいぜい2〜20rad/s程度である。
第4図においてK1はd軸鎖交磁束ΔEq′一定のとき相差
角の変化分に対する同期機固有の電気トルクの変化係数
であり、K1′は励磁制御系から発生する電気トルク係数
である。一方同期化トルクと90度位相が異なり回転速度
と同相の信号としたフイードバツクされる電気トルク係
数には制御係数Dとして表わされる同期機固有の係数と
励磁制御による制動トルク係数D′がある。
Where S: Differential operator (d / dt) D: Braking torque coefficient K 1 : Synchronous torque coefficient M: Synchronous machine inertia constant ω 0 : Base rotational angular velocity Normally, this angular frequency ω n is about 5 to 10 rad / s Therefore, even if the system configuration changes greatly, it is at most 2 to 20 rad / s.
In FIG. 4, K 1 is a coefficient of change in electric torque peculiar to the synchronous machine with respect to a change in phase difference angle when d-axis interlinkage magnetic flux ΔEq ′ is constant, and K 1 ′ is an electric torque coefficient generated from the excitation control system . On the other hand, the electric torque coefficient that is fed back as a signal that is 90 degrees out of phase with the synchronizing torque and in phase with the rotational speed includes a coefficient unique to the synchronous machine represented as a control coefficient D and a braking torque coefficient D'by excitation control.

このうちK1′は通常の機器定数の範囲ではK1の10〜20%
以下であり、これが負値となつても余り問題とならない
が、D′はDと同じ大きさの負値となり得るのでD+
D′<0となるとその振動は発散系となり動態安定度が
失われることが考えられる。そこで動態安定度の確保の
ためには、負の制動トルクを補償するように正の制動ト
ルクを加えることが必要であり、このためには同期機の
相差角Δδの動揺信号を検出し、ゲイン及び位相を調整
し電圧制御系へ補正信号として与え、励磁系の制動トル
クを増加させる制御を行なえば良く、これを行なうのが
Pssである。
Of these, K 1 ′ is 10 to 20% of K 1 within the range of normal device constants.
It is the following, and it does not matter much if it is a negative value, but D'can be a negative value of the same magnitude as D, so D +
When D '<0, it is considered that the vibration becomes a divergent system and the dynamic stability is lost. Therefore, in order to secure the dynamic stability, it is necessary to apply a positive braking torque so as to compensate for the negative braking torque. For this purpose, the fluctuation signal of the phase difference angle Δδ of the synchronous machine is detected and the gain is increased. And the phase is adjusted and given as a correction signal to the voltage control system so as to increase the braking torque of the excitation system.
It is Pss.

第4図に戻り以上の考えを整理すると、動態安定度の向
上を行なうためには相差角動揺Δδに対する励磁系トル
クΔTexが角周波数Δωに同相のほぼ90度進み又は−Δ
δに対して90度遅れとなる電圧一定制御系AVRの制御を
行なえば良いことがわかる。次に第3図から同期機の界
磁電圧ΔVfと励磁系トルクΔTexとの関係を求めると となる。ここで電機子反作用による効果K4・ΔδはΔVf
と比較し小さな値であるので無視している。(1)式に
おいてK3・Tdo′は通常数秒のオーダであり及び通常の
電力動揺角周波数が2〜20red/Sの範囲内であることを
考えると励磁系トルクΔTexは界磁電圧ΔVfに対しほぼ9
0度遅れることがわかる。
Returning to FIG. 4, summarizing the above idea, in order to improve the dynamic stability, the excitation system torque ΔTex with respect to the phase difference angular fluctuation Δδ leads the angular frequency Δω by approximately 90 degrees in phase or −Δ.
It can be seen that the constant voltage control system AVR, which is delayed by 90 degrees with respect to δ, should be controlled. Next, when the relationship between the field voltage ΔVf of the synchronous machine and the excitation system torque ΔTex is calculated from FIG. Becomes Here, the effect of armature reaction K 4 · Δδ is ΔVf
Since it is a small value compared to, it is ignored. In the equation (1), K 3 · Tdo ′ is usually on the order of several seconds, and considering that the normal power fluctuation angle frequency is within the range of 2 to 20 red / S, the excitation system torque ΔTex is relative to the field voltage ΔVf. Almost 9
You can see that it is delayed by 0 degrees.

以上の位相関係を相差角Δδとともにベクトル表示する
と第5図と第6図の関係を得る。励磁系トルクΔTexは
軸回転速度Δωにほぼ同相か遅れ気味となるように、即
ち斜線領域になるように制御を行なえば良いことにな
る。図中ΔTex′はΔωに対するΔTexの許容最大位相遅
れを示している。さらに(1)式からΔVfはΔTexより9
0度進みの位置にあるので、最適な制動トルクを得るた
めにはΔVfがΔδと180度あるいはΔVfと(−Δδ)が
ほぼ同相となるよう制御を行なえば良いことがわかる。
When the above phase relationship is vector-displayed together with the phase difference angle Δδ, the relationships shown in FIGS. 5 and 6 are obtained. The excitation system torque ΔTex should be controlled so that it is in phase with or lagging behind the shaft rotation speed Δω, that is, in the shaded region. In the figure, ΔTex ′ indicates the maximum allowable phase delay of ΔTex with respect to Δω. Furthermore, from equation (1), ΔVf is 9 from ΔTex.
Since it is at the position advanced by 0 °, it is understood that ΔVf should be controlled so that ΔVf is 180 ° with Δδ or ΔVf and (−Δδ) are almost in phase to obtain the optimum braking torque.

以上がPssの動作原理についての説明である。The above is the explanation of the operating principle of Pss.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、電力系統安定化装置の制御安定数を所
定の系統構成に合せ固定的定数として設定するものであ
り、又特開昭61-15599号公報に記載のように系統構成及
び負荷状態に応じブロツクを選択することで最適な特性
を実現しようとするものがあるが、パラメータがステツ
プ状に変化するため必ずしも最適ではないこと、又系統
構成がプラント計画時点における机上検討を越えるケー
スの場合、不安定な制御となるなどの問題点を有してい
た。
The above-mentioned prior art is to set the control stability number of the power system stabilizing device as a fixed constant in accordance with a predetermined system configuration, and as described in JP-A-61-15599, the system configuration and load state. There are some that try to realize the optimum characteristics by selecting the block according to the above, but it is not necessarily optimum because the parameters change stepwise, and in the case where the system configuration exceeds the desk study at the time of plant planning. However, there were problems such as unstable control.

本発明の目的は、電力系統の状態に応じて常に最適な動
態安定度向上を行なうために、ゲイン制御を行なうゲイ
ン制御信号を電力系統の状態に応じ最適に自動調整を行
ない、更に位相制御における位相制御信号も電力系統の
状態に応じ最適に自動調整する同期機の励磁制御装置を
提供することにある。
An object of the present invention is to automatically and optimally adjust a gain control signal for performing gain control according to the state of the power system in order to always improve the optimal dynamic stability according to the state of the power system. An object of the present invention is to provide an excitation control device for a synchronous machine that automatically and optimally adjusts the phase control signal according to the state of the power system.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、同期機の端子電圧と設定端子電圧との偏差
信号に対応して前記同期機の界磁量を定め前記端子電圧
を制御する端子電圧一定制御手段を備える同期機の励磁
制御装置において、前記同期機の有効電力値を検出し該
有効電力値に所定のゲイン制御と位相制御を施した電力
系統安定化信号を出力する電力系統安定化手段と、該電
力系統安定化信号と前記偏差信号との比率を所定の値と
するゲイン制御信号を演算し前記ゲイン制御の制御信号
として出力する出力比率制御手段と、を備え前記偏差信
号に前記電力系統安定化信号を加え、前記電力系統安定
化信号のゲインを前記出力比率制御手段の出力によって
自動変更することを特徴とする同期機の励磁制御装置と
すること、又は電力系統安定化手段と出力比率制御手段
とを備えた該同期機の励磁制御装置に前記同期機の界磁
電圧と前記偏差信号と前記有効電力値とを入力し該界磁
電圧と前記偏差信号とから前記電力系統安定化信号が寄
与した界磁電圧成分を演算し該界磁電圧成分と前記有効
電力値との位相差を所定の値とする位相制御信号を演算
し前記位相制御の制御信号として出力する位相差制御手
段を付加し、前記電力系統安定化信号の位相を前記位相
差制御手段の出力によって自動変更することを特徴とす
る同期機の励磁制御装置とすることで達成される。
In the excitation control device for a synchronous machine, the object is to provide terminal voltage constant control means for controlling the terminal voltage by determining a field amount of the synchronous machine in response to a deviation signal between a terminal voltage of the synchronous machine and a set terminal voltage. , A power system stabilizing means for detecting an active power value of the synchronous machine and outputting a power system stabilizing signal obtained by subjecting the active power value to predetermined gain control and phase control, the power system stabilizing signal and the deviation An output ratio control means for calculating a gain control signal having a ratio with a signal as a predetermined value and outputting the gain control signal as a control signal for the gain control, and adding the power system stabilizing signal to the deviation signal to stabilize the power system. An excitation control device for a synchronous machine, characterized in that the gain of a signal to be converted is automatically changed by the output of the output ratio control means, or the synchronization including a power system stabilizing means and an output ratio control means The field voltage of the synchronous machine, the deviation signal, and the active power value are input to the excitation control device, and the field voltage component contributed by the power system stabilization signal is calculated from the field voltage and the deviation signal. A phase difference control means for calculating a phase control signal having a predetermined value as a phase difference between the field voltage component and the active power value and outputting it as a control signal for the phase control is added, and the power system stabilization signal is added. Is automatically changed by the output of the phase difference control means to achieve the excitation control device for the synchronous machine.

〔作用〕[Action]

前記構成において、電力系統安定化手段は同期機の有効
電力値を検出して所定のゲイン制御と位相制御を施した
電力系統安定化信号を出力し、前記同期機の端子電圧と
設定端子電圧との偏差信号に加え、その補正された偏差
信号に対応して端子電圧一定制御手段は界磁量を定め前
記端子電圧の制御をし、出力比率制御手段は前記電力系
統安定化信号と補正前の前記偏差信号との比率を所定の
値とする前記ゲイン制御を行なうゲイン制御信号を演算
出力し、更に位相差制御手段は前記同期機の界磁電圧と
補正前の前記偏差信号とから前記電力系統安定化信号が
寄与した界磁電圧成分を演算して前記位相制御が該界磁
電圧成分と前記有効電力値との位相差を所定の値とする
位相差制御信号を演算出力する。
In the above configuration, the power system stabilizing means detects the active power value of the synchronous machine, outputs a power system stabilizing signal subjected to predetermined gain control and phase control, and outputs the terminal voltage and the set terminal voltage of the synchronous machine. In addition to the deviation signal, the terminal voltage constant control means determines the field amount in response to the corrected deviation signal and controls the terminal voltage, and the output ratio control means controls the power system stabilization signal and the uncorrected signal. A gain control signal for performing the gain control in which the ratio with the deviation signal is set to a predetermined value is arithmetically output, and the phase difference control means further calculates the power system from the field voltage of the synchronous machine and the deviation signal before correction. The field voltage component contributed by the stabilizing signal is calculated, and the phase control calculates and outputs a phase difference control signal that sets the phase difference between the field voltage component and the active power value to a predetermined value.

〔実施例〕〔Example〕

以下、本発明による一実施例を第1図により説明する。 An embodiment according to the present invention will be described below with reference to FIG.

第1図はサイリスタ20を用いた静止形励磁装置の構成を
示す図である。
FIG. 1 is a diagram showing the configuration of a static excitation device using a thyristor 20.

同期機22の端子電圧V101を計器用変成器PT25で降圧した
端子電圧Vg102と自動電圧調整装置AVR(端子電圧一定制
御手段)26の電圧設定値Vref(設定端子電圧)103との
偏差信号ε104を検出する。偏差信号ε104を増幅器
AMP1にて増幅し、さらに自動パルス位相器APPS2にてサ
イリスタゲード制御用パルスを発生させ、これによりサ
イリスタ20の出力電圧すなわち同期機22の界磁電圧Vf
(界磁量)109を制御し同期機22の端子電圧を一定に制
御する。また、電力系統の動態安定度向上を計るため有
効電力Pg111を計器変成器PT25と計器用変流器CT27を介
し電力変換器3にて検出し、これに適正なゲイン・位相
制御を施したPss出力信号Vpss(電力系統安定化信号)1
05をAVR26の信号加算回路28へ補助信号として与える電
力系統安定化装置Pss(電力系統安定化手段)30を有し
ている。
Deviation signal ε 1 between the terminal voltage Vg102 obtained by stepping down the terminal voltage V101 of the synchronous machine 22 by the voltage transformer PT25 and the voltage set value Vref (set terminal voltage) 103 of the automatic voltage regulator AVR (terminal voltage constant control means) 26. Detect 104. Amplifier the deviation signal ε 1 104
It is amplified by AMP1 and the thyristor gated control pulse is generated by the automatic pulse phaser APPS2, which causes the output voltage of the thyristor 20, that is, the field voltage Vf of the synchronous machine 22.
(Field amount) 109 is controlled to control the terminal voltage of the synchronous machine 22 to be constant. Also, in order to improve the dynamic stability of the power system, the active power Pg111 is detected by the power converter 3 via the instrument transformer PT25 and the instrument current transformer CT27, and Pss with appropriate gain and phase control is applied to this. Output signal Vpss (power system stabilization signal) 1
It has a power system stabilizing device Pss (power system stabilizing means) 30 which supplies 05 to the signal adding circuit 28 of the AVR 26 as an auxiliary signal.

まず、ゲイン制御について説明する。AVR26の偏差信号
ε104にPss30の出力信号Vpss105とを加えた補正後の
偏差信号ε106とVpss105とをそれぞれ絶対値検出回路
10a,10bとピーク値検出回路11a,11bとを介し絶対値のピ
ーク値を検出しさらに|ε|ピーク値には演算器12で
K1倍した値を得る。|ε・K1|ピーク値と|Vpss|ピー
ク値との偏差を一次遅れ回路13でリツプル分を除去し不
感帯回路17aを介してPss30のゲイン制御回路Kpss4のゲ
イン制御信号107として与える。ゲイン制御信号107が正
のときはPss30のゲインを上げ、負のときはPss30のゲイ
ンを下げる自動調整を行なうことにより、補正後の偏差
信号ε106に含まれるPss30の成分、Vpss105を常に一
定比率とすることができる。このように絶対値検出回路
10a,10bとピーク値検出回路11a,11bと演算器12と一次遅
れ回路13と不感帯回路17aとを備えた出力比率制御回路
(出力比率制御手段)32で、系統条件の変化,潮流条件
の変化などにより電圧変動ΔVgが大きくなつても常にこ
れを上廻るPss30の出力信号Vpss105を確保することがで
きる。ここにΔは変化分を示し以下同様とする。また補
正後の偏差信号ε106に含まれるPss30の出力信号Vpss
105の比率を一定とすることができ、以上の制御を行な
うことで、電力動揺に対する最適なPssゲインの自動チ
ユーニングができる。
First, the gain control will be described. Absolute value detection circuit for the corrected deviation signal ε 2 106 and Vpss 105 by adding the output signal Vpss 105 of Pss 30 to the deviation signal ε 1 104 of AVR26, respectively.
The peak value of the absolute value is detected via 10a, 10b and the peak value detection circuits 11a, 11b, and the | ε 2 |
Get the value multiplied by K 1 . The deviation between the | ε 2 · K 1 | peak value and the | Vpss | peak value is removed as ripples by the first-order delay circuit 13 and given as a gain control signal 107 of the gain control circuit Kpss4 of the Pss30 via the dead zone circuit 17a. When the gain control signal 107 is positive, the gain of Pss30 is increased, and when it is negative, the gain of Pss30 is decreased. By performing automatic adjustment, the Pss30 component and Vpss105 included in the corrected deviation signal ε 2 106 are always constant. It can be a ratio. Thus the absolute value detection circuit
An output ratio control circuit (output ratio control means) 32 including 10a and 10b, peak value detection circuits 11a and 11b, a calculator 12, a first-order delay circuit 13 and a dead zone circuit 17a, changes in system conditions and power flow conditions. Therefore, even if the voltage variation ΔVg becomes large, the output signal Vpss105 of Pss30 that always exceeds this can be secured. Here, Δ represents a change amount, and the same applies hereinafter. Also, the output signal Vpss of Pss30 included in the corrected deviation signal ε 2 106
The ratio of 105 can be made constant, and by performing the above control, automatic tuning of the optimum Pss gain with respect to power fluctuation can be performed.

次に、位相制御について説明する。従来技術のPss30の
動作原理の説明にもあるように、最適な制動トルクを得
るためには界磁電圧ΔVf108が相差角動揺Δδと180度あ
るいはΔVf108と(−Δδ)がほぼ同相となるような制
御を行なえば良い。しかしながらΔVf108には第3図の
ブロツク図からあきらかなように電圧制御系の電圧振動
モードも含むため、Pss出力信号Vpss105による電力動揺
モードと混合した複合信号となる。このため上記の位相
制御を行なうためには、ΔVf108に含まれるVpss105の動
揺成分(電力系統安定化信号寄与界磁電圧成分以下ΔVf
pss110と呼ぶ)、即ち系統動揺信号成分ΔVfpss110のみ
を検出し、このΔVfpss110とΔδとの位相を約180度と
なるよう制御する必要がある。
Next, the phase control will be described. As described in the operating principle of the Pss30 of the prior art, in order to obtain the optimum braking torque, the field voltage ΔVf108 is such that the phase difference angular fluctuation Δδ is 180 degrees or ΔVf108 and (−Δδ) are almost in phase. It suffices to control it. However, since ΔVf108 includes the voltage oscillation mode of the voltage control system as is apparent from the block diagram of FIG. 3, it becomes a composite signal mixed with the power oscillation mode by the Pss output signal Vpss105. Therefore, in order to perform the above phase control, the fluctuation component of Vpss105 included in ΔVf108 (equal to or less than ΔVf
It is necessary to detect only the system fluctuation signal component ΔVfpss110 and control the phase of this ΔVfpss110 and Δδ to be about 180 degrees.

有効電力Pg111を電力変換器3にて検出し、これを不完
全微分回路14aを介して有効電力Pg111の変化分ΔPg112
を得る。同様にして同期機22の界磁電圧Vf109から不完
全微分回路14bを介して界磁電圧変動ΔVf108を得る。こ
のΔVf108と同期機22の端子電圧を一定に制御するAVR26
の偏差信号ε104をAVRモデル15に入力し、Pss出力信
号Vpss105を直接含まない同期機22の界磁電圧シミユレ
ーシヨン値ΔVfε113を検出する。このΔVf108とΔVf
ε113との偏差をとることによりPss30による同期機22
の界磁電圧成分ΔVfpss110を検出する。次に位相差検出
回路16で系統の電力動揺信号のひつでであるΔPg112と
ΔVfpss110との位相差を検出する。この位相差を位相差
設定値θref114と比較し、この位相偏差Δθ115を不感
帯回路17bを介してΔθ115の絶対値が一定以上のとき、
Δθ114の符号に従つてPss30の位相制御回路θpss5の位
相制御信号116として与えられPss30の位相を増減し、Δ
θ114が零となるような制御をする。ここで位相検出回
路16は有効電力ΔPg112及びΔVfpss110の絶対値が一定
以下のときはOFFし、一定以上でONする補助リレーを有
している。即ちΔPg112及びΔVfpss110の絶対値が小さ
いとき、つまり電力動揺が発生していないときには位相
制御信号を切離すものである。このようにAVRモデル15
と不完全微分回路14a,14bと位相差検出回路16と不感帯
回路17aとを備えた位相差制御回路(位相差制御手段)3
3によつて、電力動揺に対する最適な位相制御定数を自
動チユーニングすることができる。
The active power Pg111 is detected by the power converter 3, and this is detected as a change ΔPg112 of the active power Pg111 via the incomplete differentiation circuit 14a.
To get Similarly, the field voltage variation ΔVf108 is obtained from the field voltage Vf109 of the synchronous machine 22 via the incomplete differentiation circuit 14b. AVR26 that constantly controls the terminal voltage of this ΔVf108 and synchronous machine 22
The deviation signal ε 1 104 is input to the AVR model 15 to detect the field voltage simulation value ΔVf ε 1 113 of the synchronous machine 22 that does not directly include the Pss output signal Vpss 105. This ΔVf 108 and ΔVf
Synchronous machine with Pss30 by taking the deviation from ε 1 113
The field voltage component ΔVfpss110 of is detected. Next, the phase difference detection circuit 16 detects the phase difference between ΔPg112 and ΔVfpss110, which is the peak of the power fluctuation signal of the system. This phase difference is compared with the phase difference set value θref114, and when the absolute value of Δθ115 is equal to or larger than a certain value of this phase deviation Δθ115 via the dead band circuit 17b,
According to the sign of Δθ114, it is given as the phase control signal 116 of the phase control circuit θpss5 of Pss30 to increase or decrease the phase of Pss30, and Δ
The control is performed so that θ114 becomes zero. Here, the phase detection circuit 16 has an auxiliary relay that turns off when the absolute values of the active powers ΔPg112 and ΔVfpss110 are below a certain level, and turns on above the certain level. That is, the phase control signal is disconnected when the absolute values of ΔPg112 and ΔVfpss110 are small, that is, when the power fluctuation does not occur. This way AVR model 15
And a phase difference control circuit (phase difference control means) 3 including the incomplete differentiation circuits 14a and 14b, the phase difference detection circuit 16 and the dead zone circuit 17a
By 3, the optimum phase control constant for power fluctuation can be automatically tuned.

以上のように本実施例によれば電力系統安定化装置のゲ
インと位相制御の定数の設定を行なう試運転時の調整
が、電圧制御系のステツプ状変化あるいは2回線送電系
統であれば、これらの1回線の入切をし過渡的な電力動
揺を発生させることでその系統における最適なPss定数
を自動設定できるため従来に比べ調整が簡略できる。又
系統構成など外部条件が変化しても定数の再設定をしな
くとも良い自動チユーニングができるといつた効果があ
る。
As described above, according to the present embodiment, if the adjustment during the trial run for setting the gain and the constant of the phase control of the power system stabilizer is the step change of the voltage control system or the two-line transmission system, these adjustments are performed. Since the optimum Pss constant in the system can be automatically set by turning on / off one line and generating a transient power fluctuation, adjustment can be simplified compared to the conventional method. Moreover, even if external conditions such as the system configuration change, automatic tuning without resetting the constant is effective.

〔発明の効果〕〔The invention's effect〕

本発明によれば、同期機の励磁制御装置において電力系
統の動態安定向上を計る電力系統安定化装置を付加し、
該電力系統安定化装置のゲイン制御と位相制御にそれぞ
れの制御の定数を自動的に調整する手段を設けたことに
より、同期機の運転状態,系統構成の変化及び励磁装置
の種類にかかわらず常に最適な動態安定度を確保するよ
うに前記電力系統安定化装置の制御定数を自動調整する
自動チユーニングができるため、試運転時の試験調整を
簡略化し、系統構成,電力潮流などの外部条件が変化し
ても定数の再設定を省略でき、電力系統の振動周期に応
じた最適制御定数に自動調整するため0.2Hz〜2Hzの広範
囲な周波数帯域の動態安定度を確保することができると
いつた優れた効果がある。
According to the present invention, in the excitation control device of the synchronous machine, a power system stabilizing device for improving dynamic stability of the power system is added,
By providing means for automatically adjusting the constants of the respective controls for the gain control and phase control of the power system stabilizing device, regardless of the operating state of the synchronous machine, changes in the system configuration, and the type of exciter, Since automatic tuning that automatically adjusts the control constants of the power system stabilizer to ensure optimum dynamic stability can be performed, test adjustment during test run can be simplified and external conditions such as the system configuration and power flow can be changed. However, the constant resetting can be omitted, and because it is automatically adjusted to the optimum control constant according to the vibration cycle of the power system, dynamic stability in a wide frequency band of 0.2 Hz to 2 Hz can be secured, which is excellent. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による一実施例の構成図、第2図は一機
無限大系統のモデル図、第3図は第2図に示したモデル
を電力動揺に関し線形近似したブロツク線図、第4図は
第3図を等価2似振動系で置き換えた図、第5図、ΔP
とΔωとΔVfの理想的なベクトル関係を示すベクトル
図、第6図は第5図を波形表現した波形図である。 4……ゲイン制御回路Kpss、5……位相制御回路θps
s、26……自動電圧調整装置AVR、30……電力系統安定化
装置Pss、32……出力比率制御回路、33……位相差制御
回路、102……端子電圧Vg、103……電圧設定値Vref、10
4……偏差信号ε、105……Pss出力信号Vpss、107……
ゲイン制御信号、109……界磁電圧Vf、110……系統動揺
信号成分ΔVfpss、111……有効電力Pg、116……位相制
御信号。
FIG. 1 is a configuration diagram of an embodiment according to the present invention, FIG. 2 is a model diagram of a one-machine infinity system, and FIG. 3 is a block diagram in which the model shown in FIG. FIG. 4 is a diagram in which FIG. 3 is replaced by an equivalent two-like vibration system, FIG. 5, and ΔP
And a vector diagram showing an ideal vector relationship between Δω and ΔVf, and FIG. 6 is a waveform diagram representing the waveform of FIG. 4 ... Gain control circuit Kpss, 5 ... Phase control circuit θps
s, 26 …… Automatic voltage regulator AVR, 30 …… Power system stabilizer Pss, 32 …… Output ratio control circuit, 33 …… Phase difference control circuit, 102 …… Terminal voltage Vg, 103 …… Voltage setting value Vref, 10
4 …… Deviation signal ε 1 , 105 …… Pss output signal Vpss, 107 ……
Gain control signal, 109 ... field voltage Vf, 110 ... system fluctuation signal component ΔVfpss, 111 ... active power Pg, 116 ... phase control signal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】同期機の端子電圧と設定端子電圧との偏差
信号に対応して前記同期機の界磁量を定め前記端子電圧
を制御する端子電圧一定制御手段を備える同期機の励磁
制御装置において、前記同期機の有効電力値を検出し該
有効電力値に所定のゲイン制御と位相制御を施した電力
系統安定化信号を出力する電力系統安定化手段と、前記
電力系統安定化信号と前記制御信号との比率を所定の値
とするゲイン制御信号を演算し前記ゲイン制御の制御信
号として出力する出力比率制御手段とを備え、前記電力
系統安定化信号のゲインを前記出力比率制御手段の出力
によつて自動変更することを特徴とする同期機の励磁制
御装置。
1. An excitation control device for a synchronous machine, comprising terminal voltage constant control means for determining a field amount of the synchronous machine according to a deviation signal between a terminal voltage of the synchronous machine and a set terminal voltage and controlling the terminal voltage. In, a power system stabilizing means for detecting an active power value of the synchronous machine and outputting a power system stabilizing signal subjected to predetermined gain control and phase control to the active power value, the power system stabilizing signal and the An output ratio control means for calculating a gain control signal having a ratio with a control signal as a predetermined value and outputting the gain control signal as a control signal for the gain control, wherein the gain of the power system stabilizing signal is output by the output ratio control means. An excitation control device for a synchronous machine, characterized in that it is automatically changed according to.
【請求項2】同期機の端子電圧と設定端子電圧との偏差
信号に対応して前記同期機の界磁量を定め前記端子電圧
を制御する端子電圧一定制御手段を備える同期機の励磁
制御装置において、前記同期機の有効電力値を検出し該
有効電力値に所定のゲイン制御と位相制御を施した電力
系統安定化信号を出力する電力系統安定化手段と、該電
力系統安定化信号と前記偏差信号との比率を所定の値と
するゲイン制御信号を演算し前記ゲイン制御の制御信号
として出力する出力比率制御手段と、前記同期機の界磁
電圧と前記偏差信号と前記有効電力値とを入力し該界磁
電圧と前記偏差信号とから前記電力系統安定化信号が寄
与した界磁電圧成分を演算し該界磁電圧成分と前記有効
電力値との位相差を所定の値とする位相制御信号を演算
し前記位相制御の制御信号として出力する位相差制御手
段とを備え、前記電力系統安定化信号の位相を前記位相
差制御手段の出力によって自動変更することを特徴とす
る同期機の励磁制御装置。
2. An excitation control device for a synchronous machine, comprising terminal voltage constant control means for determining a field amount of the synchronous machine according to a deviation signal between a terminal voltage of the synchronous machine and a set terminal voltage and controlling the terminal voltage. In, a power system stabilizing means for detecting an active power value of the synchronous machine and outputting a power system stabilizing signal obtained by performing predetermined gain control and phase control on the active power value, the power system stabilizing signal and the An output ratio control means for calculating a gain control signal having a ratio with a deviation signal as a predetermined value and outputting the gain control signal as a control signal for the gain control, a field voltage of the synchronous machine, the deviation signal, and the active power value. Phase control in which a field voltage component contributed by the power system stabilization signal is calculated from the input field voltage and the deviation signal and the phase difference between the field voltage component and the active power value is set to a predetermined value. Of the phase control And a phase difference control means for outputting a control signal, excitation control apparatus of the synchronous machine, characterized by automatically changing the phase of said power system stabilizing signal by the output of the phase difference control means.
JP62286167A 1987-11-12 1987-11-12 Excitation control device for synchronous machine Expired - Lifetime JPH0697880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286167A JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286167A JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Publications (2)

Publication Number Publication Date
JPH01129800A JPH01129800A (en) 1989-05-23
JPH0697880B2 true JPH0697880B2 (en) 1994-11-30

Family

ID=17700811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286167A Expired - Lifetime JPH0697880B2 (en) 1987-11-12 1987-11-12 Excitation control device for synchronous machine

Country Status (1)

Country Link
JP (1) JPH0697880B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540202B2 (en) * 1989-03-01 1996-10-02 富士電機株式会社 Correction control method in multivariable control system of generator
JP2540203B2 (en) * 1989-04-11 1996-10-02 富士電機株式会社 Control system of generator excitation system
JPH08182394A (en) * 1994-07-29 1996-07-12 Kumamoto Univ Power-system stabilizing apparatus
CN1053773C (en) * 1994-11-15 2000-06-21 株式会社东芝 Power stabilizer for electric generator
JP2019079282A (en) * 2017-10-25 2019-05-23 三菱電機株式会社 Tuning device of power system stabilizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103199A (en) * 1987-10-13 1989-04-20 Mitsubishi Electric Corp Power system stabilizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103199A (en) * 1987-10-13 1989-04-20 Mitsubishi Electric Corp Power system stabilizing device

Also Published As

Publication number Publication date
JPH01129800A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
US4982147A (en) Power factor motor control system
US5650700A (en) Electric vehicle torque controller
JPH07114559B2 (en) Power system stabilizer
US4335343A (en) Circuit for generating an electric signal proportional to a flux component of a rotating-field machine
EP0227014A1 (en) Turbine helper drive apparatus
JPH0350492B2 (en)
US4980629A (en) AC-excited generator/motor apparatus
KR960001956B1 (en) Control system for controlling revolution speed of electric
JPH0697880B2 (en) Excitation control device for synchronous machine
US3465235A (en) Control of rotating exciters for power system damping
JPH1080198A (en) Generator excitation control equipment
JP2749728B2 (en) Excitation controller for synchronous machine
JPH0998600A (en) Excitation controller for generator
JP3944659B2 (en) Induction motor control device
JPH06225576A (en) Method and equipment for compensating slip of induction machine
JP2535210B2 (en) Synchronous generator automatic voltage regulator
JPH0632597B2 (en) Excitation control device for synchronous machine
JPH0638718B2 (en) Synchronous machine excitation controller
JP3495140B2 (en) Voltage control device for wound induction machine
JP3770286B2 (en) Vector control method for induction motor
JPH0568391A (en) Slip compensation circuit in vector control of induction motor
JPH0343878B2 (en)
SU1246239A1 (en) Versions of device for controlling asynchronized electromechanical frequency converter
JPH08237867A (en) Controller for power converter
JP2001103668A (en) System-stabilizing device