JPH0632597B2 - Excitation control device for synchronous machine - Google Patents

Excitation control device for synchronous machine

Info

Publication number
JPH0632597B2
JPH0632597B2 JP58047093A JP4709383A JPH0632597B2 JP H0632597 B2 JPH0632597 B2 JP H0632597B2 JP 58047093 A JP58047093 A JP 58047093A JP 4709383 A JP4709383 A JP 4709383A JP H0632597 B2 JPH0632597 B2 JP H0632597B2
Authority
JP
Japan
Prior art keywords
signal
synchronous machine
phase
power system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58047093A
Other languages
Japanese (ja)
Other versions
JPS59173000A (en
Inventor
実 萬城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58047093A priority Critical patent/JPH0632597B2/en
Publication of JPS59173000A publication Critical patent/JPS59173000A/en
Publication of JPH0632597B2 publication Critical patent/JPH0632597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は同期機の励磁制御装置に係り特に電力系統の動
態安定度向上を行う電力系統安定化装置(PSS:Power Sys
tem Stabilizer)を付加した同期機の励磁制御装置に関
するものである。
Description: FIELD OF THE INVENTION The present invention relates to an excitation control device for a synchronous machine, and particularly to a power system stabilizing device (PSS: Power Sys) for improving dynamic stability of a power system.
The present invention relates to an excitation control device for a synchronous machine to which a tem stabilizer is added.

〔発明の背景〕[Background of the Invention]

同期機の励磁制御により電力系統の動態安定度向上を行
うための装置としては電力系統安定化装置(PSS)が
あり、実用に供されている。
As a device for improving dynamic stability of a power system by controlling excitation of a synchronous machine, there is a power system stabilizing device (PSS), which has been put to practical use.

しかしながら従来のPSSは設定値を固定する方式であ
るため、限られた範囲の運転状態・系統構成及び高速応
の励磁装置でしか電力系統の動態安定度を改善すること
ができないため、最近の複雑化する電力系統の要求に十
分対応できなくなつてきた。
However, since the conventional PSS is a system in which the set value is fixed, the dynamic stability of the power system can be improved only by a limited range of operating conditions / system configuration and a high-speed exciter. It has become difficult to meet the demands of the changing power system.

従来の励磁装置を第1図に示したサイリスタ励磁方式を
例にとつて説明する。
A conventional excitation device will be described by taking the thyristor excitation method shown in FIG. 1 as an example.

同期機Gの端子電圧Vを計器用変成器PTにて降圧
し、これを電圧設定装置(図示せず)の設定値Vref
と比較し、得た偏差を増幅器1で増幅した後、自動パル
ス位相器2にて増幅器出力に応じて移相したパルスを発
生する。このパルスを用いてサイリスタTHYの点弧角
を制御し、同期機の界磁電圧Vを調整する。このよう
に、端子電圧Vを一定になるような制御、即ち端子電
圧一定制御を行つている。しかし端子電圧一定制御のみ
では、電力系統の動態安定度を損うことが多く、電力系
統安定化装置PSSが必要となる。
The terminal voltage V g of the synchronous machine G is stepped down by the instrument transformer PT, and this is set by the voltage setting device (not shown) V ref.
The obtained deviation is amplified by the amplifier 1 and then the automatic pulse phase shifter 2 generates a pulse phase-shifted according to the amplifier output. This pulse is used to control the firing angle of the thyristor THY and adjust the field voltage V f of the synchronous machine. In this way, the terminal voltage V g is controlled to be constant, that is, the terminal voltage is controlled to be constant. However, only the constant terminal voltage control often impairs the dynamic stability of the power system, and thus requires the power system stabilizing device PSS.

第1図に示したPSSは電力動揺の情報を提供する信号
(以下、電力系統安定化信号と呼ぶ)として、例えば同
期機の有効電力Pを使用する例を示している。電力系統
安定化信号としては、この他に軸回転速度あるいは周波
数の信号をも採用できる。電力変換器3により有効電力
Pを検出し、これを不完全微分回路4にて直流分を除去
し、さらにこの信号を増幅器5、位相調整回路6により
ゲイン・位相調整し、この出力を電圧偏差信号(V
ref−V)の補正信号として与え、動態安定度の向
上を行う。
The PSS shown in FIG. 1 shows an example in which, for example, the active power P of the synchronous machine is used as a signal (hereinafter referred to as a power system stabilization signal) that provides information on power fluctuation. As the power system stabilization signal, a shaft rotation speed or frequency signal may also be used. The active power P is detected by the power converter 3, the direct current component is removed from the active power P by the incomplete differentiation circuit 4, the gain and phase of this signal are adjusted by the amplifier 5 and the phase adjustment circuit 6, and the output is voltage deviation. Signal (V
given as a correction signal ref -V g), performed to improve the kinetics stability.

尚、同図において、CTは電流変成器、EXTRは励磁
用変圧器、41は界磁開閉器、DRは界磁開閉器41の
開放時に界磁巻線に並列接続される抵抗である。
In the figure, CT is a current transformer, EXTR is an excitation transformer, 41 is a field switch, and DR is a resistor connected in parallel to the field winding when the field switch 41 is opened.

本図から明らかなように従来のPSSは、増幅器5のゲ
イン、位相調整回路6の位相定数を試運転時に最適値に
固定する方式のため、運転条件・系統構成が変化する
と、PSSの安定化効果が著しく損われる欠点を有して
いた。
As is clear from this figure, the conventional PSS is a method of fixing the gain of the amplifier 5 and the phase constant of the phase adjustment circuit 6 to the optimum values during the test run, so that if the operating conditions and system configuration change, the stabilizing effect of the PSS is obtained. Had a drawback that it was significantly impaired.

〔発明の目的〕[Object of the Invention]

本発明は電力系統の運用状態,系統構成等のいかんにか
かわらず電力系統安定度を確保することができる電力系
統安定化装置を備えた同期機の励磁制御装置を提供する
ことを目的とする。
An object of the present invention is to provide an excitation control device for a synchronous machine equipped with a power system stabilizing device that can ensure power system stability regardless of the operating state of the power system, the system configuration, and the like.

〔発明の概要〕[Outline of Invention]

本発明は有効電力,軸回転速度及び周波数などの電力系
統安定化信号と同期機界磁電圧の位相差が一定となるよ
うに励磁装置の制御を行うことでいかなる状況下におい
ても最適な動態安定度の確保を行う。
The present invention controls the exciting device so that the phase difference between the power system stabilizing signals such as active power, shaft rotation speed and frequency and the synchronous machine field voltage becomes constant, so that the dynamic stability is optimal under any circumstances. Secure the degree.

〔発明の実施例〕Example of Invention

以下本発明の一実施例について第7図から第9図により
説明するが、その前に第2図から第6図を用いて本発明
の理論的背景についての説明を行なう。
An embodiment of the present invention will be described below with reference to FIGS. 7 to 9, but before that, the theoretical background of the present invention will be described with reference to FIGS. 2 to 6.

第2図はリアクトルxを介して無限大母線22に接続
された1つの同期機21を示すところの、いわゆる一機
無限大系と呼ばれる系統モデルであり、その動作を微小
電力動揺について線形近似化すると、トルクΔT及び速
度Δω、位差角Δδ、端子電圧ΔVの関係として第3
図のブロツク図のように表わすことができる。第3図に
おいてK1〜K6で表わされるゲイン特性のうちK3の
みが同期機と系統のインピーダンスのみで定まるが、残
りは全てインピーダンスの他、同期機の運転状態によつ
て変わる。そこで、同期機の運動を振動系として取り扱
い位差角δと同相の同期化トルクΔT及び速度Δωと
同相の制動トルクΔTで表わせば第4図に示したブロ
ツクとなり、その振動特性は振動周波数 制動特性ρを有し、次式で示すことができる。
FIG. 2 is a so-called one-machine infinite system model showing one synchronous machine 21 connected to an infinite bus 22 via a reactor x e , and its operation is linearly approximated with respect to a minute power fluctuation. Then, the torque ΔT and the speed Δω, the displacement angle Δδ, and the terminal voltage ΔV g have a third relation as a relation.
It can be represented as a block diagram in the figure. Of the gain characteristics represented by K1 to K6 in FIG. 3, only K3 is determined only by the impedance of the synchronous machine and the system, but the rest is changed by the operating state of the synchronous machine in addition to the impedance. Therefore, if the motion of the synchronous machine is handled as a vibration system and expressed by the synchronization torque ΔT s in phase with the position difference angle δ and the braking torque ΔT D in phase with the speed Δω, the block shown in FIG. frequency It has a braking characteristic ρ and can be expressed by the following equation.

ただし 固有角振動数 減衰率 ここでS:微分演算子 D:制動トルク係数 K1:同期化トルク係数 M:発電機の慣性定数 ω:ベース回転角速度 通常この角周波数ωは7rad/s(≒11.0Hz)程度で
あり系統構成が大きく変つてもせいぜい2〜20rad/
s程度である。第4図においてK1はd軸鎖交磁束ΔE
′一定の時の相差角の変化分に対する発電機固有の電
気トルク変化係数であり、K1′は励磁制御系から発生
する電気トルク係数である。一方同期化トルクと90度
位相が異なり回転速度と同相の信号としてフイードバツ
クされる電気トルク係数には制御係数Dとして表わされ
る発電機固有の係数と励磁制御による制動トルク係数
D′がある。
However Natural angular frequency Damping ratio where S: differential operator D: braking torque coefficient K1: synchronization torque coefficient M: generator inertia constant ω 0 : base rotation angular velocity Normally, this angular frequency ω n is about 7 rad / s (≈11.0 Hz) Therefore, even if the system configuration changes significantly, at most 2-20 rad /
It is about s. In FIG. 4, K1 is the d-axis interlinkage magnetic flux ΔE
q'is an electric torque change coefficient peculiar to the generator with respect to a change in the phase difference angle when the q is constant, and K1 'is an electric torque coefficient generated from the excitation control system. On the other hand, the electric torque coefficient, which is 90 degrees out of phase with the synchronizing torque and fed back as a signal in phase with the rotational speed, includes a generator-specific coefficient represented as a control coefficient D and a braking torque coefficient D'by excitation control.

これらの係数のうちK1′は通常の機器定数の範囲では
K1の10〜20%以下であり、これが負値となつても
問題ないが、D′はDと同程度の値であるためD+D′
<0となり、その振動が発散振動となり動態安定度が失
われることが考えられる。
Of these coefficients, K1 'is 10 to 20% or less of K1 in the range of normal equipment constants, and there is no problem even if this is a negative value, but D'is a value similar to D, so D + D'
It becomes <0, and it is considered that the vibration becomes divergent vibration and the dynamic stability is lost.

そこで動態安定度の確保のためには、負の制動トルクを
補償する様に正の制動トルクを加えることが必要であ
る。
Therefore, in order to secure the dynamic stability, it is necessary to apply a positive braking torque so as to compensate the negative braking torque.

このためには同期機の相差角Δδの動揺信号を検出し、
ゲイン及び位相を調整して電圧制御系へ補正信号として
与え、励磁系の制動トルクを増加させる制御を行えば良
く、これを行うのが電力系統安定化装置PSSである。
For this purpose, the fluctuation signal of the phase difference angle Δδ of the synchronous machine is detected,
The gain and phase may be adjusted and given as a correction signal to the voltage control system to increase the braking torque of the excitation system. The power system stabilizing device PSS performs this control.

第4図に戻り以上の考えを整理すると、動態安定度の向
上を行うためには相差角動揺Δδに対する励磁系トルク
ΔTexが角周波数Δωに同相のほぼ90°進み又は−
Δδに対して90度遅れとなる電圧一定制御系AVRの
制御を行えば良いことがわかる。
Returning to FIG. 4, in order to improve the dynamic stability, in order to improve the dynamic stability, the excitation system torque ΔT ex with respect to the phase difference angular fluctuation Δδ advances to the angular frequency Δω by approximately 90 ° in phase, or −
It is understood that the constant voltage control system AVR, which is delayed by 90 degrees with respect to Δδ, may be controlled.

次に第4図から同期機の界磁電圧ΔVと励磁系トルク
ΔTexとの関係を求めると となる。ここで電機子反作用による効果K4・ΔδはΔ
と比較して小さな値であるため無視した。(1)式に
おいてK3Tdo′は通常数秒のオーダーである及び通
常の電力動揺角周波数が2〜20radの範囲であること
を考えると電気トルクΔTexは界磁電圧ΔVに対し
て常にほぼ90度遅れることがわかる。
Next, the relationship between the field voltage ΔV f of the synchronous machine and the excitation system torque ΔT ex is obtained from FIG. Becomes Here, the effect K4 · Δδ due to the armature reaction is Δ
Since it is a small value compared with V f , it was ignored. Considering that in the equation (1), K3T do ′ is usually on the order of several seconds and the normal power fluctuation frequency is in the range of 2 to 20 rad, the electric torque ΔT ex is always about 90 with respect to the field voltage ΔV f . You can see that it will be delayed.

以上の位相関係を相差角Δδとともにベクトル図表示す
ると第5図及び第6図の関係を得る。
When the above phase relationship is displayed in a vector diagram together with the phase difference angle Δδ, the relationships shown in FIGS. 5 and 6 are obtained.

励磁系トルクΔTexは軸回転速度にほぼ同相か遅れ気
味になる様、即ち斜線領域になるよう制御を行えば良
い。さらに(1)式からΔVはΔTexより90度進み
の位置にあるので、最適な制動トルクを得るためにはΔ
がΔδと180度あるいはΔVと(−Δδ)がほ
ぼ同相となるよう制御を行えば良いことがわかる。
The excitation system torque ΔT ex may be controlled so that it is almost in phase with or lagging behind the shaft rotation speed, that is, in a shaded area. Furthermore, from equation (1), ΔV f is at a position 90 degrees ahead of ΔT ex , so in order to obtain the optimum braking torque, ΔV f
V f satisfies it can be seen that it is sufficient to control such that Δδ and the 180 degrees or ΔV f (-Δδ) is substantially in phase.

第7図に発明の一実施例として界磁電圧V及び同期機
有効電力Pを使用した実施例を示す。
FIG. 7 shows an embodiment using the field voltage V f and the synchronous machine active power P as an embodiment of the invention.

まず有効電力Pを電力変換器3にて検出し、これを不完
全微分回路7を介して有効電力の変化分ΔPを得る。同
様に界磁電圧Vを7と同仕様の不完全微分回路8を用
いて界磁電圧変化分ΔVを検出する。これらの信号か
ら位相差検出装置9を用いてΔPとΔVの位相差θを
検出する。次に位相差設定値θrefとθとを比較しそ
の位相偏差Δθを得る。
First, the active power P is detected by the power converter 3, and a change ΔP in the active power is obtained via the incomplete differentiation circuit 7. Similarly, the field voltage V f is detected by using the incomplete differentiating circuit 8 having the same specifications as the field voltage V f . From these signals, the phase difference detector 9 is used to detect the phase difference θ between ΔP and ΔV f . Next, the phase difference setting value θ ref and θ are compared to obtain the phase deviation Δθ.

この位相偏差Δθを制御信号としてΔθが零となるよう
電力系統安定化装置10の位相調整回路6を制御する。
The phase deviation Δθ is used as a control signal to control the phase adjustment circuit 6 of the power system stabilizing device 10 so that Δθ becomes zero.

ここで、位相調整回路6の構成としては、従来公知の一
次遅れ進み回路を用いることができる。この回路は、位
相偏差Δθ及び増幅器5の出力であるΔPを入力し、Δ
θに応じてΔPの位相を進ませあるいは遅らせる機能を
有し、これにより、電力系統の動揺状態を抑制させるた
めの電圧偏差補正信号を作成し、端子電圧と設定値の偏
差信号に対して出力する。
Here, as the configuration of the phase adjusting circuit 6, a conventionally known first-order lag advance circuit can be used. This circuit inputs the phase deviation Δθ and the output ΔP of the amplifier 5,
It has the function of advancing or delaying the phase of ΔP according to θ, thereby creating a voltage deviation correction signal for suppressing the fluctuation state of the power system and outputting it to the deviation signal of the terminal voltage and the set value. To do.

ここで位相差検出装置9は、有効電力ΔP及び同期機界
磁電圧ΔVの振幅が一定以上の時のみONし、振幅が
一定以下の時はOFFする補助リレーを有しており、こ
のリレーの補助接点にて位相差出力Δθの信号を入切操
作し、ΔP又はΔVの振幅が小さい、即ち電力動揺が
発していないときには位相差Δθが正確に求まらないた
め、本発明の回路11を除外するものとする。
Here, the phase difference detection device 9 has an auxiliary relay that turns on only when the amplitudes of the active power ΔP and the synchronous machine field voltage ΔV f are above a certain level and turns off when the amplitude is below a certain level. When the signal of the phase difference output Δθ is turned on and off at the auxiliary contact of, and the amplitude of ΔP or ΔV f is small, that is, when the power fluctuation does not occur, the phase difference Δθ cannot be accurately obtained, and thus the circuit of the present invention. 11 shall be excluded.

以上の様な制御を行うことにより、発生した電力動揺に
対する最適なPSS位相定数を自動チューニングするこ
とができる。即ち大変手間のかかるパラメータサーベイ
をしてPSS定数を求めなくても、電圧制御系の設定電
圧のステツプ状変化、あるいは2回線送電線であればこ
れらの1回線を入り切りするなどして過渡的な電力動揺
を発生させれば、その系統における最適なPSS定数を
自動的に最適設定することが可能である。
By performing the control as described above, the optimum PSS phase constant for the generated power fluctuation can be automatically tuned. That is, even if a PSS constant is not obtained by performing a very time-consuming parameter survey, a step-like change in the set voltage of the voltage control system, or in the case of a two-line power transmission line, one of these lines is switched on and off to make a transient transition. If power fluctuation is generated, it is possible to automatically and optimally set the optimum PSS constant in the system.

本発明の要点は電力動揺の情報信号である電力系統安定
化信号と同期機界磁電圧との位相差を一定とする制御を
行えば電力系統の動態安定度の向上を実現できる点にあ
るため種々の変形例が考えられる。
The point of the present invention is that the dynamic stability of the power system can be improved by controlling the phase difference between the power system stabilizing signal, which is the power fluctuation information signal, and the synchronous machine field voltage to be constant. Various modifications are possible.

まず、使用する信号の違いによる変形例についてみる
と、電力系統安定化信号としては本実施例で示した同期
機有効出力の他、軸速度、周波数及び相差角が考えられ
る。この他第8図に示した如く同期機端子電圧と電
機子電流及び適当な横軸同期リアクタンスxを用
いて合成した横軸同期背後電圧の周波数変化、ある
いは外部線路リアクタンスxを用いて合
成した無限大母線電圧との位相差δなどを電
力系統安定化信号として用いることができる。
First, looking at a modified example due to the difference in the signals used, in addition to the synchronous machine effective output shown in this embodiment, the shaft speed, frequency and phase difference angle can be considered as the power system stabilization signal. In addition, as shown in FIG. 8, the frequency change of the horizontal axis synchronous back voltage q synthesized by using the synchronous machine terminal voltage g , the armature current g, and an appropriate horizontal axis synchronous reactance x q , or the external line reactance x e , A phase difference δ between infinity bus voltage and q synthesized using g 1 and g 2 can be used as a power system stabilizing signal.

但し、+jx −jx
である。
However, q = g + jx q g , ∞ = g -jx q
It is g .

また第9図に示した関係から電気トルクに直接比例する
量である′をシミユレートして、これを電力系統安
定化信号としても良い。
Further, from the relationship shown in FIG. 9, q ′, which is an amount directly proportional to the electric torque, may be simulated and used as the power system stabilizing signal.

但し、E′=e+X′iである。 However, it is E q '= e q + X q' i d.

次に界磁電圧について考えると第3図から ΔV=GAVR(S)・ΔVerr であるから電圧一定制御系GAVR(S)の特性がはつきりし
ていれば電圧偏差ΔVerrをΔVの代りに使用すること
ができる。
Next, considering the field voltage, from FIG. 3, ΔV f = GAVR (S) · ΔVerr. Therefore, if the characteristic of the constant voltage control system GAVR (S) is sufficient, the voltage deviation ΔVerr is replaced by ΔV f . Can be used for

そして、以上の発明は励磁系の制御に関するものであつ
たが、電力系統安定化信号と界磁電圧との位相差が一定
となる様カバナ制御系を調整しても良い。
Although the above invention relates to the control of the excitation system, the cabana control system may be adjusted so that the phase difference between the power system stabilizing signal and the field voltage becomes constant.

〔発明の効果〕〔The invention's effect〕

1)同期機の運用状態、系統構成の変化及び使用してい
る励磁装置の種類にかかわらず、常に最適な動態安定度
を確保することができる。
1) Regardless of the operating state of the synchronous machine, changes in the system configuration, and the type of exciter used, optimum dynamic stability can always be ensured.

2)動態安定度を最適に確保するよう励磁装置又は電力
系統安定化装置の定数を自動調整することができるた
め、試運転時の試験調整を簡略できる他、系統構成の大
きな変化などの外部条件が変化しても、定数の再設定を
省略できる。即ちオートチューニングが可能である。
2) Since the constants of the exciter or power system stabilizer can be automatically adjusted to ensure optimal dynamic stability, test adjustments during test run can be simplified and external conditions such as major changes in the system configuration Even if it changes, the constant resetting can be omitted. That is, automatic tuning is possible.

3)電力動揺の振動周期に応じて最適定数に自動調整す
るため0.2〜2Hzの広範囲な周波数の電力動揺に対して
動態安定度を確保することができる。
3) Since dynamic adjustment is automatically made to the optimum constant according to the vibration period of power fluctuation, dynamic stability can be secured against power fluctuation in a wide frequency range of 0.2 to 2 Hz.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の励磁制御装置を示す図である。第2図は
系統リアクタンスxを介して発電機1と無限大母線2
が結合した一機無限大系統である。第3図は第2図の一
機無限大系で表わされる系統をある運転点のまわりで線
形近似したブロック線図である。 第4図は第3図の2重波線で囲つた部分をブラツクボツ
クスと見なし、相差角Δδの振動に対する励磁系トルク
ΔTexをΔω又はΔδに比例する成分に分離しこれら
の係数をそれぞれD′,K1として、第3図を等価2次
振動系で置き換えた図である。 第5図はΔP,ΔωとΔVの理想的なベクトル関係を
示した図である。 第6図は第5図を波形表現した図である。 第7図は本発明の実施例である。 第8図及び第9図は、電力安定化信号として模擬できる
,δ,E′などの信号をベクトル図にて示したも
のである。 AVR……端子電圧一定制御装置、PSS……電力動揺
安定化装置、5……増幅器、6……位相調整回路、9…
…位相差検出装置、ΔP……電力変化量、ΔV……界
磁電圧変化量。
FIG. 1 is a diagram showing a conventional excitation control device. FIG. 2 shows the generator 1 and the infinite bus 2 via the system reactance x e .
Is a one-machine infinite system combined. FIG. 3 is a block diagram in which the system represented by the one-machine infinite system of FIG. 2 is linearly approximated around a certain operating point. In FIG. 4, the portion surrounded by the double wavy line in FIG. 3 is regarded as a black box, and the excitation system torque ΔT ex with respect to the vibration of the phase difference angle Δδ is separated into components proportional to Δω or Δδ, and these coefficients are respectively D ′. , K1 is a diagram in which FIG. 3 is replaced with an equivalent secondary vibration system. FIG. 5 is a diagram showing an ideal vector relationship between ΔP, Δω and ΔV f . FIG. 6 is a waveform representation of FIG. FIG. 7 shows an embodiment of the present invention. 8 and 9 can be simulated as a power stabilization signal.
Signals such as q , δ, and E q ′ are shown in a vector diagram. AVR ... Constant terminal voltage control device, PSS ... Power fluctuation stabilizer, 5 ... Amplifier, 6 ... Phase adjustment circuit, 9 ...
... phase difference detection device, ΔP ... power change amount, ΔV f ... field voltage change amount.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同期機の端子電圧を設定値と比較し、それ
らの偏差に応じて同期機の界磁量を調整して同期機の端
子電圧を制御する端子電圧一定制御装置を有する同期機
の励磁制御装置において、 電力系統の動揺状態を表わす電力系統安定化信号を検出
し、これを入力して電力系統の動揺状態を抑制させる電
圧偏差補正信号を作成し、前記端子電圧と設定値の偏差
信号に対して出力する電力系統安定化手段と、 同期機の界磁電圧の変動分を検出して、この変動分と前
記電力系統安定化信号との間の位相差を求め、この位相
差と位相差設定値との位相偏差を表わす位相偏差信号を
作成する位相偏差信号作成手段とを有し、 前記電力系統安定化手段は前記位相偏差信号を入力し、
これに応じて、前記電圧偏差補正信号の位相を進めある
いは遅らせ、該位相偏差信号が実質的に零となるように
調整することを特徴とする同期機の励磁制御装置。
1. A synchronous machine having a terminal voltage constant controller for comparing the terminal voltage of the synchronous machine with a set value and adjusting the field amount of the synchronous machine according to the deviation between them to control the terminal voltage of the synchronous machine. In the excitation control device of, the power system stabilization signal that represents the power system fluctuation state is detected, and a voltage deviation correction signal that suppresses the power system fluctuation state is generated by inputting this signal and the terminal voltage and the set value The power system stabilizing means for outputting the deviation signal and the fluctuation of the field voltage of the synchronous machine are detected, and the phase difference between this fluctuation and the power system stabilizing signal is obtained. And a phase deviation signal creating means for creating a phase deviation signal representing a phase deviation between the phase difference set value, and the power system stabilizing means inputs the phase deviation signal,
In response to this, the phase of the voltage deviation correction signal is advanced or delayed so that the phase deviation signal is adjusted to substantially zero.
JP58047093A 1983-03-23 1983-03-23 Excitation control device for synchronous machine Expired - Lifetime JPH0632597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047093A JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047093A JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Publications (2)

Publication Number Publication Date
JPS59173000A JPS59173000A (en) 1984-09-29
JPH0632597B2 true JPH0632597B2 (en) 1994-04-27

Family

ID=12765567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047093A Expired - Lifetime JPH0632597B2 (en) 1983-03-23 1983-03-23 Excitation control device for synchronous machine

Country Status (1)

Country Link
JP (1) JPH0632597B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750999B2 (en) * 1985-03-12 1995-05-31 四国電力株式会社 Power system stabilizer
JPH0813193B2 (en) * 1986-11-17 1996-02-07 松下電器産業株式会社 Motor control device
JPH0583995A (en) * 1991-09-18 1993-04-02 Nishishiba Electric Co Ltd Monitoring controller for power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169393A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169393A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Also Published As

Publication number Publication date
JPS59173000A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
US6362590B2 (en) Starting of synchronous machine without rotor position or speed measurement
CA2152028C (en) Variable speed generator-motor apparatus capable of improving accuracy of power system
JP2846261B2 (en) Power system stabilizer
JPH07114559B2 (en) Power system stabilizer
JPH0654577A (en) Automatic motor torque/magnetic flux controller for electric-car driving system
US4629961A (en) Method and apparatus for stabilizing the locus of a vector formed by integration
US4980629A (en) AC-excited generator/motor apparatus
US4458193A (en) Method and apparatus for controlling an AC induction motor
JPH0350492B2 (en)
JPH0632597B2 (en) Excitation control device for synchronous machine
JPS6188780A (en) Control constant setting method for speed controller
JPH0697880B2 (en) Excitation control device for synchronous machine
JP2749728B2 (en) Excitation controller for synchronous machine
JPH06225576A (en) Method and equipment for compensating slip of induction machine
CA1293015C (en) Ac-excited generator/motor apparatus
JP3463158B2 (en) Exciter for synchronous machine
JPS5915268Y2 (en) Slip frequency control device for induction motor using current source inverter
JPH0638718B2 (en) Synchronous machine excitation controller
JPH06315300A (en) Power system stabilizing equipment
JP3021552B2 (en) Pulse phase shifter
JPS58192487A (en) Speed controller for dc motor
JPH0343878B2 (en)
JPH0345632B2 (en)
JPH08237867A (en) Controller for power converter
JPS622899A (en) Hunting and stepout preventing method for synchronous machine