JPH0695087B2 - Ultrasonic inspection method for pipes - Google Patents

Ultrasonic inspection method for pipes

Info

Publication number
JPH0695087B2
JPH0695087B2 JP1162361A JP16236189A JPH0695087B2 JP H0695087 B2 JPH0695087 B2 JP H0695087B2 JP 1162361 A JP1162361 A JP 1162361A JP 16236189 A JP16236189 A JP 16236189A JP H0695087 B2 JPH0695087 B2 JP H0695087B2
Authority
JP
Japan
Prior art keywords
inspected
wave
pipe
ultrasonic
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1162361A
Other languages
Japanese (ja)
Other versions
JPH0326958A (en
Inventor
勝之 西藤
宏晴 加藤
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP1162361A priority Critical patent/JPH0695087B2/en
Publication of JPH0326958A publication Critical patent/JPH0326958A/en
Publication of JPH0695087B2 publication Critical patent/JPH0695087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二重透過法を用いて母材表面に金属,セラミ
ックス等の各種被膜材料を被覆した表面改質鋼管や2種
類以上の材料等をはり合わせたクラッド鋼管等における
被膜材や被膜境界面に生ずる剥離性欠陥、腐蝕孔等の異
常部分を検出する管体の超音波探傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a surface-modified steel pipe in which a base material surface is coated with various coating materials such as metal and ceramics by using a double permeation method, and two or more kinds of materials. The present invention relates to an ultrasonic flaw detection method for a tubular body, which detects abnormal portions such as peeling defects and corrosion holes that occur in a coating material or a coating interface in a clad steel pipe or the like in which the above are bonded.

〔従来の技術〕[Conventional technology]

この種の表面改質鋼管は、母材表面となる母材内面或い
は母材外面にプラズマ溶射,イオンプレーディング等を
用いて各種機能材料の被膜を施したもので、その被膜厚
さは数μmから数百μmと極めて薄い。一方、クラッド
鋼管は各種圧延法によって複数の材料をはり合せて製造
するが、その合せ材の厚さは非常に薄いものから厚いも
のでも数mm程度である。
This type of surface-modified steel pipe has a coating of various functional materials on the inner surface or the outer surface of the base material, which is the surface of the base material, using plasma spraying, ion plating, etc., and the film thickness is several μm. To a few hundred μm, which is extremely thin. On the other hand, a clad steel pipe is manufactured by laminating a plurality of materials by various rolling methods, and the thickness of the laminated material is about several mm even if it is very thin or thick.

従来、以上のようにクラッド合せ材を含む薄い被膜材自
身のほか、この被膜材と母材との境界面に生ずる欠陥等
による異常部分を検査する場合には垂直超音波探傷方法
が用いられているが、この探傷方法では特に外面被膜の
場合には母材の境界面欠陥からの反射波(以下、欠陥波
という)と表面からの反射波、内面被膜の場合には同じ
く境界面欠陥波と底面からの反射波(以下、底面波とい
う)を分離するのが難しい。そこで、この探傷方法では
底面波の欠陥による減衰を検出する底面波高値法を併用
することも有るが、例えば境界面に生ずる剥離性欠陥の
ような異常部分の場合には欠陥波と底面波との波高値の
挙動が相反する関係にあることから同様に両波の分離検
出が困難であり、仮に異常部分があっても検査周辺部と
殆んど変らない検出結果が得られるためにむしろ健全と
誤認する場合が多い。
Conventionally, in addition to the thin coating material itself including the cladding material as described above, the vertical ultrasonic flaw detection method has been used to inspect an abnormal portion due to a defect or the like occurring at the interface between the coating material and the base material. However, in this flaw detection method, especially in the case of the outer coating, the reflected wave from the interface defect of the base material (hereinafter referred to as a defect wave) and the reflected wave from the surface, and in the case of the inner coating, the same as the interface defect wave, It is difficult to separate the reflected wave from the bottom surface (hereinafter referred to as the bottom wave). Therefore, in this flaw detection method, the bottom wave peak method that detects the attenuation of the bottom wave due to the defect may be used in combination, but in the case of an abnormal portion such as a peeling defect occurring at the boundary surface, the defect wave and the bottom wave It is also difficult to separate and detect both waves because the behavior of the crest values of the two are contradictory, and even if there is an abnormal part, the detection result that is almost the same as the peripheral part of the inspection is obtained, so it is rather sound. It is often mistaken for.

そこで、近年、以上のような不合理な問題を改善するた
めに、二重透過法を用いた超音波探傷方法が用いられて
いる。この探傷方法は、第5図(a)(J.クラウトクレ
ーマー/H.クラウトクレーマー著「超音波試験技術−理
論と実際−」(社)日本能率協会P353,図22.10参照)に
示す如く、超音波探触子1から送信された超音波を水中
に没した被検査板材2に垂直に透過した後、この被検査
板材1の裏面側に所定の距離を有して配置された反射板
3で反射されて再度被検査板材2で透過して得られる二
重透過波を検出する方法である。第5図(b)は同図
(a)の探傷方法を用いたときの探傷波形であって、RE
は被検査板材2を2度透過した得られた二重透過波であ
る。
Therefore, in recent years, an ultrasonic flaw detection method using a double transmission method has been used in order to improve the above irrational problem. As shown in Fig. 5 (a) (J. Claut Kramer / H. Claut Kramer, "Ultrasonic Testing Technology-Theory and Practice" (Japan), Japan Management Association P353, see Fig. 22.10) After the ultrasonic waves transmitted from the ultrasonic probe 1 are vertically transmitted to the plate material 2 to be inspected submerged in water, the reflection plate 3 is arranged on the back surface side of the plate material 1 to be inspected with a predetermined distance. This is a method of detecting a double transmitted wave that is obtained by being reflected and transmitted again by the plate material 2 to be inspected. FIG. 5B shows a flaw detection waveform when the flaw detection method of FIG.
Is a double transmitted wave obtained by transmitting the plate material 2 to be inspected twice.

この探傷方法では、超音波探触子1から送信された超音
波は例えば被膜境界面に欠陥部分が存在すればその欠陥
部分の寸法に応じて減衰するので、二重透過波はその分
だけ二度減衰することになる。従って、二重透過波の超
音波を測定することにより、健全部との差異に基づいて
欠陥部の検出が可能となる。しかし、第5図(b)に示
す如く被検査板材2が比較的薄い例えば被膜材等の場合
にはその被検査板材2の表面波および底面波の繰返しに
よる多重反射波ZE…が発生するが、この多重反射波ZEは
二重透過波REのみを分離独立して抽出するときには妨害
波となり、そのうち特に底面多重波はREの直前まで発生
する。そこで、被検査板材2を第5図(c)に示す如く
探触子面に対し若干傾きをもたせて配置し、多重反射波
ZEを図示矢印で示すように散乱させることにより、二重
透過波REのみを受信検出する工夫がなされている。同図
(d)は同図(c)の探傷方法を用いたときの探傷波形
を示す図である。
In this flaw detection method, the ultrasonic wave transmitted from the ultrasonic probe 1 is attenuated according to the size of the defective portion, for example, if there is a defective portion on the film boundary surface. Will be attenuated. Therefore, by measuring the ultrasonic waves of the double transmitted waves, it becomes possible to detect the defective portion based on the difference from the sound portion. However, as shown in FIG. 5 (b), when the plate material 2 to be inspected is relatively thin, for example, a coating material or the like, multiple reflected waves ZE ... Are generated due to repetition of surface waves and bottom waves of the plate material to be inspected 2. , This multiple reflected wave ZE becomes an interfering wave when only the double transmitted wave RE is separated and extracted independently, and in particular, the bottom multiple wave occurs until just before RE. Therefore, the plate material 2 to be inspected is arranged with a slight inclination with respect to the probe surface as shown in FIG.
By scattering ZE as shown by the arrow in the figure, only the double transmitted wave RE is received and detected. FIG. 6D is a diagram showing a flaw detection waveform when the flaw detection method of FIG.

ところで、この二重透過法は、薄鋼板,FRP等の板材に適
用例をみるものの、管体に関する限り管体内部に反射板
を配置しなければならず、未だ適用例をみないものであ
る。
By the way, although this double transmission method is applied to thin steel plates, FRP, and other plate materials, a reflection plate must be placed inside the tube as far as the tube is concerned, and there are still no application examples. .

しかし、仮に被検査管体に二重透過法を適用するとすれ
ば、従来の探傷方法に従うと第6図のような配置構成と
なることが考えられる。なお、同図は、単純化のため超
音波探触子1による超音波入射点を管天頂に配置した
が、実用的には水中の気泡の集結による疑似欠陥信号の
発生防止を考慮して天頂を外すことが考えられ、また被
検査管体4として例えば表面改質鋼管4aを用い、かつ、
管内表面に被膜材4bを施した例を示している。
However, if the double transmission method is applied to the pipe to be inspected, it is conceivable that the arrangement configuration as shown in FIG. 6 will be obtained according to the conventional flaw detection method. In the figure, the ultrasonic wave incident point by the ultrasonic probe 1 is arranged on the pipe zenith for simplification, but in practice, the zenith is taken into consideration in consideration of prevention of generation of pseudo defect signal due to accumulation of bubbles in water. It is conceivable that the surface modified steel pipe 4a is used as the pipe body 4 to be inspected, and
An example in which the coating material 4b is applied to the inner surface of the pipe is shown.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、被検査管体4の探傷方法に二重透過法を
適用した場合、種々の要因の減衰から二重透過波6の感
度の確保が問題となってくる。すなわち、減衰要因を挙
げれば、超音波探触子1から反射板折返しによる超音波
ビーム路工程の減衰a、このうち特に底面波高値法との
比較によれば管内面以降の往復路程の増大による減衰
a′がある。さらに、管外表面入射時の曲面による散乱
b、被膜材5の境界面での反射c、管内面(底面)で反
射d、反射波3での反射率に関する損失e等がある。特
に、管体であるが故に、b,c,dの要因による感度上の損
失が大きい。
However, when the double transmission method is applied to the flaw detection method for the tube body 4 to be inspected, securing the sensitivity of the double transmission wave 6 becomes a problem due to the attenuation of various factors. That is, if the attenuation factor is mentioned, the attenuation a in the ultrasonic beam path process from the ultrasonic probe 1 to the reflection of the reflection plate is increased. Among them, in comparison with the bottom crest value method, it is due to the increase of the round trip distance after the inner surface of the tube. There is an attenuation a '. Furthermore, there are scattering b by the curved surface when incident on the outer surface of the tube, reflection c at the boundary surface of the coating material 5, reflection d at the inner surface (bottom surface) of the tube, loss e regarding the reflectance at the reflected wave 3, and the like. In particular, since it is a tubular body, the loss in sensitivity is large due to the factors b, c, and d.

そこで、超音波探触子1を用いた探傷器の感度(ゲイ
ン)を上げる必要があるが、この場合には第7図に示す
如く管内面の反射dによる第4次底面波B4が問題となっ
てくる。つまり,底面波B4は真に底面反射による反射波
と被膜材4b中で反射を繰返す多重反射波とから成るが、
この底面波B4の中に二重透過波Tを得ることになり、底
面波B4の前記多重反射波と二重透過波Tとが重なること
になる。この点では第5図(b)に示すZEとREと同様な
関係となり、二重透過波Tの分離・抽出の妨害となり、
欠陥検出精度を著しく妨害することになる。よって、板
材の場合には第5図(c)の工夫が可能であるが、管体
4に適用する場合にはそれも不可能である。
Therefore, it is necessary to increase the sensitivity (gain) of the flaw detector using the ultrasonic probe 1, but in this case, the fourth-order bottom wave B4 due to the reflection d on the inner surface of the tube is a problem as shown in FIG. Is coming. In other words, the bottom wave B4 is composed of the reflected wave due to the true bottom reflection and the multiple reflected wave that is repeatedly reflected in the coating material 4b.
The double transmitted wave T is obtained in this bottom wave B4, and the multiple reflected wave of the bottom wave B4 and the double transmitted wave T overlap. In this respect, the same relationship as ZE and RE shown in Fig. 5 (b) is obtained, which interferes with the separation / extraction of the double transmitted wave T,
This will significantly impair the defect detection accuracy. Therefore, the device shown in FIG. 5 (c) can be used in the case of a plate material, but it cannot be applied in the case of being applied to the tubular body 4.

本発明は上記実情に鑑みてなされたもので、二重透過波
を比較的感度良く検出でき、しかも二重透過波を安定的
に分離・抽出することにより、欠陥評価の信頼性を高め
うる管体の超音波探傷方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and is a tube that can detect double transmitted waves with relatively high sensitivity and that can enhance reliability of defect evaluation by stably separating and extracting the double transmitted waves. An object is to provide an ultrasonic flaw detection method for a body.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記課題を解決するために、被検査管体の管軸
と垂直をなすラインから所定距離偏芯させて超音波探触
子を配置するとともに、前記被検査管体内部に配置され
る反射板の反射板面と前記超音波探触子面とを相対的に
所定の角度の傾きをもって配置する構成である。
In order to solve the above problems, the present invention disposes an ultrasonic probe eccentrically by a predetermined distance from a line perpendicular to the pipe axis of the pipe to be inspected, and is arranged inside the pipe to be inspected. In this configuration, the reflecting plate surface of the reflecting plate and the ultrasonic probe surface are arranged with a relative inclination of a predetermined angle.

〔作用〕[Action]

従って、本発明は以上のような手段を講じたことによ
り、超音波探触子から送信された超音波は探触子の偏芯
によって被検査管体を斜め方向に透過した後、ある角度
をもって反射板に入射し、ここで反射されて再度被検査
管体を透過して被検査管体外に出てくる。このとき、超
音波探触子から送信された超音波は前述した如く被検査
管体を斜め方向に透過するので、被検査管体の底面波お
よび被膜材の境界面反射波は曲面反射によって大きく逸
路する。一方、被検査管体を透過して反射板に入射する
超音波の透過波はある角度をもって反射板に入射する
が、この反射板の反射板面を被検査管体からの透過波に
対し垂直になるように配置すれば,つまり反射板面をあ
る角度だけ傾きをもたせれば、反射板からの超音波は垂
直折返しの反射により送信された超音波の伝播経路と同
一の経路を通って再度被検査管体を透過するので、最強
の二重透過波を得ることができる。
Therefore, according to the present invention, since the ultrasonic wave transmitted from the ultrasonic probe is obliquely transmitted through the pipe to be inspected due to the eccentricity of the probe by taking the above-mentioned means, the ultrasonic wave has a certain angle. The light enters the reflecting plate, is reflected here, again passes through the pipe to be inspected, and emerges outside the pipe to be inspected. At this time, since the ultrasonic waves transmitted from the ultrasonic probe are obliquely transmitted through the pipe to be inspected as described above, the bottom surface wave of the pipe to be inspected and the boundary surface reflected wave of the coating material are largely caused by the curved surface reflection. Make a detour. On the other hand, the transmitted wave of the ultrasonic wave that passes through the pipe to be inspected and is incident on the reflection plate is incident on the reflection plate at an angle, but the reflection plate surface of this reflection plate is perpendicular to the transmission wave from the pipe to be inspected. Therefore, if the reflector surface is tilted by a certain angle, the ultrasonic waves from the reflector will pass through the same path as the propagation path of the ultrasonic waves transmitted by the reflection at the vertical folding, Since it passes through the tube to be inspected, the strongest double transmitted wave can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例として例えば表面改質鋼管の内
面に被膜材を施してなる被検査管体の超音波探傷方法に
ついて図面を参照して説明する。
As an embodiment of the present invention, an ultrasonic flaw detection method for a pipe body to be inspected in which a coating material is applied to the inner surface of a surface-modified steel pipe will be described below with reference to the drawings.

先ず、各構成要素は次に述べる手順にしたがって第1図
に示す如く設定する。
First, each component is set as shown in FIG. 1 according to the procedure described below.

(1)超音波探触子1は被検査管体4の天頂,つまり被
検査管体4の中心軸線(y軸線)と垂直をなす方向の軸
線(z軸線)上に所定の水距離wを有して設定する。こ
の水距離wは使用する超音波探触子1の焦点距離等によ
って決定される。このとき、反射板3はほぼ水平位置に
ある。
(1) The ultrasonic probe 1 has a predetermined water distance w on the zenith of the tube 4 to be inspected, that is, on the axis (z axis) perpendicular to the central axis (y axis) of the tube 4 to be inspected. Have and set. The water distance w is determined by the focal length of the ultrasonic probe 1 used and the like. At this time, the reflector 3 is in a substantially horizontal position.

(2)また、超音波探触子1は被検査管体外表面からの
反射波である表面波の波高値が最大となるように前記y
軸およびz軸に対してそれぞれ垂直となるx軸に関する
微調整を行う。このときの超音波探触子1の位置がx軸
原位置,つまりx=0となる。
(2) In addition, the ultrasonic probe 1 is designed so that the peak value of the surface wave, which is a reflected wave from the outer surface of the pipe to be inspected, is maximized.
Fine adjustment is performed on the x-axis, which is perpendicular to the axes and the z-axis. The position of the ultrasonic probe 1 at this time is the x-axis original position, that is, x = 0.

(3)次に、前記z軸線から左右何れかのx方向に所定
の距離Δxだけ平行移動して偏芯させる。その後、必要
に応じて超音波探触子1をz方向に移動させて前記
(1)項で説明した水距離wに合わせる。この操作は探
傷波形上,前記(1)項での表面波の時間軸上での起点
に一致するようにして行う。
(3) Next, the eccentricity is obtained by translating from the z-axis in the left or right x direction by a predetermined distance Δx. Then, if necessary, the ultrasonic probe 1 is moved in the z direction to match the water distance w described in the item (1). This operation is performed on the flaw detection waveform so as to coincide with the starting point on the time axis of the surface wave in the item (1).

(4)さらに、探傷波形上の二重透過波をみながら、そ
の波高値が最大となるように反射板3を回転させること
により、反射板3を最適な傾き角度θに設定する。
(4) Further, while observing the double-transmitted wave on the flaw detection waveform, the reflector plate 3 is rotated so that the peak value thereof is maximized, whereby the reflector plate 3 is set to the optimum tilt angle θ.

第2図は超音波探触子1から送信された超音波の伝播挙
動をシュミレーションした図である。このシュミレーシ
ョン結果は探触子1の偏芯距離Δxにより変化するもの
であるが、二重透過波の実用的な感度獲得のためにはΔ
xには最適距離が存在する。このシュミレーション結果
からも明らかなように、二重透過波抽出の妨害となる底
面波Bは超音波探触子1の受信経路より著しく逸路,散
乱するに対し、二重透過波Tはむしろ超音波探触子1の
方向へ屈折する。従って、超音波探触子1の偏芯距離と
反射板3の回転角度との調整により底面波Bを抑制し、
二重透過波Tを相対的に大とすれば、すなわちT/Bを増
大することができる。
FIG. 2 is a diagram simulating the propagation behavior of the ultrasonic waves transmitted from the ultrasonic probe 1. This simulation result changes depending on the eccentricity distance Δx of the probe 1, but Δ is required to obtain the practical sensitivity of double transmitted waves.
There is an optimum distance for x. As is clear from this simulation result, the bottom wave B, which interferes with the extraction of the double transmitted wave, is significantly diverted and scattered from the reception path of the ultrasonic probe 1, while the double transmitted wave T is rather high. It is refracted in the direction of the acoustic probe 1. Therefore, the bottom surface wave B is suppressed by adjusting the eccentric distance of the ultrasonic probe 1 and the rotation angle of the reflecting plate 3,
If the double transmitted wave T is made relatively large, that is, T / B can be increased.

ちなみに、第3図は超音波探触子1の偏芯距離Δxに対
する底面波B3(3次),B4(4次)と二重透過波Tとの
各波高値の関係を示す図であるが、同図から明らかな如
く偏芯距離Δxが例えば3mmを越えると底面波B3,B4が急
激に低下し、これに対して二重透過波Tの低下は緩やか
である。特に、偏芯距離Δxが小さいときには底面波B
3,B4の波高値が二重透過波Tの波高値よりも高いが、偏
芯距離Δxが3mmに達すると相対波高値が逆転し底面波B
3,B4が極端かつ急激に低下して消去するに至る。一方、
二重透過波Tは偏芯距離Δxが大きくなるにしたがって
多少なりとも減衰するので、二重透過波Tの絶対的感度
を獲得する観点から偏芯距離は一定限度内に選定され
る。
Incidentally, FIG. 3 is a diagram showing the relationship between the peak values of the bottom waves B3 (third order), B4 (fourth order) and the double transmitted wave T with respect to the eccentric distance Δx of the ultrasonic probe 1. As is clear from the figure, when the eccentric distance Δx exceeds, for example, 3 mm, the bottom waves B3 and B4 sharply decrease, whereas the double transmitted wave T decreases gently. Especially when the eccentric distance Δx is small, the bottom wave B
The peak values of 3 and B4 are higher than the peak value of the double transmitted wave T, but when the eccentric distance Δx reaches 3 mm, the relative peak value is reversed and the bottom wave B
3, B4 drops extremely and sharply until it is erased. on the other hand,
Since the double transmitted wave T is attenuated to some extent as the eccentric distance Δx increases, the eccentric distance is selected within a certain limit from the viewpoint of obtaining the absolute sensitivity of the double transmitted wave T.

そこで、以上のようにして超音波探触子1および反射板
3を設定し終えたならば、被検査管体4の欠陥の有無お
よび欠陥の大きさ等について探傷を行う。すなわち、超
音波探触子1から送信された超音波はz軸線と平行な方
向を経て被検査管体4に入射するが、このとき超音波探
触子1の偏芯により入射方向に対してある傾きをもって
被検査管体4を透過する。この被検査管体4を透過する
超音波は被膜材4bの境界面で反射して被膜材4bの境界面
反射波Iが発生し、また被検査管体4の底面,さまり被
膜材4bの底面部から被検査管体底面波Bが発生する。こ
の境界面反射波Iおよび底面波Bは曲面反射となるの
で、本来の透過波Tと比べて大きく逸脱する。
Therefore, after setting the ultrasonic probe 1 and the reflection plate 3 as described above, flaw detection is performed on the presence or absence of a defect in the tube body 4 to be inspected and the size of the defect. That is, the ultrasonic waves transmitted from the ultrasonic probe 1 enter the tube body 4 to be inspected through a direction parallel to the z-axis line, but at this time, due to the eccentricity of the ultrasonic probe 1, It passes through the pipe 4 to be inspected with a certain inclination. The ultrasonic wave transmitted through the pipe 4 to be inspected is reflected at the boundary surface of the coating material 4b to generate a reflected wave I on the boundary surface of the coating material 4b. A bottom wave B of the pipe to be inspected is generated from the bottom part. Since the boundary surface reflected wave I and the bottom surface wave B are curved surface reflections, they largely deviate from the original transmitted wave T.

一方、被検査管体4を経て出力された透過波Tは被検査
管体4の透過進行方向と異なる方向に進行し、予めθな
る傾き角度をもつ反射板3に垂直に入射して反射され
る。従って、反射板3で反射された透過波Tは再度被検
査管体4内の同一経路を通って透過した後、z軸からΔ
xだけ離れた位置よりz軸方向に出力するので、この二
重透過波を超音波探触子1で受信することができる。
On the other hand, the transmitted wave T output through the tube 4 to be inspected travels in a direction different from the traveling direction of the tube 4 to be inspected, is vertically incident on the reflection plate 3 having an inclination angle of θ, and is reflected. It Therefore, the transmitted wave T reflected by the reflecting plate 3 is again transmitted through the same path in the tube body 4 to be inspected, and then Δ from the z axis.
Since the ultrasonic wave is output from the position separated by x in the z-axis direction, the double transmitted wave can be received by the ultrasonic probe 1.

次に、被検査管体4のある位置の測定が終了すると、引
き続き、被検査管体4を所定角度だけ回転させて同様の
検査を実行し、これを一回転するまで行う。さらに、超
音波探触子1の超音波有効ビームに相当する量だけ被検
査管体4をy軸方向に移動し、前述と同様に被検査管体
4を回転させながら検査を行うことにより、被検査管体
4の全面全長にわたって超音波探傷を行う。
Next, when the measurement of a certain position of the pipe body 4 to be inspected is completed, the pipe body 4 to be inspected is continuously rotated by a predetermined angle to perform the same inspection, and this is performed until it is rotated once. Further, by moving the pipe 4 to be inspected in the y-axis direction by an amount corresponding to the effective ultrasonic beam of the ultrasonic probe 1, and performing the inspection while rotating the pipe 4 to be inspected as described above, Ultrasonic flaw detection is performed over the entire length of the tube body 4 to be inspected.

従って、以上のような実施例によれば、超音波探触子1
を被検査管体4の中心軸線と垂直をなす軸線から所定距
離偏芯させて配置することにより、被検査管体4を透過
する透過波は被膜材4bの境界部および被検査管体4の底
面で曲面反射するので、二重透過波の伝播経路から大き
く逸路させて散乱させることができ、ひいては二重透過
波Tを確実に分離,抽出できる。第4図は超音波探触子
2および反射板3を最適設定したときの探傷波形を示す
図であるが、この図から二重透過波Tの抽出妨害となる
底面波B3,B4が殆んど完全に消去され、第7図と比較し
ても格段に底面波の消去効果の高いことが分る。
Therefore, according to the above embodiment, the ultrasonic probe 1
By arranging eccentricity from the axis perpendicular to the central axis of the tube 4 to be inspected by a predetermined distance, the transmitted wave that passes through the tube 4 to be inspected has a boundary portion of the coating material 4b and the tube 4 to be inspected. Since the light is reflected on the curved surface at the bottom surface, it can be largely diverted from the propagation path of the double transmitted wave and scattered, and the double transmitted wave T can be reliably separated and extracted. FIG. 4 is a diagram showing flaw detection waveforms when the ultrasonic probe 2 and the reflector 3 are optimally set. From this figure, it is found that the bottom waves B3 and B4 which interfere with the extraction of the double transmitted wave T are almost eliminated. It can be seen that all of them are completely eliminated, and the effect of eliminating bottom surface waves is significantly higher than that in FIG.

また、本方式では超音波探触子面と平行関係にある反射
板3を所定角度傾けることにより、透過波の垂直折返し
反射が適切に機能し、前記超音波探触子1の偏芯距離の
設定を含めて,二重透過波Tを感度良く受信できる。
Further, in the present method, by vertically inclining the reflecting plate 3 which is in parallel with the ultrasonic probe surface by a predetermined angle, the vertical folding reflection of the transmitted wave properly functions, and the eccentric distance of the ultrasonic probe 1 is reduced. The double transmitted wave T including the setting can be received with high sensitivity.

なお、上記実施例では被検査管体4の母材として表面改
質鋼管を用いたが、クラッド鋼管その他被膜材4bを施し
た種々の管体について適用できる。また,被膜材4bは管
内表面だけでなく、管外表面に施しても適用可能であ
る。さらに、上記実施例では被検査管体4を回転,か
つ,移動させるようにしたが、この走査方法に限るもの
ではない。例えば被検査管体4を回転し、かつ、超音波
探触子1をy軸方向に移動することにより、スパイラル
走査によって超音波探傷を行ってもよい。その他、本発
明はその要旨を逸脱しない範囲で種々変形して実施でき
る。
Although the surface-modified steel pipe is used as the base material of the pipe body 4 to be inspected in the above-mentioned embodiment, it can be applied to various pipe bodies provided with the clad steel pipe and the coating material 4b. The coating material 4b can be applied not only to the inner surface of the tube but also to the outer surface of the tube. Further, in the above embodiment, the tube body 4 to be inspected is rotated and moved, but the scanning method is not limited to this. For example, ultrasonic inspection may be performed by spiral scanning by rotating the tube body 4 to be inspected and moving the ultrasonic probe 1 in the y-axis direction. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、二重透過波を比較
的感度良く検出でき、しかも二重透過波を安定的に分離
・抽出することにより、欠陥評価の信頼性を高めること
ができる。特に、鋼管製品は、用途上,高温,高腐蝕等
使用条件の苛酷な環境で使用することが多く、そのため
に厳しい品質要求がなされるが、本探傷方法を適用すれ
ば高精度かつ信頼性の高い二重透過法を実現でき、ひい
ては上記要求品質の鋼管を生産することが可能である。
As described above, according to the present invention, the double transmitted wave can be detected with relatively high sensitivity, and the double transmitted wave can be stably separated and extracted, so that the reliability of the defect evaluation can be improved. In particular, steel pipe products are often used in harsh environments such as high temperature and high corrosion conditions for their applications, and therefore strict quality requirements are made. However, if this flaw detection method is applied, high accuracy and reliability can be obtained. It is possible to realize a high double permeation method, and it is possible to produce a steel pipe having the above-mentioned required quality.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は本発明に係わる管体の超音波探傷
方法を説明するために示したもので、第1図は本発明方
法の一実施例を説明する超音波探触子および反射板の配
置構成例を示す図、第2図は超音波探触子の偏芯距離と
被検査管体底面波反射方向を示す図、第3図は超音波探
触子の偏芯距離に対する底面波と二重透過波との波高値
の関係を示す図、第4図は超音波探触子および反射板を
最適設定したときの底面波と二重透過波とのレベル波形
図、第5図ないし第7図は従来方法を説明するために示
した図であって、第5図(a)は二重透過法を用いて被
検査板材を平行に配置したときの図、第5図(b)は同
図(a)による検査による得られた波形図、第5図
(c)は被検査板材を傾斜させたときの図、第5図
(d)は同図(c)による検査による得られた波形図、
第6図は仮想的に管体に適用したときの超音波探触子と
反射板との関係図、第7図は第6図の配置構成としたと
きの底面波と二重透過波とのレベル波形図である。 1……超音波探触子、3……反射板、4……被検査管
体、4a……表面改質鋼管、4b……被膜材、T……二重透
過波、I……境界面反射波、B……被検査管体底面波。
1 to 4 are shown for explaining an ultrasonic flaw detection method for a tubular body according to the present invention, and FIG. 1 is an ultrasonic probe and reflection for explaining an embodiment of the method of the present invention. FIG. 2 is a diagram showing an arrangement configuration example of plates, FIG. 2 is a diagram showing an eccentric distance of an ultrasonic probe and a reflection direction of a bottom surface wave of a pipe to be inspected, and FIG. 3 is a bottom face with respect to an eccentric distance of the ultrasonic probe. Fig. 4 is a diagram showing the relationship between the crest values of the waves and the double transmitted waves, Fig. 4 is a level waveform diagram of the bottom wave and the double transmitted waves when the ultrasonic probe and the reflector are optimally set, Fig. 5 7 to FIG. 7 are views for explaining the conventional method, and FIG. 5 (a) is a view when the plate materials to be inspected are arranged in parallel using the double transmission method, and FIG. 5 (b). ) Is a waveform diagram obtained by the inspection in FIG. 5A, FIG. 5C is a diagram when the plate material to be inspected is inclined, and FIG. 5D is in FIG. Waveform diagram obtained by 査,
FIG. 6 is a diagram showing the relationship between the ultrasonic probe and the reflector when it is virtually applied to a tube, and FIG. 7 is a diagram showing the bottom wave and the double transmitted wave when the arrangement configuration of FIG. 6 is used. It is a level waveform diagram. 1 ... Ultrasonic probe, 3 ... Reflector, 4 ... Inspected pipe, 4a ... Surface-modified steel pipe, 4b ... Coating material, T ... Double transmitted wave, I ... Boundary surface Reflected wave, B ... Bottom wave of the pipe to be inspected.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二重透過法を用いて被検査管体の欠陥を検
査する管体の超音波探傷方法において、前記被検査管体
の管軸と垂直をなすラインから所定距離偏芯させて超音
波探触子を配置するとともに、前記被検査管体内部に配
置される反射板の反射板面と前記超音波探触子面とを相
対的に所定の傾斜角度をもって配置し、前記超音波探触
子から前記被検査管体を透過する前記超音波の透過波の
うち少なくとも被検査管体底面では曲面反射させて前記
二重透過波から逸路する如く反射させ、かつ、前記被検
査管体からの透過波を前記反射板で垂直に反射すること
を特徴とする管体の超音波探傷方法。
1. An ultrasonic flaw detection method for a pipe for inspecting a defect of the pipe to be inspected by using a double transmission method, wherein the pipe is decentered by a predetermined distance from a line perpendicular to the pipe axis of the pipe to be inspected. While arranging the ultrasonic probe, the reflecting plate surface of the reflecting plate arranged inside the tube body to be inspected and the ultrasonic probe surface are arranged at a relatively predetermined inclination angle, Of the transmitted waves of the ultrasonic waves transmitted from the probe through the pipe to be inspected, at least the bottom face of the pipe to be inspected is curved to be reflected so as to be diverted from the double transmitted wave, and the pipe to be inspected An ultrasonic flaw detection method for a tubular body, characterized in that a transmitted wave from the body is reflected vertically by the reflector.
JP1162361A 1989-06-23 1989-06-23 Ultrasonic inspection method for pipes Expired - Lifetime JPH0695087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162361A JPH0695087B2 (en) 1989-06-23 1989-06-23 Ultrasonic inspection method for pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162361A JPH0695087B2 (en) 1989-06-23 1989-06-23 Ultrasonic inspection method for pipes

Publications (2)

Publication Number Publication Date
JPH0326958A JPH0326958A (en) 1991-02-05
JPH0695087B2 true JPH0695087B2 (en) 1994-11-24

Family

ID=15753107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162361A Expired - Lifetime JPH0695087B2 (en) 1989-06-23 1989-06-23 Ultrasonic inspection method for pipes

Country Status (1)

Country Link
JP (1) JPH0695087B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967097B2 (en) * 2006-05-26 2012-07-04 株式会社Neomaxマテリアル Inspection method
JP4839177B2 (en) * 2006-10-13 2011-12-21 セイコー化工機株式会社 Degradation diagnosis method for fiber reinforced composite materials
JP5448030B2 (en) 2008-11-19 2014-03-19 新日鐵住金株式会社 Ultrasonic flaw detection method and apparatus

Also Published As

Publication number Publication date
JPH0326958A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
US7520172B2 (en) Inspection system for inspecting a structure and associated method
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JP7156912B2 (en) Ultrasonic inspection of structures with lamps
KR20130080086A (en) The correction method for beam focal point of phased ultrasonic transducer with curved wedge
JPH0695087B2 (en) Ultrasonic inspection method for pipes
JP2021081189A (en) Defect detection method
JPS61160053A (en) Ultrasonic flaw detection test
Smith et al. Diffraction and shadowing errors in-6 dB defect sizing of delaminations in composites
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
RU2596242C1 (en) Method for ultrasonic inspection
JPH0545346A (en) Ultrasonic probe
US6543287B1 (en) Method for acoustic imaging by angle beam
JP2001124746A (en) Ultrasonic inspection method
Hesse et al. Defect detection in rails using ultrasonic surface waves
US8375795B2 (en) Non-destructive inspection of high-pressure lines
JP4636967B2 (en) Ultrasonic flaw detection method
JP2008008709A (en) Ultrasonic flaw detection method and ultrasonic flaw detection system
RU2192635C2 (en) Process determining planar lack of continuity in thick- walled articles by ultrasonic method
Chaffaï et al. Simulation tools for tofd inspection in CIVA software
JP2003344364A (en) Ultrasonic flaw detection method of solid shaft