JPH0694672A - Biosensor and production thereof - Google Patents

Biosensor and production thereof

Info

Publication number
JPH0694672A
JPH0694672A JP4243043A JP24304392A JPH0694672A JP H0694672 A JPH0694672 A JP H0694672A JP 4243043 A JP4243043 A JP 4243043A JP 24304392 A JP24304392 A JP 24304392A JP H0694672 A JPH0694672 A JP H0694672A
Authority
JP
Japan
Prior art keywords
electrode
electrode system
reaction layer
biosensor
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4243043A
Other languages
Japanese (ja)
Other versions
JP3127599B2 (en
Inventor
Toshihiko Yoshioka
俊彦 吉岡
Shiro Nankai
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP04243043A priority Critical patent/JP3127599B2/en
Publication of JPH0694672A publication Critical patent/JPH0694672A/en
Application granted granted Critical
Publication of JP3127599B2 publication Critical patent/JP3127599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To realize a biosensor capable of rapidly and quantitatively measuring the specific component in a sample with high accuracy and high reliability by simple operation. CONSTITUTION:A biosensor consists of the electrode system based on the measuring electrode 4 and opposed electrode 5 formed on an insulating substrate 1 and a reaction layer 7 containing a hydrophilic polymer, lactic acid oxidase and an electron acceptor and is produced by providing the electrode system based on the measuring electrode 4 and the opposed electrode 5 on the insulating substrate 1 and providing a hydrophilic polymer layer on the electrode system and subsequently dripping the ag. soln. containing lactic acid oxidase and the electron acceptor on the electrode system to dry the ag. soln. layer to form the reaction layer 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料中の特定成分につ
いて、迅速かつ高精度な定量を簡便に実施することので
きるバイオセンサおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor capable of easily and rapidly quantifying a specific component in a sample, and a method for producing the biosensor.

【0002】[0002]

【従来の技術】酵素電極を用いた乳酸の定量方法として
は、酵素に乳酸オキシダーゼ(以下、LODと略す)を
用い、過酸化水素電極と組み合わせた方式が報告されて
いる(医器学、54巻、68ページ、1984年)。上
記機器を用いた測定方法について説明する。LODをア
セチルセルロース膜上に固定化し、表面をポリカーボネ
ート薄膜で被覆した固定化酵素膜と、白金と銀からなる
過酸化水素電極とから酵素電極は構成されている。
2. Description of the Related Art As a method for quantifying lactic acid using an enzyme electrode, a method in which lactate oxidase (hereinafter abbreviated as LOD) is used as an enzyme and combined with a hydrogen peroxide electrode has been reported (Medical Engineering, 54 Vol. 68, 1984). A measuring method using the above equipment will be described. An enzyme electrode is composed of an immobilized enzyme membrane in which LOD is immobilized on an acetyl cellulose membrane and the surface is covered with a polycarbonate thin film, and a hydrogen peroxide electrode composed of platinum and silver.

【0003】上記測定機器はフローラインを有し、試料
液は緩衝液による混合希釈の後、酸素を含む空気が混入
され、脱泡器を経て前記酵素電極部分へと導入される。
試料液中の乳酸と固定化酵素膜中のLODとが反応する
と同時に過酸化水素が生成する。この過酸化水素の増加
量を、過酸化水素電極によって計ることで乳酸の定量を
行なうものである。
The above measuring instrument has a flow line, and the sample solution is mixed and diluted with a buffer solution, mixed with air containing oxygen, and introduced into the enzyme electrode portion through a defoamer.
Hydrogen peroxide is produced at the same time when lactic acid in the sample solution reacts with LOD in the immobilized enzyme membrane. Lactic acid is quantified by measuring the increased amount of hydrogen peroxide with a hydrogen peroxide electrode.

【0004】[0004]

【発明が解決しようとする課題】このような従来の測定
方法においては、酵素膜の交換の必要があり、さらに、
ポンプ、混合器、脱泡器などを備えた機器が必要であ
る。従って、フローラインの洗浄などのメンテナンスが
要求され、一定量の試料液を供給するなど、複雑かつ簡
便性に欠けていた。
In such a conventional measuring method, it is necessary to replace the enzyme membrane.
Equipment equipped with a pump, mixer, deaerator, etc. is required. Therefore, maintenance such as cleaning of the flow line is required, and it is complicated and lacks in simplicity such as supplying a fixed amount of sample liquid.

【0005】本発明は試料液中の乳酸について、高精度
な定量を迅速かつ極めて簡便に実施することのできるバ
イオセンサを提供することを目的としている。
An object of the present invention is to provide a biosensor capable of performing highly accurate quantitative determination of lactic acid in a sample solution quickly and extremely easily.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、絶縁性の基板上に少なくとも測定極と対極
からなる電極系を設け、前記電極系上に親水性高分子と
乳酸酸化酵素と電子受容体を含有する反応層を設置した
構成である。
In order to achieve the above object, the present invention provides an electrode system comprising at least a measurement electrode and a counter electrode on an insulating substrate, and the hydrophilic polymer and lactic acid oxidation are provided on the electrode system. This is a structure in which a reaction layer containing an enzyme and an electron acceptor is installed.

【0007】[0007]

【作用】本発明は上記構成により、反応層が試料液に溶
解し、そこに含まれている乳酸酸化酵素が電極系におい
て酸化還元反応を起し、乳酸の濃度に対応した応答電流
が得られる。よって、簡易操作で高い信頼性を有したバ
イオセンサを得ることができる。
According to the present invention, the reaction layer is dissolved in the sample solution and the lactate oxidase contained therein causes an oxidation-reduction reaction in the electrode system to obtain a response current corresponding to the concentration of lactic acid. . Therefore, a highly reliable biosensor can be obtained by a simple operation.

【0008】[0008]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0009】(実施例1)図1は本発明のバイオセンサ
の一実施例として作製した乳酸センサの断面図、図2は
反応層を除き、図1の斜め上方向からみた分解斜視図で
ある。
(Example 1) FIG. 1 is a cross-sectional view of a lactate sensor produced as an example of the biosensor of the present invention, and FIG. 2 is an exploded perspective view of the lactic acid sensor seen from an obliquely upper direction of FIG. .

【0010】以下に乳酸センサの作製方法について説明
する。ポリエチレンテレフタレートからなる絶縁性の基
板1に、スクリーン印刷により銀ペ−ストを印刷しリ−
ド2、3を形成した。つぎに、樹脂バインダーを含む導
電性カーボンペーストを用いて電極系のうち測定極4
を、つづいて絶縁性ペーストからなる絶縁層6を順次印
刷形成した。絶縁層6は測定極4の露出部分の面積(約
1mm2)を一定とし、かつリ−ド2、3を部分的に覆
っている。最後に樹脂バインダーを含む導電性カーボン
ペーストを用いて電極系のうち対極5を印刷形成した。
A method for producing a lactic acid sensor will be described below. An insulating substrate 1 made of polyethylene terephthalate is printed with a silver paste by screen printing and then reprinted.
Dos 2 and 3 were formed. Next, using a conductive carbon paste containing a resin binder, the measuring electrode 4 of the electrode system was measured.
Then, an insulating layer 6 made of an insulating paste was sequentially formed by printing. The insulating layer 6 keeps the exposed area (about 1 mm 2 ) of the measuring electrode 4 constant and partially covers the leads 2 and 3. Finally, the counter electrode 5 of the electrode system was printed by using a conductive carbon paste containing a resin binder.

【0011】次に、前記電極系上に親水性高分子として
カルボキシメチルセルロ−ス(以下CMCと略す)の
0.5wt%水溶液を展開、乾燥させてCMC層を形成し
た。つづいて、前記CMC層上に酵素としてLODおよ
び電子受容体としてフェリシアン化カリウムの混合水溶
液を展開し、温風乾燥器中で乾燥させて反応層7を形成
した。
Next, a 0.5 wt% aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a hydrophilic polymer was spread on the electrode system and dried to form a CMC layer. Subsequently, a mixed aqueous solution of LOD as an enzyme and potassium ferricyanide as an electron acceptor was developed on the CMC layer and dried in a warm air drier to form a reaction layer 7.

【0012】上記の反応層形成工程において、LODお
よびフェリシアン化カリウムの混合水溶液を滴下する
と、CMC層は一度溶解し、その後の乾燥過程で酵素な
どと混合された形で反応層7を形成する。しかし、撹拌
等をともなわないため完全な混合状態とはならず、電極
系表面はCMCのみによって被覆された状態となる。す
なわち、酵素および電子受容体などが電極系表面に接触
しないために、電極系表面へのタンパク質の吸着等によ
る電極系の特性変化が起こらず、その結果、高精度なセ
ンサ応答を有するバイオセンサを得ることができる。
In the above reaction layer forming step, when a mixed aqueous solution of LOD and potassium ferricyanide is dropped, the CMC layer is once dissolved and the reaction layer 7 is formed in the form of being mixed with the enzyme in the subsequent drying process. However, since it is not accompanied by stirring or the like, it is not in a completely mixed state, and the electrode system surface is in a state of being covered only with CMC. That is, since the enzyme and the electron acceptor do not come into contact with the surface of the electrode system, the characteristics of the electrode system do not change due to the adsorption of proteins on the surface of the electrode system, and as a result, a biosensor having a highly accurate sensor response can be obtained. Obtainable.

【0013】前記のようにして反応層7を形成した後、
カバー9およびスペーサー8を図2中、一点鎖線で示す
ような位置関係をもって接着した。カバーに透明な材料
を用いると、反応層の状態や試料液の導入状況を外部か
ら極めて容易に確認することが可能である。
After forming the reaction layer 7 as described above,
The cover 9 and the spacer 8 were adhered so as to have a positional relationship shown by a dashed line in FIG. If a transparent material is used for the cover, the state of the reaction layer and the introduction state of the sample solution can be confirmed very easily from the outside.

【0014】また、カバーを装着するとカバーとスペー
サーによって生じる空間部の毛細管現象によって、試料
液はセンサ先端の試料供給孔10に接触させるだけの簡
易操作で容易に反応層部分へ導入される。なお、試料液
の供給をより一層円滑にするためには、さらに必要に応
じてレシチンの有機溶媒溶液を試料供給部から反応層に
かけての面上へ展開し乾燥するとよい。
When the cover is attached, the sample liquid is easily introduced into the reaction layer portion by a simple operation of bringing the sample liquid into contact with the sample supply hole 10 at the tip of the sensor due to the capillarity phenomenon in the space created by the cover and the spacer. In order to make the supply of the sample solution smoother, it is advisable to further spread an organic solvent solution of lecithin on the surface from the sample supply part to the reaction layer and dry it, if necessary.

【0015】さらに、前記レシチンによる処理を実施し
た場合には、前記カバーとスペーサーによって生じる空
間部が毛細管現象を発現し得ない程度の大きさとなる場
合においても、試料液の供給が可能となる。
Further, when the treatment with lecithin is carried out, the sample liquid can be supplied even when the space portion formed by the cover and the spacer has a size such that the capillary phenomenon cannot be expressed.

【0016】試料液の供給量はカバーとスペーサーによ
って生じる空間容積に依存するため、予め定量する必要
がない。さらに、測定中の試料液の蒸発を最小限に抑え
ることができ、精度の高い測定が可能となる。
Since the supply amount of the sample liquid depends on the space volume generated by the cover and the spacer, it is not necessary to quantify it in advance. Furthermore, evaporation of the sample liquid during measurement can be minimized, and highly accurate measurement can be performed.

【0017】上記のように作製した乳酸センサに試料液
として、乳酸を0.2Mリン酸緩衝液によってpH7付
近に調製した溶液3μlを試料供給孔10より供給し
た。試料液は速やかに空気孔11部分まで達し、電極系
上の反応層が溶解した。
As a sample solution, 3 μl of a solution of lactic acid adjusted to pH 7 with 0.2 M phosphate buffer was supplied to the lactic acid sensor manufactured as described above from the sample supply hole 10. The sample solution quickly reached the air holes 11 and the reaction layer on the electrode system was dissolved.

【0018】試料液を供給してから1分後に電極系の対
極5を基準にして測定極4にアノード方向へ+0.5V
のパルス電圧を印加し、5秒後の電流値を測定したとこ
ろ、試料液中の乳酸濃度に比例した応答電流値が得られ
た。
One minute after supplying the sample solution, the counter electrode 5 of the electrode system is used as a reference and the measuring electrode 4 is +0.5 V in the anode direction.
When the pulse voltage was applied and the current value was measured 5 seconds later, a response current value proportional to the lactic acid concentration in the sample solution was obtained.

【0019】反応層7が試料液に溶解すると、試料液中
の乳酸はLODによって酸化され、同時にフェリシアン
化カリウムがフェロシアン化カリウムに還元される。次
に、前記のパルス電圧の印加により、生成したフェロシ
アン化カリウムの酸化電流が得られ、この電流値は基質
である乳酸の濃度に対応する。
When the reaction layer 7 is dissolved in the sample solution, lactic acid in the sample solution is oxidized by LOD and at the same time potassium ferricyanide is reduced to potassium ferrocyanide. Next, by applying the pulse voltage, an oxidation current of the generated potassium ferrocyanide is obtained, and this current value corresponds to the concentration of lactic acid as a substrate.

【0020】上記実施例においては、反応層中にLOD
が4U/cm2、フェリシアン化カリウムが0.65m
g/cm2それぞれ含まれている。この酵素、電子受容
体の含有量について検討したところ、次のような結果が
得られた。
In the above embodiment, LOD was added to the reaction layer.
4 U / cm 2 , potassium ferricyanide 0.65 m
g / cm 2 is included. When the contents of this enzyme and electron acceptor were examined, the following results were obtained.

【0021】酵素の量が少なくなると、反応速度が低下
し、測定に長時間を要するなどの影響がみられた。これ
らの点を考慮して検討したところ、LOD含有量として
は、0.2U/cm2以上が好適であった。
When the amount of the enzyme was decreased, the reaction rate was lowered, and it took a long time for measurement. As a result of studying in consideration of these points, the LOD content was preferably 0.2 U / cm 2 or more.

【0022】また、フェリシアン化カリウムの含有量と
しては4.1mg/cm2より多くなると平滑なあるい
は十分な強度を持つ反応層を形成できなくなるなどの影
響がみられた。これより、フェリシアン化カリウムの含
有量としては、4.1mg/cm2以下が好適であっ
た。
When the content of potassium ferricyanide is more than 4.1 mg / cm 2, there is an effect such that a reaction layer having a smooth or sufficient strength cannot be formed. From this, the content of potassium ferricyanide was preferably 4.1 mg / cm 2 or less.

【0023】なお、上記実施例においては反応層7は電
極系表面に接して形成する方法について述べたが、必ず
しもその必要はない。図2のようなカバー9およびスペ
ーサー8と一体化する場合には、カバー9とスペーサー
8と絶縁性の基板1とによって電極系上部に空間部が形
成される。前記カバー9、スペーサー8、絶縁性の基板
1の前記空間部の壁面に相当する部位であれば適当な場
所に反応層を形成することができる。センサに供給され
た試料液は前記空間部を満たすため、反応層を溶解する
ことが可能である。
Although the reaction layer 7 is formed in contact with the surface of the electrode system in the above embodiment, it is not always necessary. When integrated with the cover 9 and the spacer 8 as shown in FIG. 2, a space is formed in the upper part of the electrode system by the cover 9, the spacer 8 and the insulating substrate 1. The reaction layer can be formed at an appropriate place as long as it is a portion corresponding to the wall of the space of the cover 9, the spacer 8 and the insulating substrate 1. Since the sample solution supplied to the sensor fills the space, the reaction layer can be dissolved.

【0024】上記実施例では親水性高分子としてCMC
を用いたが、これに限定されることはなく、他のセルロ
ース誘導体、具体的には、ヒドロキシエチルセルロー
ス、ヒドロキシプロピルセルロース、メチルセルロー
ス、エチルセルロース、エチルヒドロキシエチルセルロ
ース、カルボキシメチルエチルセルロースを用いてもよ
く、さらには、ポリビニルピロリドン、ポリビニルアル
コール、ゼラチンおよびその誘導体、アクリル酸および
その塩、メタアクリル酸およびその塩、スターチおよび
その誘導体、無水マレイン酸およびその塩を用いても同
様の効果が得られた。
In the above embodiment, CMC was used as the hydrophilic polymer.
Although not limited thereto, other cellulose derivatives, specifically, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl ethyl cellulose may be used, and further The same effect was obtained by using polyvinyl pyrrolidone, polyvinyl alcohol, gelatin and its derivatives, acrylic acid and its salts, methacrylic acid and its salts, starch and its derivatives, maleic anhydride and its salts.

【0025】一方、電子受容体としては、上記実施例に
示したフェリシアン化カリウム以外に、p−ベンゾキノ
ン、フェナジンメトサルフェート、メチレンブルー、フ
ェロセン誘導体なども使用できる。
On the other hand, as the electron acceptor, in addition to potassium ferricyanide shown in the above examples, p-benzoquinone, phenazine methosulfate, methylene blue, ferrocene derivative and the like can be used.

【0026】また、上記実施例において酵素および電子
受容体については試料液に溶解する方式について示した
が、これに制限されることはなく、固定化によって試料
液に不溶化させた場合にも適用することができる。
Further, in the above-mentioned examples, the method of dissolving the enzyme and the electron acceptor in the sample solution has been shown, but the invention is not limited to this, and the invention can be applied to the case where the enzyme and the electron acceptor are insolubilized in the sample solution. be able to.

【0027】さらに、上記実施例では測定極と対極から
なる2電極系について述べたが、参照電極を加えた3電
極系にすると、より精度の高い測定が可能である。
Further, in the above embodiment, the two-electrode system consisting of the measuring electrode and the counter electrode is described, but the three-electrode system including the reference electrode enables more accurate measurement.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、絶縁性
の基板上に少なくとも測定極と対極からなる電極系を設
け、前記電極系上に親水性高分子と乳酸酸化酵素と電子
受容体を含有する反応層を設けたたことにより、乳酸の
濃度に対応した応答電流が得られるので、簡易操作で高
い信頼性を有したバイオセンサを提供できる。
As is apparent from the above description, an electrode system including at least a measuring electrode and a counter electrode is provided on an insulating substrate, and a hydrophilic polymer, a lactate oxidase and an electron acceptor are provided on the electrode system. By providing the containing reaction layer, a response current corresponding to the concentration of lactic acid can be obtained, so that a biosensor with high reliability can be provided by a simple operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のバイオセンサの断面図FIG. 1 is a sectional view of a biosensor according to an embodiment of the present invention.

【図2】本発明の一実施例のバイオセンサのうち反応層
を除いた分解斜視図
FIG. 2 is an exploded perspective view of the biosensor according to one embodiment of the present invention excluding the reaction layer.

【符号の説明】[Explanation of symbols]

1 絶縁性の基板 2、3 リード 4 測定極 5 対極 6 絶縁層 7 反応層 8 スペーサー 9 カバー 10 試料供給孔 11 空気孔 1 Insulating Substrate 2, 3 Lead 4 Measurement Electrode 5 Counter Electrode 6 Insulation Layer 7 Reaction Layer 8 Spacer 9 Cover 10 Sample Supply Hole 11 Air Hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板上に形成した測定極と対極を
主体とする電極系と前記電極系上に形成した反応層を備
え、前記反応層が少なくとも親水性高分子と酵素と電子
受容体からなり、前記酵素は乳酸を酸化する能力を有す
ることを特徴とするバイオセンサ。
1. An electrode system mainly composed of a measuring electrode and a counter electrode formed on an insulating substrate, and a reaction layer formed on the electrode system, wherein the reaction layer is at least a hydrophilic polymer, an enzyme, and an electron acceptor. A biosensor comprising a body, wherein the enzyme has an ability to oxidize lactic acid.
【請求項2】絶縁性の基板上に測定極と対極を主体とす
る電極系を設けたのち、前記電極系上に親水性高分子層
を設け、つぎに前記親水性高分子層上に少なくとも乳酸
酸化酵素と電子受容体を含む水溶液を展開、乾燥させて
反応層を作成することを特徴とするバイオセンサの製造
方法。
2. An electrode system mainly comprising a measuring electrode and a counter electrode is provided on an insulating substrate, a hydrophilic polymer layer is provided on the electrode system, and then at least on the hydrophilic polymer layer. A method for producing a biosensor, which comprises developing an aqueous solution containing lactate oxidase and an electron acceptor and drying the solution to form a reaction layer.
JP04243043A 1992-09-11 1992-09-11 Biosensor Expired - Lifetime JP3127599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04243043A JP3127599B2 (en) 1992-09-11 1992-09-11 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04243043A JP3127599B2 (en) 1992-09-11 1992-09-11 Biosensor

Publications (2)

Publication Number Publication Date
JPH0694672A true JPH0694672A (en) 1994-04-08
JP3127599B2 JP3127599B2 (en) 2001-01-29

Family

ID=17097983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04243043A Expired - Lifetime JP3127599B2 (en) 1992-09-11 1992-09-11 Biosensor

Country Status (1)

Country Link
JP (1) JP3127599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720862A (en) * 1995-04-07 1998-02-24 Kyoto Daiichi Kagaku Co., Ltd. Sensor and production method of and measurement method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720862A (en) * 1995-04-07 1998-02-24 Kyoto Daiichi Kagaku Co., Ltd. Sensor and production method of and measurement method using the same

Also Published As

Publication number Publication date
JP3127599B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3267936B2 (en) Biosensor
EP0359831B2 (en) Biosensor and process for its production
JP3297630B2 (en) Biosensor
EP0636879B1 (en) Method for producing a biosensor
JP2502666B2 (en) Biosensor and manufacturing method thereof
US20010052472A1 (en) Biosensor and method for quantitating biochemical substrate using the same
JP2502635B2 (en) Biosensor
JPH1142098A (en) Quantitative determination of substrate
JPH10221293A (en) Biosensor and its manufacture
JPH02310457A (en) Biosensor
JPH0850113A (en) Biosensor and manufacture thereof
JPS63317757A (en) Glucose sensor
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JP3024394B2 (en) Biosensor and measurement method using the same
JP3267933B2 (en) Substrate quantification method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JPH02245650A (en) Biosensor
JP2000180399A (en) Determination method of substrate
JP2001249103A (en) Biosensor
JPH07114705B2 (en) Biosensor
JP3127599B2 (en) Biosensor
JP3333183B2 (en) Biosensor
JP3611268B2 (en) Biosensor and manufacturing method thereof
JPH02157646A (en) Biosensor
JP3078966B2 (en) Lactic acid sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

EXPY Cancellation because of completion of term