JPH02245650A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH02245650A
JPH02245650A JP1067064A JP6706489A JPH02245650A JP H02245650 A JPH02245650 A JP H02245650A JP 1067064 A JP1067064 A JP 1067064A JP 6706489 A JP6706489 A JP 6706489A JP H02245650 A JPH02245650 A JP H02245650A
Authority
JP
Japan
Prior art keywords
electrode system
electrode
enzyme
electron acceptor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1067064A
Other languages
Japanese (ja)
Other versions
JPH0820400B2 (en
Inventor
Mariko Kawaguri
真理子 河栗
Mayumi Fujita
真由美 藤田
Shiro Nankai
史朗 南海
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1067064A priority Critical patent/JPH0820400B2/en
Publication of JPH02245650A publication Critical patent/JPH02245650A/en
Publication of JPH0820400B2 publication Critical patent/JPH0820400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure a density of a substrate in an organism sample while improving a measuring accuracy by forming an enzyme reaction layer comprising an oxidation/reduction enzyme, a hydrophilic high polymer and an electron acceptor on a surface of an electrode system. CONSTITUTION:For example, a glucose sensor comprises a print of conductive carbon paste on an insulating substrate 1 to form an electrode system comprising a counter electrode 2 and a measuring pole 3. Then, an insulating paste is printed to cover the electrode system partially to form an insulation layer 4 by an overheating processing. Then, the surfaces of electrochemically acting parts 2' and 3' work are coated with an aqueous solution of carboxymethyl cellulose as one kind of hydrophilic high polymer to cover the surfaces and after a drying, glucose oxidase as oxidation/reduction enzyme is dissolved into a phosphoric acid buffer liquid to coat and dry. Moreover, toluene mixed with a fine crystal of potassium ferricyanide as electron acceptor is dripped on the parts to obtain an enzyme reaction layer 5 by forming a potassium ferricyanide layer. A potassium periodate as interfering material removing part 6 is supported near the electrode 2 to make a sample supply section.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡便に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などを行なう事なく聞易に定量しうる方
式として、第5図に示すようなバイオセンサを提案した
。このバイオセンサは、絶縁性の基板1上にスクリーン
印刷等の方法でカーボンなどからなる電極2.3を形成
し、前記電極2.3上に親水性高分子と酸化還元酵素と
電子受容体とからなる酵素反応層6を形成したものであ
る。試料液を酵素反応層5へ滴下すると、酸化還元酵素
と電子受容体とが試料液に溶解し、試料液中の基質との
間で酵素反応が進行し電子受容体が還元される。反応終
了後、このとき得られる酸化電流値から試料液中の基質
濃度を求める。
BACKGROUND OF THE INVENTION In the past, a biosensor as shown in FIG. 5 was proposed as a method for easily quantifying a specific component in a biological sample such as blood without diluting or stirring the sample solution. In this biosensor, an electrode 2.3 made of carbon or the like is formed on an insulating substrate 1 by a method such as screen printing, and a hydrophilic polymer, an oxidoreductase, and an electron acceptor are placed on the electrode 2.3. An enzyme reaction layer 6 consisting of the following is formed. When the sample liquid is dropped onto the enzyme reaction layer 5, the oxidoreductase and the electron acceptor are dissolved in the sample liquid, and an enzymatic reaction proceeds with the substrate in the sample liquid to reduce the electron acceptor. After the reaction is completed, the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする課題 この様な従来の構成では、試料液中に還元性の物質が含
有されている場合、反応時に電子受容体と反応したり電
極反応が影響されて応答がばらついた。
Problems to be Solved by the Invention In such a conventional configuration, when a reducing substance is contained in the sample liquid, the response varies due to the reaction with the electron acceptor or the influence of the electrode reaction during the reaction.

課題を解決するための手段 本発明は上記課題を解決するために、絶縁性の基板上に
少なくともm電極と対極とからなる電極系を設け、酵素
及び電子受容体の試料液との反応に際しての物質濃度変
化を電気化学的に前記電極系で検知し、試料液中の基質
濃度を測定するバイオセンサにおいて、前記電極系の表
面に酸化還元酵素と親水性高分子と電子受容体とから主
になる酵素反応層を形成し、さらに妨害物質除去部を付
加するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an electrode system consisting of at least m electrodes and a counter electrode on an insulating substrate, and a In a biosensor that electrochemically detects changes in substance concentration using the electrode system and measures the substrate concentration in a sample solution, the surface of the electrode system mainly consists of redox enzymes, hydrophilic polymers, and electron acceptors. In this method, an enzyme reaction layer is formed, and an interfering substance removing section is further added.

作   用 本発明によれば、電極系をも含めたディスポーザブルタ
イプのバイオセンサを構成することができ、試料液をセ
ンサに添加することにより、極めて容易に基質濃度を測
定することができる。しかも、試料の添加時に妨害物質
除去部で試料液中の還元性の物質を酸化するため応答へ
の影響がなくなり、安定した応答が得られる。
Effects According to the present invention, a disposable type biosensor including an electrode system can be constructed, and the substrate concentration can be measured extremely easily by adding a sample liquid to the sensor. Moreover, since reducing substances in the sample liquid are oxidized in the interfering substance removing section when adding the sample, there is no effect on the response, and a stable response can be obtained.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

実施例1 バイオセンサの一例として、グルコースセンサについて
説明する。第1図及び第2図は、グルコースセンサの一
例について示したもので、バイオセンサの斜視図と縦断
面図である。ポリエチレンテレフタレートからなる絶縁
性の基板1に、スクリーン印刷により導電性カーボンペ
ーストを印刷し、加熱乾燥することにより、対極2、測
定極3からなる電極系を形成する。次に、電極系を部分
的に覆い、各々の電極2.3の電気化学的に作用する部
分2′ 3′を残すように、絶縁性ペーストを前記と同
様に印刷し、加熱処理をして絶縁層4を形成する。前記
部分2′ 3′の表面を覆うようにセルロース系の親水
性高分子の一種であるCMC(カルボキシメチルセルロ
ース)の水溶液を塗布し、45℃で30分乾燥した。得
られたCMC層の上に酸化還元酵素としてグルコースオ
キシダーゼ(GOD)をpEI5.8のリン酸緩衝液に
溶解したものを塗布した後、室温で乾燥した。その上に
有機溶媒としてトルエンに電子常容体であるフェリシア
ン化カリウムの微結晶を混ぜたものを滴下し、室温で放
置してトルエンを気化させることによりフェリシアン化
カリウム層を形成した。このようにして、酵素反応層5
を形成した。さらに、電極2の近くに妨害物質除去部6
として過ヨウ素酸カリウムを担持し、試料の供給部とし
た。
Example 1 A glucose sensor will be described as an example of a biosensor. FIGS. 1 and 2 show an example of a glucose sensor, and are a perspective view and a longitudinal sectional view of the biosensor. A conductive carbon paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing and dried by heating to form an electrode system consisting of a counter electrode 2 and a measurement electrode 3. Next, an insulating paste is printed and heat-treated in the same way as before, so as to partially cover the electrode system and leave the electrochemically active parts 2' and 3' of each electrode 2.3. An insulating layer 4 is formed. An aqueous solution of CMC (carboxymethylcellulose), which is a type of cellulose-based hydrophilic polymer, was applied to cover the surface of the portions 2' and 3', and dried at 45°C for 30 minutes. A solution of glucose oxidase (GOD) dissolved in a phosphate buffer with pEI 5.8 as an oxidoreductase was applied onto the obtained CMC layer, and then dried at room temperature. A mixture of toluene as an organic solvent and microcrystals of potassium ferricyanide, which is an electron normal substance, was added dropwise thereon, and the mixture was allowed to stand at room temperature to vaporize the toluene, thereby forming a potassium ferricyanide layer. In this way, the enzyme reaction layer 5
was formed. Further, an interfering substance removing section 6 is provided near the electrode 2.
Potassium periodate was supported as a sample supply section.

上記のように構成したグルコースセンサに試料液として
血清を供給部に10μm滴下し、2分後に対極2を基準
にして測定極3にアノード方向へ+0.8Vのパルス電
圧を印加し5秒後の電流を測定する。血清斗添加すると
、妨害物質除去部6として担持されていた過ヨウ素酸カ
リウムにより血清中の還元物質であるアスコルビン酸な
どが酸化されて酵素反応層6のフェリシアン化カリウム
と反応するのを妨害する。さらに、妨害物質が除去され
た血清によりフェリシアン化カリウムが溶解し、血清中
のグルコースが酵素反応層5において酸化される際、フ
ェロシアン化カリウムに還元される。そこで、上記のパ
ルス電圧の印加により、生成したフェロシアン化カリウ
ムの濃度に基づく酸化電流が得られる。この電流値は基
質であるグルコースの濃度に対応する。グルコースの標
準液を滴下し応答電流を測定したところ500mg/d
lという高濃度まで良好な直線性が得られた。
In the glucose sensor configured as described above, serum as a sample liquid was dropped into the supply part by 10 μm, and after 2 minutes, a pulse voltage of +0.8 V was applied to the measurement electrode 3 toward the anode with reference to the counter electrode 2, and after 5 seconds Measure current. When serum is added, ascorbic acid, which is a reducing substance in the serum, is oxidized by the potassium periodate supported as the interfering substance removing part 6, thereby preventing it from reacting with potassium ferricyanide in the enzyme reaction layer 6. Further, potassium ferricyanide is dissolved by the serum from which interfering substances have been removed, and when glucose in the serum is oxidized in the enzyme reaction layer 5, it is reduced to potassium ferrocyanide. Therefore, by applying the above-mentioned pulse voltage, an oxidation current based on the concentration of the generated potassium ferrocyanide can be obtained. This current value corresponds to the concentration of glucose, which is a substrate. When a standard solution of glucose was added dropwise and the response current was measured, it was 500 mg/d.
Good linearity was obtained up to a high concentration of 1.

つぎに、グルコース標準液に還元性物質の代表としてア
スコルビン酸を10mg/旧加え、測定したところ本実
施例のように過ヨウ素酸カリウムのある場合はほとんど
アスコルビン酸の影響がみられなかったが、過ヨウ素酸
カリウムが無い場合は、グルコース濃度100 mg/
 diにおいて約10%も高い応答が得られた。これは
、アスコルビン酸がフェリシアン化カリウムと反応して
フェロシアン化カリウムが生成し、見かけ上、正の誤差
が生じたものと考えられる。
Next, 10 mg/ml of ascorbic acid as a representative reducing substance was added to the glucose standard solution, and measurements were taken. As in this example, when potassium periodate was present, almost no effect of ascorbic acid was observed. In the absence of potassium periodate, glucose concentration 100 mg/
About 10% higher response was obtained in di. This is considered to be because ascorbic acid reacts with potassium ferricyanide to produce potassium ferrocyanide, resulting in an apparently positive error.

本実施例によれば、過ヨウ素酸カリウムを妨害物質除去
部8として担持することにより、アスコルビン酸を前も
って酸化して影響を除去することが出来た。
According to this example, by supporting potassium periodate as the interfering substance removing portion 8, it was possible to oxidize ascorbic acid in advance and remove its influence.

実施例2 実施例1に示したようにしてCMC−GOD層を形成し
た後、フェリシアン化カリウム層を形成する際トルエン
に界面活性剤としてレシチン(ホスファチジルコリン)
を溶解して1wt%溶液を調製し、これにフェリシアン
化カリウムの微結晶を混ぜたものを用いてフェリシアン
化カリウムとレシチンの層を形成した。こうして、本実
施例の酵素反応層を設けた。
Example 2 After forming a CMC-GOD layer as shown in Example 1, lecithin (phosphatidylcholine) was added to toluene as a surfactant when forming a potassium ferricyanide layer.
was dissolved to prepare a 1 wt % solution, and a layer of potassium ferricyanide and lecithin was formed by mixing microcrystals of potassium ferricyanide with this solution. In this way, the enzyme reaction layer of this example was provided.

レシチンの濃度が0.01w t%以上になるとフェリ
シアン化カリウムがうまくトルエン中で分散したため滴
下が容易となり、3μmの微量な液でも薄膜状のフェリ
シアン化カリウム−レシチン層が形成できた。レシチン
がない場合は、フェリシアン化カリウム層が不均一に形
成されたり基板をまげるとはがれるという欠点が見られ
たが、レシチンを添加することにより均一ではがれにく
いフェリシアン化カリウム層が容易に形成できた。レシ
チンの濃度が高くなるとともに、フェリシアン化カリウ
ム層がはがれにくくなるが、フェリシアン化カリウムの
溶解速度も落ちるため、0.01−3w t%が適当と
考えられる。
When the concentration of lecithin was 0.01 wt % or more, potassium ferricyanide was well dispersed in toluene, making it easy to drip, and a thin potassium ferricyanide-lecithin layer could be formed even with a trace amount of liquid of 3 μm. In the absence of lecithin, there were disadvantages in that the potassium ferricyanide layer was formed unevenly and peeled off when the substrate was bent, but by adding lecithin, a uniform potassium ferricyanide layer that was difficult to peel off could be easily formed. As the lecithin concentration increases, the potassium ferricyanide layer becomes difficult to peel off, but the dissolution rate of potassium ferricyanide also decreases, so 0.01-3 wt% is considered to be appropriate.

上記センサにグルコース標準液を滴下して実施例1と同
様にして応答を測定したところ、グルコース濃度500
mg/dlまで直線性が得られた。さらに、血液を滴下
したところ、レシチン層によりすみやかにひろがり反応
が始まったため、Bμlという微量のサンプルでも再現
性のよい応答が得られた。
When a glucose standard solution was dropped onto the above sensor and the response was measured in the same manner as in Example 1, it was found that the glucose concentration was 500.
Linearity was obtained down to mg/dl. Furthermore, when blood was dropped, it quickly spread through the lecithin layer and a reaction began, so a response with good reproducibility was obtained even with a small sample amount of Bμl.

サンプルが少量になると、妨害物質除去部としての過ヨ
ウ素酸カリウムの担持量も少なくて効果がみられた。
When the sample amount was small, the amount of potassium periodate supported as an interfering substance removing part was also small, and the effect was seen.

レシチンのかわりにポリエチレングリコールアルキルフ
ェニルエーテル(商品名ニトリトンX)を用いたところ
、フェリシアン化カリウムの微粒子をトルエン中に分散
させるためには 0.1%以上必要であったが、レシチ
ンと同様に良好なフェリシアン化カリウム層が形成でき
た。界面活性剤としては、前記の例の他に、オレイン酸
やポリオキシエチレングリセリン脂肪酸エステルやシク
gデキストリンなど、電子受容体を有機溶媒に分散させ
、かつ酵素活性に影響をおよぼさないものであれば、特
に制限されることはない。
When polyethylene glycol alkyl phenyl ether (trade name Nitriton A potassium ferricyanide layer was formed. In addition to the examples mentioned above, surfactants that can disperse electron acceptors in organic solvents and do not affect enzyme activity, such as oleic acid, polyoxyethylene glycerin fatty acid ester, and cyclodextrin, can also be used. If so, there are no particular restrictions.

親水性高分子としてCMCの他にもゼラチンやメチルセ
ルロースなども使用でき、でんぷん系、カルボキシメチ
ルセルロース系、ゼラチン系、アクリル酸塩系、ビニル
アルコール系、ビニルピロリドン系、無水マレイン酸系
のものが好ましい。
In addition to CMC, gelatin, methylcellulose, and the like can be used as hydrophilic polymers, and starch-based, carboxymethylcellulose-based, gelatin-based, acrylate-based, vinyl alcohol-based, vinylpyrrolidone-based, and maleic anhydride-based polymers are preferred.

これらの高分子は容易に水溶液とすることができるので
、適当な濃度の水溶液を塗布、乾燥することにより、必
要な厚さの薄膜を電極上に形成することができる。
Since these polymers can be easily made into an aqueous solution, a thin film of a required thickness can be formed on the electrode by applying an aqueous solution of an appropriate concentration and drying.

電子受容体を混合する有機溶媒としては、トルエンや石
油エーテルなど、GoD活性および印刷電極への影響の
少ないものであればよい。
The organic solvent in which the electron acceptor is mixed may be any organic solvent that has little effect on GoD activity and printed electrodes, such as toluene and petroleum ether.

電極系を形成する方法としてのスクリーン印刷は、均一
な特性を宵するディスポーザブルタイプのバイオセンサ
を安価に製造することができ、特に、価格が安(、シか
も安定した電極材料であるカーボンを用いて電極を形成
するのに好都合な方法である。
Screen printing as a method for forming the electrode system can produce disposable biosensors with uniform characteristics at low cost, especially when using carbon, which is a cheap and stable electrode material. This is a convenient method for forming electrodes.

試料中の還元性物質を酸化する物質としては、過ヨウ素
酸カリウムの他に、活性酸化マンガン、塩化鉄、P−ベ
ンゾキノン等が効果があった。上記の物質は、酸化力は
あるが、反応が穏やかで、酵素反応層への影響が少なか
った。
In addition to potassium periodate, active manganese oxide, iron chloride, P-benzoquinone, and the like were effective as substances that oxidize reducing substances in the sample. Although the above-mentioned substances had oxidizing power, the reaction was mild and had little effect on the enzyme reaction layer.

実施例3 試料液として、血液や血清を用いる場合、還元性の物質
の主なものは、アスコルビン酸であることが知られてい
る。そこで、血糖を測定するセンサの試料供給部にアス
コルビン酸オキシダーゼおよびカタラーゼを担持した。
Example 3 When blood or serum is used as a sample liquid, it is known that the main reducing substance is ascorbic acid. Therefore, ascorbate oxidase and catalase were loaded on the sample supply part of a sensor that measures blood sugar.

血清を滴下すると、試料中のアスコルビン酸がアスコル
ビン酸オキシダーゼにより酸化され、過酸化水素が生成
し、カタラーゼにより分解される。
When serum is added dropwise, ascorbic acid in the sample is oxidized by ascorbic acid oxidase, hydrogen peroxide is generated, and this is decomposed by catalase.

そのため、アスコルビン酸の影響なしに血糖の測定が可
能となった。酵素を用いているために、温和な状態で、
速やかにアスコルビン酸の選択的な除去ができ、酵素反
応層へ与える影響も少なかった。アスコルビン酸オキシ
ダーゼおよびカタラーゼは同時に架橋して固定化して担
持することができるため、血清や血液が滴下されたとき
溶は出さないで反応し、グルコースセンサの酵素反応層
や電極部に妨害を与えることがなかった。尿酸に対して
はアスコルビン酸オキシダーゼの代わりにウリカーゼを
用いることでその影響を除去することがで自た。
Therefore, it has become possible to measure blood sugar without the influence of ascorbic acid. Because it uses enzymes, it is mild,
Ascorbic acid could be quickly and selectively removed, and the effect on the enzyme reaction layer was small. Ascorbic acid oxidase and catalase can be cross-linked and immobilized at the same time, so when serum or blood is dropped, they react without dissolving, and they do not interfere with the enzyme reaction layer or electrode part of the glucose sensor. There was no. The effect of uric acid could be removed by using uricase instead of ascorbate oxidase.

実施例4 実施例2に示した構成のセンサに第3図に示すようにカ
バー7をつけた。このカバーの試料供給部にアスコルビ
ン酸オキシダーゼ及びカタラーゼを固定化して担持し界
面活性剤を付加した。血液をカバー7の試料供給部に供
給すると、界面活性剤によりすみやかに妨害物質除去部
6に導入され固定化された上記酵素と反応後、電極部2
.3に広がり、酵素反応層5で反応が進み再現の良い応
答が得られた。カバー7内の容積を小さくすることで、
サンプル量およびアスコルビン酸オキシダーゼとカタラ
ーゼの担持量を微量にすることができた。さらに、カバ
ー7で囲むことにより、外気と遮断できるため、カバー
7内の試料の蒸発を防ぐことが出来た。
Example 4 A cover 7 was attached to the sensor having the configuration shown in Example 2 as shown in FIG. Ascorbic acid oxidase and catalase were immobilized and supported on the sample supply portion of this cover, and a surfactant was added thereto. When blood is supplied to the sample supply section of the cover 7, it is quickly introduced into the interfering substance removal section 6 by the surfactant, and after reacting with the immobilized enzyme, the blood is transferred to the electrode section 2.
.. 3, the reaction progressed in the enzyme reaction layer 5, and a reproducible response was obtained. By reducing the volume inside the cover 7,
The amount of sample and the amount of ascorbic acid oxidase and catalase supported could be reduced to minute amounts. Furthermore, by surrounding the sample with the cover 7, the sample inside the cover 7 could be prevented from evaporating because it could be isolated from the outside air.

実施例5 実施例4に示したカバー付のバイオセンサにおいて、そ
の試料供給口をアスコルビン酸オキシダーゼ及びカタラ
ーゼを固定化したナイロン不織布で第4図のようにふさ
いだ。血液を試料供給口へ付着させるとナイロン不織布
を通過して酵素反応層5へ流れた。そのあ〜)だに、試
料中のアスコルビン酸が反応して除去されるとともに血
球などの大きな分子がナイロン不織布に吸着して除去さ
れ試料の粘度が下がるため、反応速度が増した。妨害物
質の担体としては、ナイロン不織布の他にバルブ、ガラ
ス繊維、ポリカーボネート多孔体膜などが使用できた。
Example 5 In the biosensor with a cover shown in Example 4, the sample supply port was covered with a nylon nonwoven fabric on which ascorbic acid oxidase and catalase were immobilized, as shown in FIG. When the blood adhered to the sample supply port, it passed through the nylon nonwoven fabric and flowed to the enzyme reaction layer 5. However, ascorbic acid in the sample was reacted and removed, and large molecules such as blood cells were adsorbed to the nylon nonwoven fabric and removed, reducing the viscosity of the sample and increasing the reaction rate. In addition to nylon nonwoven fabric, bulbs, glass fibers, porous polycarbonate membranes, and the like could be used as carriers for interfering substances.

なお、本発明のバイオセンサは上記実施例に示したグル
コースセンサに限らず、アルコールセンサやコレステロ
ールセンサなど、酸化還元酵素の関与する系に用いるこ
とができる。酸化還元酵素として上記実施例ではグルコ
ースオキシダーゼを用いたが、他の酵素、たとえばアル
コールオキシダーゼ、コレステロールオキシダーゼ、キ
サンチンオキシダーゼ、等を用いることができる。また
、電子受容体として、上記実施例に用いたフェリシアン
化カリウムが安定に反応するので適しているがP−ベン
ゾキノンを使えば、反応速度が大きいので高速化に適し
ている。また、 2.6−シクロロフエノールインドフ
エノール、メチレンブルー、フェナジンメトサルフェー
ト、β−ナフトキノン4−スルホン酸カリウム、フェロ
セン等が使用できる 発明の効果 このように本発明のバイオセンサは、絶縁性の基板上に
電極系を印刷し、酸化還元酵素と親水性萬分子及び電子
受容体からなる酵素反応層を形成し、さらに、妨害物質
除去部として溶解して酸化反応をする物質を付加したり
、酵素を担持することにより、あらかじめ生体試料中に
存在する還元性の物質は除去して極めて容易に生体試料
中の基質濃度を測定することができ、測定精度を向上さ
せたものである。
The biosensor of the present invention is not limited to the glucose sensor shown in the above embodiments, but can be used in systems involving redox enzymes, such as alcohol sensors and cholesterol sensors. Although glucose oxidase was used as the oxidoreductase in the above examples, other enzymes such as alcohol oxidase, cholesterol oxidase, xanthine oxidase, etc. can be used. Further, as the electron acceptor, potassium ferricyanide used in the above examples is suitable because it reacts stably, but P-benzoquinone is suitable for increasing the reaction rate because it has a high reaction rate. In addition, the effects of the invention in which 2,6-cyclophenol indophenol, methylene blue, phenazine methosulfate, potassium β-naphthoquinone 4-sulfonate, ferrocene, etc. An electrode system is printed on the substrate to form an enzyme reaction layer consisting of an oxidoreductase, a hydrophilic molecule, and an electron acceptor, and a substance that dissolves and undergoes an oxidation reaction is added as an interfering substance removal part. By supporting the substrate, reducing substances that are present in the biological sample can be removed in advance, and the substrate concentration in the biological sample can be measured very easily, improving measurement accuracy.

また、電子受容体層を形成するとき界面活性剤を添加す
ることにより、微量の電子受容体を均一にかつはがれに
くい薄膜層に担持でき、保存性や大量生産に大きな効果
がある。
Furthermore, by adding a surfactant when forming the electron acceptor layer, a small amount of the electron acceptor can be uniformly supported on the thin film layer that is difficult to peel off, which has a great effect on storage stability and mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるバイオセンサの斜視
図、第2図、第3図、第4図は同バイオセンサの縦断面
図、第5図は従来例のバイオセンサの縦断面図である。 130.基板、2.、、対極、3.、、測定極、4.、
、絶縁層、5.、、酵素反応層、θ01.妨害物質除去
部、79.、カバー 代理人の氏名 弁理士 粟野重孝 はか1名III  
図 第2図 ! −m− 3−°゛  −m− 5=・・  −m− 暮   仮 対   i 測 定 陽 緯 縄 1 鍔l!反応層 nvww  肺 i! 暫
FIG. 1 is a perspective view of a biosensor according to an embodiment of the present invention, FIGS. 2, 3, and 4 are longitudinal sectional views of the same biosensor, and FIG. 5 is a longitudinal sectional view of a conventional biosensor. It is. 130. Substrate, 2. ,,Opposite,3. , , measurement pole, 4. ,
, insulating layer, 5. , , enzyme reaction layer, θ01. Interfering substance removal section, 79. , Name of cover agent Patent attorney Shigetaka Awano Haka 1 person III
Figure 2! -m- 3-°゛ -m- 5=... -m- Kure temporary pair i measurement positive latitude rope 1 tsuba l! Reaction layer nvww lung i! temporary

Claims (7)

【特許請求の範囲】[Claims] (1)少なくとも測定極と対極とからなる電極系を設け
た絶縁性の基板を備え、前記電極系の表面に酸化還元酵
素と親水性高分子と電子受容体とから主になる酵素反応
層を設け、さらに、妨害物質除去部を付加し、前記酵素
と電子受容体と試料液の反応に際しての物質濃度変化を
電気化学的に前記電極系で検知し前記基質濃度を測定す
るように構成したことを特徴とするバイオセンサ。
(1) An insulating substrate is provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and an enzyme reaction layer consisting mainly of an oxidoreductase, a hydrophilic polymer, and an electron acceptor is provided on the surface of the electrode system. Further, an interfering substance removing section is added, and the substance concentration change during the reaction between the enzyme, the electron acceptor, and the sample liquid is electrochemically detected by the electrode system, and the substrate concentration is measured. A biosensor featuring:
(2)少なくとも測定極と対極とからなる電極系を設け
た絶縁性の基板を備え、前記電極系の表面に酸化還元酵
素と親水性高分子と界面活性剤を含有した電子受容体と
から主になる酵素反応層を設け、さらに、妨害物質除去
部を付加し、前記酵素と電子受容体と試料液の反応に際
しての物質濃度変化を電気化学的に前記電極系で検知し
前記基質濃度を測定するように構成したことを特徴とす
るバイオセンサ。
(2) An insulating substrate is provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and an electron acceptor containing an oxidoreductase, a hydrophilic polymer, and a surfactant is mainly formed on the surface of the electrode system. Further, an interfering substance removal section is added, and a change in substance concentration during the reaction between the enzyme, electron acceptor, and sample liquid is electrochemically detected by the electrode system, and the substrate concentration is measured. A biosensor characterized in that it is configured to.
(3)妨害物質除去部が酸化力を有する物質からなる請
求項1または2記載のバイオセンサ。
(3) The biosensor according to claim 1 or 2, wherein the interfering substance removing section is made of a substance having oxidizing power.
(4)妨害物質除去部に酵素を担持した請求項1または
2記載のバイオセンサ。
(4) The biosensor according to claim 1 or 2, wherein the interfering substance removing portion carries an enzyme.
(5)妨害物質除去部の酵素が固定化されている請求項
4記載のバイオセンサ。
(5) The biosensor according to claim 4, wherein the enzyme of the interfering substance removing portion is immobilized.
(6)電極系が、絶縁性の基板上にスクリーン印刷で形
成されたカーボンを主体とする材料からなる請求項1ま
たは2記載のバイオセンサ。
(6) The biosensor according to claim 1 or 2, wherein the electrode system is made of a carbon-based material formed by screen printing on an insulating substrate.
(7)電極系の上に、酵素反応層及び妨害物質除去部を
内側に含むようにカバーを設置した請求項1または2記
載のバイオセンサ。
(7) The biosensor according to claim 1 or 2, wherein a cover is installed on the electrode system so as to include the enzyme reaction layer and the interfering substance removal section inside.
JP1067064A 1989-03-17 1989-03-17 Biosensor Expired - Lifetime JPH0820400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1067064A JPH0820400B2 (en) 1989-03-17 1989-03-17 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1067064A JPH0820400B2 (en) 1989-03-17 1989-03-17 Biosensor

Publications (2)

Publication Number Publication Date
JPH02245650A true JPH02245650A (en) 1990-10-01
JPH0820400B2 JPH0820400B2 (en) 1996-03-04

Family

ID=13334039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1067064A Expired - Lifetime JPH0820400B2 (en) 1989-03-17 1989-03-17 Biosensor

Country Status (1)

Country Link
JP (1) JPH0820400B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109692A (en) * 1992-09-25 1994-04-22 A & D Co Ltd Oxygen electrode
JPH11201932A (en) * 1997-04-14 1999-07-30 Matsushita Electric Ind Co Ltd Biosensor
WO2004040286A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Determination method for automatically identifying analyte liquid and standard solution for biosensor
EP2042610A1 (en) * 1999-02-23 2009-04-01 Asulab S.A. Electrochemical system for determining the coagulation time of blood
JP2011149878A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Potential difference measuring device and potential difference measuring method
US8712701B2 (en) 2008-11-04 2014-04-29 Hitachi, Ltd. Potentiometric-sensor chip, potentiometric assay, and assay kit
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201804812D0 (en) * 2018-03-26 2018-05-09 Univ Swansea Biosensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358149A (en) * 1986-08-28 1988-03-12 Matsushita Electric Ind Co Ltd Biosensor
JPS6466559A (en) * 1987-09-08 1989-03-13 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358149A (en) * 1986-08-28 1988-03-12 Matsushita Electric Ind Co Ltd Biosensor
JPS6466559A (en) * 1987-09-08 1989-03-13 Matsushita Electric Ind Co Ltd Biosensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109692A (en) * 1992-09-25 1994-04-22 A & D Co Ltd Oxygen electrode
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
JPH11201932A (en) * 1997-04-14 1999-07-30 Matsushita Electric Ind Co Ltd Biosensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
EP2042610A1 (en) * 1999-02-23 2009-04-01 Asulab S.A. Electrochemical system for determining the coagulation time of blood
US7504020B2 (en) 2002-10-31 2009-03-17 Panasonic Corporation Determination method for automatically identifying analyte liquid and standard solution for biosensor
WO2004040286A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Determination method for automatically identifying analyte liquid and standard solution for biosensor
US8712701B2 (en) 2008-11-04 2014-04-29 Hitachi, Ltd. Potentiometric-sensor chip, potentiometric assay, and assay kit
JP2011149878A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Potential difference measuring device and potential difference measuring method

Also Published As

Publication number Publication date
JPH0820400B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JP3375040B2 (en) Substrate quantification method
USRE36991E (en) Biosensor and method for producing the same
JP3267936B2 (en) Biosensor
US6436255B2 (en) Biosensor
JP2502666B2 (en) Biosensor and manufacturing method thereof
JPH02310457A (en) Biosensor
WO1989009397A1 (en) Biosensor and process for its production
JPH1144667A (en) Biosensor
US6451372B2 (en) Biosensor and method of producing the same
JPH0816664B2 (en) Biosensor and manufacturing method thereof
US6471839B1 (en) Biosensor
JP3267933B2 (en) Substrate quantification method
JP3024394B2 (en) Biosensor and measurement method using the same
JPH02245650A (en) Biosensor
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP2000039416A (en) Biosensor
JP3529081B2 (en) Cholesterol sensor and method for producing the same
JPH02157646A (en) Biosensor
JP3070818B2 (en) Biosensor and manufacturing method thereof
JP2001201480A (en) Biosensor
JPH02102448A (en) Biosensor
JPH112618A (en) Cholesterol sensor and manufacture thereof
JP3245103B2 (en) Biosensor and Substrate Quantification Method Using It
JP2000193627A (en) Manufacture of biosensor
JP3127599B2 (en) Biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 14