JPH0681360B2 - Sound reproduction device - Google Patents

Sound reproduction device

Info

Publication number
JPH0681360B2
JPH0681360B2 JP56187473A JP18747381A JPH0681360B2 JP H0681360 B2 JPH0681360 B2 JP H0681360B2 JP 56187473 A JP56187473 A JP 56187473A JP 18747381 A JP18747381 A JP 18747381A JP H0681360 B2 JPH0681360 B2 JP H0681360B2
Authority
JP
Japan
Prior art keywords
listener
input
matrix
speaker
specific speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56187473A
Other languages
Japanese (ja)
Other versions
JPS5889000A (en
Inventor
賢一 寺井
明寿 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56187473A priority Critical patent/JPH0681360B2/en
Publication of JPS5889000A publication Critical patent/JPS5889000A/en
Publication of JPH0681360B2 publication Critical patent/JPH0681360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

【発明の詳細な説明】 本発明は複数の受聴者に対して各々に任意の位置の音像
を知覚させる音響再生装置に関する。
The present invention relates to a sound reproducing device that allows a plurality of listeners to perceive a sound image at an arbitrary position.

受聴者に対して任意の位置に音像を定位させる従来の音
響再生装置について第1図及び第2図を用いて説明す
る。スピーカ(1a)(1b)から受聴者(2)の耳介(2
a)(2b)までの伝達関数をHRr,HRl,HLR,HLlとし、音
像を定位させる位置の仮想の特定スピーカ(3)から受
聴者(2)の耳介(2a)(2b)までの伝達関数を
φr,Hφlとすれば、入力信号をスピーカ(1a)(1
b)の入力端子(4)に印加した時と、特定スピーカ
(3)の入力端子(5)に印加した時の受聴者(2)の
両耳の音圧を等しくおくことにより が導出され、この式をE,Eについて解くと と一義的に決定される。
A conventional sound reproducing device for localizing a sound image at an arbitrary position for a listener will be described with reference to FIGS. 1 and 2. From the speaker (1a) (1b) to the auricle (2) of the listener (2)
a) Transfer functions up to (2b) are set to H Rr , H Rl , H LR , and H Ll, and the virtual specific speaker (3) at the position where the sound image is localized is detected from the auricle (2a) (2b) of the listener (2). ) until the transfer functions H [phi] r, if H φl, loudspeaker input signal (1a) (1
By applying the same sound pressure to both ears of the listener (2) when applied to the input terminal (4) of b) and when applied to the input terminal (5) of the specific speaker (3). Is derived, and if this equation is solved for E R and E L , Is uniquely determined.

しかしながら、このような従来装置においては、受聴者
(2)が1人に限定されるという最も基本的かつ決定的
な欠点があつた。また上記式を満足するE,Eを実
現する回路が非常に複雑になり、厳密に規定することが
できなかつた。例えば上記式よりE,Eを求め、整
理してイコライザ(6a)(6b)として第2図のような構
成の回路を導出しても、ブロツク図(7)〜(10)の各
々に遅延回路と周波数イコライザとをそれぞれ少なくと
も1個以上必要とすると共に、各遅延回路の遅延時間の
設定及び周波数イコライザの設定が繁雑となり、精度に
も限界があつた。
However, such a conventional device has the most fundamental and decisive drawback that the listener (2) is limited to one. Further, the circuit that realizes E R and E L satisfying the above equation becomes very complicated and cannot be specified precisely. For example E from the equation R, seeking E L, be derived the circuit configuration shown in FIG. 2 as an equalizer (6a) (6b) to organize, to each of the block diagram (7) - (10) At least one delay circuit and at least one frequency equalizer are required, and the setting of the delay time and the frequency equalizer of each delay circuit becomes complicated and the accuracy is limited.

本発明は上記欠点を解消するものであり、以下その一実
施例を図面に基づいて説明する。
The present invention solves the above drawbacks, and one embodiment thereof will be described below with reference to the drawings.

第3図において、(8a)〜(8d)はスピーカ、(9)は
スピーカ(8a)〜(8d)の入力端子、(10a)〜(10d)
をイコライザ、(11)は音像定位させる位置にある仮想
の特定スピーカ、(12)は特定スピーカ(11)の入力端
子、(13)(14)は受聴者、(13a)(13b)は受聴者
(13)の耳介、(14a)(14b)は受聴者(14)の耳介で
ある。各スピーカ(8a)〜(8d)から各受聴者(13)
(14)の耳介(13a)(13b)(14a)(14b)までの伝達
関数を次のように定める。例えばスピーカ(8a)から受
聴者(13)の右耳までの伝達関数をHArとする。同様に
してHの添字の第1文字目はそのスピーカの前段に接続
されるイコライザを表わし、第2文字目は右の受聴者
(13)の両耳をr,l、左の受聴者(14)の両耳をR,Lで表
わす。さて入力信号Sを入力端子(9)に印加すると各
受聴者(13)(14)の両耳の音圧P,P,P,Pは次
のようになる 一方、入力信号Sを音像定位させる特定スピーカ(11)
の入力端子(12)に印加した場合の各受聴者(13)(1
4)の両耳の音圧P′,P′,P′,P′は、特定ス
ピーカ(11)の位置を添字φで表現して ここで各受聴者(13)(14)の両耳音圧について上記
式と式とを等しく、つまりP′=P,P′=
,P′=P,P′=Pとおけば となり、これをA,B,C,Dについて解けば となり一義的に規定できる。
In FIG. 3, (8a) to (8d) are speakers, (9) is an input terminal of the speakers (8a) to (8d), and (10a) to (10d).
Is an equalizer, (11) is a virtual specific speaker at a position for sound image localization, (12) is an input terminal of the specific speaker (11), (13) and (14) are listeners, (13a) and (13b) are listeners. Pinna of (13), pinna (14a) (14b) are pinna of the listener (14). From each speaker (8a) to (8d) to each listener (13)
The transfer function up to the pinna (13a) (13b) (14a) (14b) of (14) is determined as follows. For example, the transfer function from the speaker (8a) to the right ear of the listener (13) is H Ar . Similarly, the first letter of the suffix of H represents an equalizer connected to the front stage of the speaker, and the second letter of the second letter is r, l for the right listener (13) and the left listener (14 ) Are represented by R and L. Now, when the input signal S is applied to the input terminal (9), the sound pressures P r , P l , P R , and P L of the ears of the listeners (13) and (14) are as follows. On the other hand, a specific speaker (11) that localizes the input signal S as a sound image
When applied to the input terminal (12) of each listener (13) (1
The sound pressure P r ′, P l ′, P R ′, P L ′ of both ears in 4) is expressed by the subscript φ at the position of the specific speaker (11). Here, with respect to the binaural sound pressures of the listeners (13) and (14), the above equations are equal to each other, that is, P r ′ = P r , P l ′ =
If P l , P R ′ = P r , P L ′ = P L And solve for A, B, C, D It can be specified uniquely.

ところが従来例の説明で述べたように上記式を満たす
A,B,C,Dのイコライザを実現する回路が非常に複雑とな
るので、A,B,C,Dのイコライザを時間領域における離散
的なコンボルバとして実現することを考える。つまり伝
達関数をn個の離散的なサンプル列から成るインパルス
レスポンスとして表現し、入力信号Sを単位インパルス
とすると、上記式より ただし、各伝達関数に相当するインパルス応答時系列デ
ータより次の行列を作る。
However, as described in the explanation of the conventional example, the above formula is satisfied.
Since the circuit that realizes the equalizer of A, B, C, D becomes very complicated, we consider to realize the equalizer of A, B, C, D as a discrete convolver in the time domain. That is, when the transfer function is expressed as an impulse response composed of n discrete sample sequences and the input signal S is a unit impulse, However, the following matrix is created from the impulse response time series data corresponding to each transfer function.

またコンボルバのインパルス応答つまりタップ係数を次
のように定める。
Moreover, the impulse response of the convolver, that is, the tap coefficient is determined as follows.

さらにコンボルバにより補正された両耳におけるインパ
ルス応答を次のように定める。
Furthermore, the impulse response in both ears corrected by the convolver is determined as follows.

さらに上記式は次式と等価であり、 これを次式で表現する。 Furthermore, the above equation is equivalent to This is expressed by the following formula.

P=h・g …… ただし また同様に上記式より、入力信号を単位インパルスと
すれば、 ただしP′,h′はインパルス応答サンプル列に0を
m−1個付加した行列とする。
P = h ・ g ... Similarly, from the above equation, if the input signal is a unit impulse, However, P X ′, h Y ′ is a matrix obtained by adding m−1 0s to the impulse response sample sequence.

さらに上記式を P′=hφ …… ただし とおく。 Further, the above equation is expressed as P ′ = h φ far.

ここでPとP′より評価関数fを次のように定め、fを
最小とするgを求める。
Here, the evaluation function f is determined from P and P ′ as follows, and g that minimizes f is obtained.

f=(P−P′)(P−P′) =(hg−P′)(hg−P′) =ghg−(gP′+P′hg)+P′
P′ …… よってfの極値を求めるためgで偏微分すれば、 すなわち hhg=hP′ …… の時にfは最小となる。ゆえに g=(hh)-1hP′ …… となり、h及びP′を測定することによりgを求めるこ
とができる。
f = (P-P ') t (P-P') = (hg-P ') t (hg-P') = g t h t hg- (g t h t P '+ P' t hg) + P ' t
P '... Therefore, to obtain the extreme value of f, partial differentiation with g That is, f becomes the minimum when h t hg = h t P '... Therefore, g = (h t h) -1 h t P '... and g can be obtained by measuring h and P'.

すなわち、コンボルバのインパルス応答つまりタップ系
数gを求める手順としては次のようになる。
That is, the procedure for obtaining the impulse response of the convolver, that is, the tap coefficient g is as follows.

まず、第3図における各スピーカ(8a)〜(8d)から各
受聴者(13)(14)の両耳へのインパルス応答サンプル
列を測定する。
First, a sequence of impulse response samples from the speakers (8a) to (8d) in FIG. 3 to the ears of the listeners (13) and (14) is measured.

上記式より式及び式に従ってh行列を作る。すな
わち 次に第3図の特定スピーカ(11)によるインパルス応答
サンプル列を測定し、 P′行列を上記〜式より作る。
An h matrix is created from the above equation according to the equation and the equation. Ie Next, measure the impulse response sample string from the specific speaker (11) in FIG. A P'matrix is created from the above equation.

さらに上記式に従って計算すればコンボルバのタップ
係数であるgを求めることができ、たとえばgのうちの
aつまりa1〜aの係数を第4図に示す回路の係数器
(151)〜(5)に与えることによって第3図におけ
るAのイコライザ(10a)が実現される。第4図はコン
ボルバの回路ブロック図であり、(16)は入力端子、
(17)は出力端子、(181)〜(18)は遅延素子、(2
8)は加算器であり、前記遅延素子(181)〜(18)と
しては同一チップに集積されたタップ付BBDあるいはCCD
等が用いられる。
Furthermore it is possible to obtain the g being tap coefficients of the convolver be calculated according to the above formula, for example, the coefficients of a clogging a 1 ~a m of g coefficient units of the circuit shown in FIG. 4 (15 1) to ( 5 m ), the equalizer (10a) of A in FIG. 3 is realized. FIG. 4 is a circuit block diagram of the convolver, (16) is an input terminal,
(17) an output terminal, (18 1) ~ (18 m) of the delay element, (2
8) an adder, said delay elements (18 1) ~ (18 m ) tapped BBD or CCD, which is integrated on the same chip as the
Etc. are used.

同様にして、求まったgのうちのb1〜b,c1〜c,d1
〜dの係数を第4図の係数器(151)〜(15)で実
現すると第3図のB,C,Dのイコライザ(10b)(10c)(1
0d)が実現され、入力端子(9)に信号を入力した時と
入力端子(12)に信号を入力した時の各受聴者(13)
(14)の両耳の音圧は同一となり、入力端子(9)に信
号を入力した時も各受聴者(13)(14)は特定スピーカ
(11)の位置に音像を知覚する。
Similarly, b 1 to b m , c 1 to cm , d 1 of g obtained
The coefficients of the to d m Figure 4 of the coefficient unit (15 1) to the realized by (15 m) Figure 3 of the B, C, D of the equalizer (10b) (10c) (1
0d) is realized and each listener (13) when a signal is input to the input terminal (9) and when a signal is input to the input terminal (12)
The sound pressures of both ears of (14) are the same, and even when a signal is input to the input terminal (9), each listener (13) (14) perceives a sound image at the position of the specific speaker (11).

次に第2の実施例として、第3図における特定スピーカ
(11)を各受聴者(13)(14)に対して相対的に等しい
位置に設定する例について第5図により説明する。この
例では受聴者(13)は特定スピーカ(11a)の位置に、
また受聴者(14)は特定スピーカ(11b)の位置にそれ
ぞれ音像を知覚するようにしている。つまり各受聴者
(13)(14)に同じ両耳音圧を与えるようにすることに
よって、各受聴者(13)(14)に全く同じ音場感を知覚
させることができる。イコライザ(10a)〜(10d)の設
定の手法は第1の実施例と同様であり、上記第式にお
いてP′=P′,P′=P′またはhφr=h
φR,hφl=hφLとおけばよい。
Next, as a second embodiment, an example in which the specific speaker (11) in FIG. 3 is set at the same position relative to the listeners (13) and (14) will be described with reference to FIG. In this example, the listener (13) is at the position of the specific speaker (11a),
The listener (14) perceives a sound image at the position of the specific speaker (11b). That is, by applying the same binaural sound pressure to the listeners (13) (14), the listeners (13) (14) can perceive exactly the same sound field. The method of setting the equalizers (10a) to (10d) is the same as that of the first embodiment, and in the above equation, P r ′ = P R ′, P l ′ = P L ′ or h φr = h.
φR , h φl = hφL .

次に第3の実施例について説明する。この例では、第1
の実施例における上記式あるいは式のインパルス列
を1サンプルづつずらせた行列を作り、それを新たな
P′あるいはhφとしてgを求める。すなわち、例えば
上記式において2サンプルずらせると となり、これをhφに代入することによって別のgの解
をみつけることができる。このサンプルをずらせる操作
を順次行ない。それに対するgを求めて、その各々のg
に対して上記式の評価関数fを計算し、fを最小とな
らしめる時のgを最適解とする。
Next, a third embodiment will be described. In this example, the first
In the above embodiment, a matrix in which the above equation or the impulse sequence of the equation is shifted by one sample is created, and g is obtained by using it as a new P ′ or h φ . That is, for example, if two samples are shifted in the above equation, Then, by substituting this into h φ , another solution of g can be found. The operations for shifting the sample are sequentially performed. G for each of them, g of each
Then, the evaluation function f of the above formula is calculated, and g when f is minimized is taken as the optimum solution.

次に第4の実施例について第6図により説明する。第6
図において(19a)(19b)は入力端子、(20a)〜(20
h)はコンボルバによるイコライザ、(21a)〜(21d)
は加算器、(22a)〜(22d)はスピーカ、(23a)は第
1の特定スピーカ、(23b)は第2の特定スピーカ、(2
4a)は前記第1の特定スピーカ(23a)の入力端子、(2
4b)は前記第2の特定スピーカ(23b)の入力端子であ
る。入力端子(19a)に入力された信号による各受聴者
(13)(14)の両耳音圧はイコライザ(20a)〜(20d)
により第1の特定スピーカ(23a)の入力端子(24a)に
信号が入力された時と同じ音圧にされ、同様に入力端子
(19b)に入力された信号による各受聴者(13)(14)
の両耳音圧はイコライザ(20e)〜(20h)により第2の
特定スピーカ(23b)の入力端子(24b)に信号が入力さ
れた時と同じ音圧にされる。このように2チャンネルあ
るいはそれ以上の入力チャンネル数に対しても第1の実
施例と同様に実施できる。
Next, a fourth embodiment will be described with reference to FIG. Sixth
In the figure, (19a) and (19b) are input terminals, and (20a) to (20
h) is an equalizer by convolver, (21a) ~ (21d)
Is an adder, (22a) to (22d) are speakers, (23a) is a first specific speaker, (23b) is a second specific speaker, and (2
4a) is an input terminal of the first specific speaker (23a), (2a)
4b) is an input terminal of the second specific speaker (23b). The binaural sound pressure of each listener (13) (14) due to the signal input to the input terminal (19a) is equalized (20a) to (20d).
Causes the same sound pressure as when a signal is input to the input terminal (24a) of the first specific speaker (23a), and each listener (13) (14) by the signal input to the input terminal (19b) in the same manner. )
The binaural sound pressure is set to the same sound pressure as when a signal is input to the input terminal (24b) of the second specific speaker (23b) by the equalizers (20e) to (20h). In this way, the same operation as in the first embodiment can be performed for two channels or more input channels.

次に第5の実施例について第7図により説明する。第7
図において、(251)〜(25)はk人の受聴者、(2
61)〜(262k)は2k個のスピーカ、(271)〜(272k
は2k個のイコライザである。この実施例は、第1の実施
例の考え方を拡張してk人の受聴者(251)〜(25
に対して制御を行なうために2k個のコンボルバによるイ
コライザ(271)〜(272k)を設けたものである。イコ
ライザ(271)〜(272k)の設定に際して第1の実施例
と異なるのは、上記式等の2行2列行列が2k行2k列に
なるだけであり、未知数であるコンボルバの係数行列g1
〜g2kを全て求めてイコライザ(271)〜(272k)を構
成するコンボルバの係数器に設定すれば、k人の受聴者
(251)〜(25)に対しても入力端子(9)に入力信
号を印加することによってk人全ての受聴者(251)〜
(25)に特定スピーカ(11)の位置の音像を知覚させ
ることができる。
Next, a fifth embodiment will be described with reference to FIG. 7th
In the figure, (25 1 ) to (25 k ) are k listeners and (2
6 1 ) to (26 2k ) are 2k speakers, (27 1 ) to (27 2k )
Are 2k equalizers. This example, the first embodiment k people of the listener thinking extended to the (25 1) ~ (25 k )
2k convolver equalizers (27 1 ) to (27 2k ) are provided to control the. When setting the equalizers (27 1 ) to (27 2k ), the difference from the first embodiment is that the 2-row 2-column matrix of the above equation and the like becomes only 2k rows and 2k columns, and the coefficient matrix of the convolver that is an unknown number. g 1
If all of ~ g 2k are obtained and set in the coefficient unit of the convolver configuring the equalizers (27 1 ) to (27 2k ), the input terminals ( k 1 ) to (25 1 ) to (25 k ) can be obtained. k people every listener by applying an input signal to the 9) (25 1) to
It is possible to make (25 k ) perceive a sound image at the position of the specific speaker (11).

以上説明したように、本発明にかかる音響再生装置によ
れば、複数受聴者に対して各々に任意の位置の音像を知
覚させ得る。またイコライザとして簡単な構成のコンボ
ルバを用いることができ、この場合コンボルバのタップ
数及びインパルス応答測定サンプル数で精度が規定さ
れ、容易に高い精度を得ることができる。
As described above, according to the sound reproducing device of the present invention, a plurality of listeners can each perceive a sound image at an arbitrary position. Further, a convolver having a simple structure can be used as the equalizer. In this case, the precision is defined by the number of taps of the convolver and the number of impulse response measurement samples, and high precision can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来装置の全体構成図、第2図は従来装置にお
けるイコライザの構成図、第3図及び第4図は本発明の
一実施例を示し、第3図は全体構成図、第4図はコンボ
ルバの構成図、第5図〜第7図はそれぞれ別の実施例を
示す全体構成図である。 (8a)〜(8d)(22a)〜(22d)(261)〜(262k)…
…スピーカ、(10a)〜(10d)(20a)〜(20h)(2
71)〜(272k)……イコライザ、(11)(11a)(11b)
(23a)(23b)……特定スピーカ、(13)(14)(2
51)〜(25)……受聴者
FIG. 1 is an overall configuration diagram of a conventional device, FIG. 2 is a configuration diagram of an equalizer in the conventional device, FIGS. 3 and 4 show an embodiment of the present invention, FIG. 3 is an overall configuration diagram, and FIG. FIG. 7 is a block diagram of a convolver, and FIGS. 5 to 7 are overall block diagrams showing different embodiments. (8a) ~ (8d) ( 22a) ~ (22d) (26 1) ~ (26 2k) ...
… Speakers (10a) to (10d) (20a) to (20h) (2
7 1 ) to (27 2k ) ... Equalizer, (11) (11a) (11b)
(23a) (23b) …… Specific speaker, (13) (14) (2
5 1 ) ~ (25 k ) ... listener

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】m個の縦続された各遅延要素の出力に乗算
器をそれぞれ接続し、各乗算器の出力を加算してなる畳
み込み積分回路を2n個設け、入力信号を前記畳み込み積
分回路に並列に入力し、各畳み込み積分回路の出力をそ
れぞれ2n個のスピーカに入力し、各スピーカから受聴者
の両耳までのインパルス応答を列とする行列hとその転
置行列hと所望の音像定位の位置に設置した特定スピ
ーカによる受聴者の両耳までのインパルス応答を列とす
る行列P′とによって g=(hh)-1hP′ で表現される行列gの要素の値を前記畳み込み積分回路
の各乗算器の係数値として設定した音響再生装置。
1. A convolutional integration circuit, comprising 2n convolutional integration circuits each of which is formed by connecting a multiplier to the output of each of m cascaded delay elements and adding the outputs of the respective multipliers. Input in parallel, the output of each convolutional integration circuit is input to each of 2n speakers, and the matrix h having the impulse response from each speaker to both ears of the listener as a column and its transposed matrix h t and the desired sound image localization 'g = by and (h t h) -1 h t P' impulse response matrix P to a column of by a particular speaker installed in the position to both ears of the listener the values of elements of the matrix g represented by A sound reproducing device set as a coefficient value of each multiplier of the convolutional integration circuit.
【請求項2】特定スピーカの位置は各受聴者について相
対的に等しい位置に設定されている特許請求の範囲第1
項記載の音響再生装置。
2. The position of the specific speaker is set to a relatively equal position for each listener.
The sound reproducing device according to the item.
JP56187473A 1981-11-20 1981-11-20 Sound reproduction device Expired - Lifetime JPH0681360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187473A JPH0681360B2 (en) 1981-11-20 1981-11-20 Sound reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187473A JPH0681360B2 (en) 1981-11-20 1981-11-20 Sound reproduction device

Publications (2)

Publication Number Publication Date
JPS5889000A JPS5889000A (en) 1983-05-27
JPH0681360B2 true JPH0681360B2 (en) 1994-10-12

Family

ID=16206690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187473A Expired - Lifetime JPH0681360B2 (en) 1981-11-20 1981-11-20 Sound reproduction device

Country Status (1)

Country Link
JP (1) JPH0681360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764179B2 (en) * 1989-03-03 1998-06-11 日本電信電話株式会社 Sound field control method
DE60328335D1 (en) * 2002-06-07 2009-08-27 Panasonic Corp Sound image control system

Also Published As

Publication number Publication date
JPS5889000A (en) 1983-05-27

Similar Documents

Publication Publication Date Title
Kirkeby et al. Digital filter design for inversion problems in sound reproduction
US7698355B2 (en) Minimal area integrated circuit implementation of a polyphase interpolation filter using coefficients symmetry
EP2313999A1 (en) Sound field widening and phase decorrelation system and method
Killion Equalization filter for eardrum-pressure recording using a KEMAR manikin
KR100402283B1 (en) Apparatus for reproducing sound using the digital filter
JPH11146499A (en) Pseudo stereo circuit
KR100466475B1 (en) Circuit device for generating phantom sources from stereo signals using a shift circuit
JPH0681360B2 (en) Sound reproduction device
CN100444695C (en) A method for realizing crosstalk elimination and filter generation and playing device
WO1999035886A1 (en) Pseudo-stereophony device
JP6737597B2 (en) Audio digital signal processing device and vehicle-mounted audio device and electronic equipment using the same
JP2001359197A (en) Method and device for generating sound image localizing signal
JPS6145407B2 (en)
JPH10108300A (en) Sound field reproduction device
JP2006323395A (en) Signal processing apparatus and sound reproducing apparatus
JP2003111198A (en) Voice signal processing method and voice reproducing system
JPH0746700A (en) Signal processor and sound field processor using same
JPS58206300A (en) Sound reproducing device
JPS60237493A (en) Reverberation effect apparatus
JPS60242717A (en) Fir-type digital filter
Huang et al. Generalized crosstalk cancellation and equalization using multiple loudspeakers for 3D sound reproduction at the ears of multiple listeners
JP2008109279A (en) Audio signal processor and audio signal processing method
JPS5814798B2 (en) 3D sound field expansion device
JPS6132700A (en) Generator of stereo sound field reproducing signal
JP2000308199A (en) Signal processor and manufacture of signal processor