JPH0657302B2 - Backwashing method for hollow fiber membrane filters - Google Patents

Backwashing method for hollow fiber membrane filters

Info

Publication number
JPH0657302B2
JPH0657302B2 JP58127086A JP12708683A JPH0657302B2 JP H0657302 B2 JPH0657302 B2 JP H0657302B2 JP 58127086 A JP58127086 A JP 58127086A JP 12708683 A JP12708683 A JP 12708683A JP H0657302 B2 JPH0657302 B2 JP H0657302B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
backwashing
liquid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58127086A
Other languages
Japanese (ja)
Other versions
JPS6019002A (en
Inventor
隆盛 白井
文夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58127086A priority Critical patent/JPH0657302B2/en
Publication of JPS6019002A publication Critical patent/JPS6019002A/en
Publication of JPH0657302B2 publication Critical patent/JPH0657302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は逆洗効率を向上させた中空糸膜フィルタの逆洗
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for backwashing a hollow fiber membrane filter with improved backwash efficiency.

[発明の技術的背景とその問題点] 中空糸膜は断面が微細な環形状を呈するため、単位容積
内の膜面積を大きくとることができ、コンパクトな処理
装置を構成することができるところから、各種の膜分離
装置に広く用いられている。
[Technical background of the invention and its problems] Since the hollow fiber membrane has a fine ring-shaped cross section, the membrane area in a unit volume can be made large, and a compact processing apparatus can be configured. Widely used in various membrane separation devices.

一般に中空糸膜には、第1図に示すように中空糸膜1の
中空部2と外部とを連通させる大小無数の微小孔3が形
成されており、かつこれらの孔は水の通過し易い親水性
に富んだ微小孔3a と空気の通り易い疎水性に富んだ微
小孔3b とからなっている。
Generally, as shown in FIG. 1, the hollow fiber membrane is formed with innumerable small and large micropores 3 for communicating the hollow portion 2 of the hollow fiber membrane 1 with the outside, and these pores easily pass water. The micropores 3a are rich in hydrophilicity and the micropores 3b are highly hydrophobic in which air can easily pass.

しかして、このような中空糸膜1は、濾過時間の経過と
ともに、中空糸膜面に処理対象の微粒子が付着濃縮され
て、次第に膜の濾過効率が低下したり、濾過効率が低下
しない場合でも膜面で捕捉濃縮された処理対象の微粒子
の回収(処理装置からの排出)が完全に行なわれなくな
ってくる。
However, in such a hollow fiber membrane 1, even when the filtration efficiency of the membrane gradually decreases or the filtration efficiency does not decrease, the fine particles to be treated are attached and concentrated on the surface of the hollow fiber membrane as the filtration time elapses. The fine particles to be treated, which are captured and concentrated on the membrane surface, will not be completely recovered (discharged from the treatment device).

このような問題に対処して、中空糸膜を濾液により逆洗
する方法(特開昭51−110482号公報)や、圧縮
空気により逆洗する方法(特開昭53−108882号
公報)等の逆洗方法が提案されている。
To deal with such a problem, a method of backwashing a hollow fiber membrane with a filtrate (Japanese Patent Laid-Open No. 51-110482), a method of backwashing with a compressed air (Japanese Patent Laid-Open No. 53-108882) and the like are available. A backwash method has been proposed.

しかるに、このような逆洗方法のうち前者の方法では、
濾液が単に中空糸膜の親水性に富んだ微小孔3a を逆方
向に通過するだけであるため、この親水性に富んだ微小
孔3a の入口を封鎖する微粒子は除去されるが、その周
辺に付着した微粒子が除去されないという難点があり、
しかも大量の濾液を逆流させるため濾過効率が低くなる
という難点があった。
However, the former of these backwashing methods,
Since the filtrate only passes through the hydrophilic micropores 3a of the hollow fiber membrane in the opposite direction, the fine particles that block the inlet of the hydrophilic micropores 3a are removed, but the There is a problem that the adhered particles are not removed,
Moreover, since a large amount of the filtrate is made to flow backward, the filtration efficiency is lowered.

また後者の方法では、例えばポリビニルアルコール系の
ポリマーからなる中空糸膜のように比較的硬質の素材か
らなる中空糸膜を用いた場合には、圧縮空気が中空糸膜
の疎水性に富んだ微小孔3b や比較的大径の微小孔を通
過する際、中空糸膜を振動させて中空糸膜全体の付着微
粒子を除去する効果があるが、ポリエチレンのような軟
質の素材からなる中空糸膜を用いた場合には中空糸膜が
ほとんど、あるいはまったく振動せず、また中空糸膜の
種類によっては、疎水性に富んだ微小孔が形成されず、
濾過方向と逆方向からの圧縮空気がまったく透過しない
という難点があった。
Further, in the latter method, when a hollow fiber membrane made of a relatively hard material such as a hollow fiber membrane made of a polyvinyl alcohol-based polymer is used, the compressed air is very small and has a high hydrophobicity. It has the effect of vibrating the hollow fiber membrane to remove fine particles adhering to the entire hollow fiber membrane when passing through the pores 3b and the relatively large diameter micropores, but a hollow fiber membrane made of a soft material such as polyethylene is used. When used, the hollow fiber membrane hardly vibrates or does not vibrate at all, and depending on the type of hollow fiber membrane, micropores rich in hydrophobicity are not formed,
There was a drawback that compressed air from the direction opposite to the filtration direction did not permeate.

したがって、このような従来の逆洗方法では、次第に微
小孔の周辺に微粒子が付着堆積し膜差圧が上昇して、濾
過効率が低下してしまうという欠点があった。
Therefore, such a conventional backwashing method has a drawback in that fine particles are gradually deposited around the micropores, the transmembrane pressure increases, and the filtration efficiency decreases.

[発明の目的] 本発明者等は、かかる従来の難点を解消すべく鋭意研究
を進めたところ、中空糸膜の逆洗の際に中空糸膜外から
この中空糸膜に向けて多数の気泡を噴出させ、中空糸を
収納している容器内の液体を撹拌することにより、中空
糸膜の微小孔の周辺に付着した微粒子が除去されて、逆
洗効率が一段と向上することを見出した。
[Object of the Invention] The inventors of the present invention have made intensive studies to solve the above-mentioned conventional problems, and found that when backwashing the hollow fiber membrane, a large number of air bubbles from the outside of the hollow fiber membrane toward the hollow fiber membrane. It was found that the backwashing efficiency is further improved by ejecting the solution and agitating the liquid in the container containing the hollow fibers to remove fine particles adhering to the periphery of the micropores of the hollow fiber membrane.

本発明はかかる知見に基づいてなされたもので、逆洗効
果の優れた中空糸膜フィルタの逆洗方法を提供すること
を目的とする。
The present invention has been made based on such findings, and an object thereof is to provide a method for backwashing a hollow fiber membrane filter having an excellent backwashing effect.

[発明の概要] すなわち本発明の中空糸膜フィルタの逆流方法は、吊下
された中空糸膜外表面に捕捉濃縮された微粒子を中空糸
膜収納容器内の液中で逆洗除去する方法において、前記
中空糸膜内に気体または液体を導入して中空糸膜の内か
ら外へ気体または液体を透過させるとともに、中空糸膜
収納容器内の中空糸膜の側方または下方に気泡発生ノズ
ルを配置しこのノズルから気体を噴出させて前記中空糸
膜収納容器内の液体を撹拌し同時に中空糸膜をも揺動す
ることを特徴としている。
[Summary of the Invention] That is, the backflow method of the hollow fiber membrane filter of the present invention is a method of backwashing and removing fine particles captured and concentrated on the suspended outer surface of the hollow fiber membrane in the liquid in the hollow fiber membrane storage container. , Introducing a gas or liquid into the hollow fiber membrane to allow the gas or liquid to permeate from the inside to the outside of the hollow fiber membrane, and a bubble generating nozzle on the side or below the hollow fiber membrane in the hollow fiber membrane storage container. It is characterized in that the hollow fiber membrane is arranged and the gas is ejected from this nozzle to agitate the liquid in the hollow fiber membrane storage container and at the same time the hollow fiber membrane is also swung.

本発明によれば、中空糸膜に向けて噴出された気泡によ
り被処理液が撹拌されると同時に中空糸膜をも揺動され
て、中空糸膜外周に付着した微粒子が除去され、さらに
中空糸膜から剥脱して中空糸膜周辺に浮遊している微粒
子もこの撹拌作用により中空糸膜から離れたところまで
送り出されて、優れた逆洗効果を発揮することができ
る。
According to the present invention, the liquid to be treated is agitated by the bubbles ejected toward the hollow fiber membrane, and at the same time, the hollow fiber membrane is also shaken to remove the fine particles adhering to the outer periphery of the hollow fiber membrane, The fine particles that have peeled off from the fiber membrane and are floating around the hollow fiber membrane are also sent out to a position away from the hollow fiber membrane by this stirring action, and an excellent backwashing effect can be exhibited.

したがって本発明は膜素材、膜構造(孔径、空隙率、細
孔内面積、内径、外径、均一膜、不均一膜)あるいはモ
ジュールの構造(自由端をもつ構造、両端固定構造等)
等にかかわりなく、いかなる中空糸膜に対しても適用可
能である。
Therefore, the present invention is applicable to a membrane material, a membrane structure (pore diameter, porosity, pore inner area, inner diameter, outer diameter, uniform membrane, non-uniform membrane) or module structure (structure with free ends, fixed both ends structure, etc.).
It can be applied to any hollow fiber membrane regardless of the above.

[発明の実施例] 以下本発明の実施例について説明する。[Examples of the Invention] Examples of the present invention will be described below.

第2図は本発明および後述する比較例に用いた処理液の
濾過および逆洗装置を示す配管系統図を示している。
FIG. 2 shows a piping system diagram showing a processing solution filtering and backwashing apparatus used in the present invention and Comparative Examples described later.

同図においてA部は主として本発明に使用する装置部分
を示しており、B部は主として比較例に使用する装置部
分を示している。
In the figure, part A shows the device part mainly used in the present invention, and part B shows the device part mainly used in the comparative example.

符号4、4′は円筒状の中空糸膜収納容器を示してお
り、その内部には中空糸膜5、5′の多数本(図ではそ
の一部だけを示している)を、それぞれU字型に折返し
て基部をシール固定したモジュール6、6′が、そのシ
ール部7、7′を中空糸膜収納容器4、4′の壁面に密
接させて固定されている。
Reference numerals 4 and 4'represent a cylindrical hollow fiber membrane storage container, and a large number of hollow fiber membranes 5 and 5 '(only a part of which is shown in the drawing) are each provided in a U shape inside thereof. Modules 6 and 6'which are folded back into the mold and whose bases are sealed and fixed are fixed by bringing the seals 7 and 7'in close contact with the wall surfaces of the hollow fiber membrane storage containers 4 and 4 '.

中空糸膜収納容器4、4′のシール部7、7′で仕切ら
れた処理液溜4a 、4a ′は、弁8、8′を有する処理
液給送管9に接続されており、この処理液溜4a 、4a
′には処理液タンク10から処理液供給ポンプ11に
より微粒子が分散浮遊している処理液が給送される。な
お処理液タンク10中の処理液は撹拌機12により撹拌
され、かつ処理液給送管9には調整弁13を有する逆流
配管14が接続され、処理液供給ポンプ11により給送
される処理液の一部を処理液タンク10内に逆流させて
処理液給送管9内の圧力を調整できるように構成されて
いる。
The treatment liquid reservoirs 4a, 4a 'partitioned by the sealing portions 7, 7'of the hollow fiber membrane storage containers 4, 4'are connected to a treatment liquid supply pipe 9 having valves 8, 8'. Liquid reservoir 4a, 4a
A processing liquid in which fine particles are dispersed and suspended is fed from the processing liquid tank 10 by a processing liquid supply pump 11. The treatment liquid in the treatment liquid tank 10 is agitated by a stirrer 12, and the treatment liquid supply pipe 9 is connected to a backflow pipe 14 having a regulating valve 13 and is fed by a treatment liquid supply pump 11. Is configured to be allowed to flow back into the treatment liquid tank 10 to adjust the pressure in the treatment liquid supply pipe 9.

また中空糸膜収納容器4、4′の処理液溜4a 、4a ′
側には、それぞれ弁15、15′を備えたオーバーフロ
ー配管16、16′および濃縮液排出弁17、17′を
備えた濃縮液排出配管18、18′が接続されている。
19、19′はオーバーフロータンク、20、20′は
濃縮液タンクをそれぞれ示している。
Further, the processing liquid reservoirs 4a, 4a 'of the hollow fiber membrane storage containers 4, 4'.
Overflow pipes 16 and 16 'having valves 15 and 15' and concentrated liquid discharge pipes 18 and 18 'having concentrated liquid discharge valves 17 and 17', respectively, are connected to the side.
Reference numerals 19 and 19 'indicate overflow tanks and reference numerals 20 and 20' indicate concentrate tanks, respectively.

一方、中空糸膜収納容器4、4′の、シール部7、7′
で仕切られた瀘液溜4b 、4b ′側には、弁21、2
1′および流量計22、22′を介して、図示を省略し
た瀘液タンクに開口する瀘液給送配管23、23′が接
続されている。
On the other hand, the sealing portions 7, 7'of the hollow fiber membrane storage containers 4, 4 '
The valves 21 and 2 are provided on the sides of the filtrate reservoirs 4b and 4b ′ partitioned by
Via 1'and flowmeters 22 and 22 ', filtrate delivery pipes 23 and 23' which are open to a filtrate tank (not shown) are connected.

また、瀘液溜4b 、4b ′は、それぞれこの瀘液給送配
管23、23′と分岐する圧縮空気給送配管24に連結
され、弁25、25′、26を介して加圧空気タンク2
7に接続されて、弁21、21′を閉じ、弁26、2
5、25′を開くことにより瀘液溜4b 、4b ′内に加
圧空気が給送される構成となっている。
Further, the filtrate reservoirs 4b, 4b 'are connected to a compressed air supply pipe 24 branching from the filtrate supply pipes 23, 23', respectively, and the pressurized air tank 2 is connected via valves 25, 25 ', 26.
7, valves 21, 21 'are closed and valves 26, 2'
By opening 5, 25 ', pressurized air is fed into the filtrate reservoirs 4b, 4b'.

一方、A部側の中空糸膜収納容器4の底部には、ノズル
孔径1〜2mmφの気泡発生ノズル28が設置され、この
気泡発生ノズル28は圧縮空気給送配管24′により流
量計29、弁30を介して圧縮空気給送配管24に接続
されている。
On the other hand, a bubble generating nozzle 28 having a nozzle hole diameter of 1 to 2 mmφ is installed at the bottom of the hollow fiber membrane accommodating container 4 on the A section side. It is connected to the compressed air supply pipe 24 via 30.

なお同図中31、31′、32、32′および33は圧
力計を示している。
In the figure, 31, 31 ', 32, 32' and 33 indicate pressure gauges.

次に上記装置を使用した本発明の具体例について説明す
る。なお、中空糸膜およびモジュールとしては次のもの
を使用した。
Next, a specific example of the present invention using the above device will be described. The following were used as the hollow fiber membrane and the module.

(1)使用中空糸膜 (a )素材:ポリエチレン (b )中空糸膜:外径380μm 内径270μm (c )バブルポイント:5.0kg/cm2 (2)使用モジュール (a )中空糸膜長さ:70cm (b )中空糸膜本数:360本 (c )モジュール形状:中空糸膜をU字型に折返し両端
をシール固定 (d )有効膜面積:0.3m2 (膜面積は外壁面で評価) (3)透水速度:25℃で脱塩水、処理圧1kg/cm2
440/hr. m2 まず、処理液として非晶質のFe コロイド(Fe として
24ppm )とα−Fe コロイド(Fe として6pp
m )の混合液( pH6.7〜6.9、導電率1〜5μS
/cm)を調整した。
(1) Hollow fiber membrane used (a) Material: Polyethylene (b) Hollow fiber membrane: Outer diameter 380 μm Inner diameter 270 μm (c) Bubble point: 5.0 kg / cm 2 (2) Module used (a) Hollow fiber membrane length : 70 cm (b) Number of hollow fiber membranes: 360 (c) Module shape: U-shaped hollow fiber membranes are folded back and fixed at both ends with seal (d) Effective membrane area: 0.3m 2 (membrane area is evaluated by outer wall surface (3) Water permeation rate: Demineralized water at 25 ° C, 440 / hr.m 2 at a treatment pressure of 1 kg / cm 2 First, amorphous Fe colloid (24 ppm as Fe) and α-Fe 2 O 3 colloid as a treatment liquid. (6 pp as Fe
m) mixed solution (pH 6.7 to 6.9, conductivity 1 to 5 μS)
/ Cm) was adjusted.

次いで、この処理液を第2図に示す処理液タンク10に
収容し、撹拌機12により撹拌して十分に混合した後、
弁8、15を開き、弁17、8′を閉じてこの処理液を
前述したモジュール6を収納している中空糸膜収納容器
4内に供給した。
Next, after the treatment liquid is stored in the treatment liquid tank 10 shown in FIG. 2 and stirred by the stirrer 12 to be sufficiently mixed,
The valves 8 and 15 were opened, and the valves 17 and 8 ′ were closed, and this treatment liquid was supplied into the hollow fiber membrane accommodating container 4 accommodating the module 6 described above.

なお、この時の瀘液の液温は25℃±1℃である。The liquid temperature of the filtrate at this time is 25 ° C ± 1 ° C.

中空糸膜収納容器4内に処理液が満たされ、弁15を介
してオーバーフロータンク19に処理液が出てきたとこ
ろで弁15を閉じて流量計22を確認しながら弁25、
21を開き、弁13を調整して1.45/min の処理
液が中空糸膜収納容器4内に流れるよう流量を調整して
処理液の濾過処理を行なった。
When the processing liquid is filled in the hollow fiber membrane container 4 and the processing liquid comes out to the overflow tank 19 through the valve 15, the valve 15 is closed and the valve 25 is checked while checking the flowmeter 22.
21 was opened, the valve 13 was adjusted, and the flow rate was adjusted so that 1.45 / min of the treatment liquid could flow into the hollow fiber membrane container 4, and the treatment liquid was filtered.

この濾過工程において、中空糸膜収納容器4内に供給さ
れた処理液中の鉄コロイドは中空糸膜5の外表面で完全
に阻止され捕捉された。また瀘液は中空糸膜5内を通っ
て濾液溜4b に集まり、弁25、21を経て瀘液タンク
へ集められた。
In this filtration step, the iron colloid in the treatment liquid supplied into the hollow fiber membrane container 4 was completely blocked and captured on the outer surface of the hollow fiber membrane 5. Further, the filtrate was collected in the filtrate reservoir 4b through the hollow fiber membrane 5, and was collected in the filtrate tank through the valves 25 and 21.

この瀘液工程において、鉄コロイドが中空糸膜に捕捉さ
れるにつれて濾過差圧(圧損)が徐々に上昇した。この
濾過処理を60分間行なった時の、中空糸膜に捕捉され
る鉄コロイドの理論量は次式により求められる。
In this filtration step, the filtration differential pressure (pressure loss) gradually increased as the iron colloid was captured by the hollow fiber membrane. The theoretical amount of iron colloid trapped in the hollow fiber membrane when this filtration treatment is performed for 60 minutes is calculated by the following equation.

(1.45/min )×60min =87 (8.7×10g )×(3×10-5) =2.61g 中空糸膜の濾過面積が0.3m2であるから単位濾過面積
(m2)あたりのコロイドの捕捉量Wは、 W=2.61g (Fe )/0.3m2 ≒8.7g (Fe )/m2 このようにして、1.45/min の定流量で60分間
処理液を処理した後、弁8、弁21を閉じ、弁26、2
5、および15を開にして加圧空気タンク27より4kg
/cm2に調圧された空気を中空糸膜収納容器4の瀘液溜
4b に導入した。この圧縮空気により瀘液溜中の瀘液1
0 mlと中空糸膜5中の少量の瀘液とを濾過方向と逆の
方向に押出し、続いて圧縮空気により5分間逆洗した。
またこれと同時に弁30を開いて気泡発生ノズル28か
ら圧縮空気を0.2Nl/min の流量で中空糸膜5下部
に5分間噴出させた。この結果、気泡発生ノズル28よ
り2〜5mmφの気泡が多数発生し、中空糸膜収納容器4
内の処理液中を上昇して処理液を激しく撹拌するととも
に中空糸膜5をも揺動させた。
(1.45 / min) × 60 min = 87 (8.7 × 10 4 g) × (3 × 10 −5 ) = 2.61 g Since the filtration area of the hollow fiber membrane is 0.3 m 2 , the unit filtration area ( trapped amount W of colloid per m 2) is in the W = 2.61g (Fe) /0.3m 2 ≒ 8.7g (Fe) / m 2 Thus, 60 at a constant flow rate of 1.45 / min After treating the treatment liquid for a minute, the valves 8 and 21 are closed, and the valves 26 and 2 are closed.
4kg from pressurized air tank 27 with 5 and 15 open
The air whose pressure was adjusted to / cm 2 was introduced into the filtrate reservoir 4b of the hollow fiber membrane storage container 4. Filtrate 1 in the filtrate reservoir by this compressed air
0 ml and a small amount of the filtrate in the hollow fiber membrane 5 were extruded in the direction opposite to the filtration direction, and then backwashed with compressed air for 5 minutes.
At the same time, the valve 30 was opened and the compressed air was jetted from the air bubble generating nozzle 28 to the lower portion of the hollow fiber membrane 5 at a flow rate of 0.2 Nl / min for 5 minutes. As a result, a large number of bubbles having a diameter of 2 to 5 mm are generated from the bubble generation nozzle 28, and the hollow fiber membrane container 4
The hollow fiber membrane 5 was also rocked while the inside of the treatment liquid was raised to vigorously agitate the treatment liquid.

逆洗の時間経過に伴なう逆洗効率の変化を第3図に示
す。同図から明らかなようにこの実施例においては、1
分間の逆洗でほぼ100%の逆洗効率を得ることができ
る。この逆洗を5分間続けた後、弁26、25、30を
閉じて圧縮空気の供給を止め、次いで弁17を開いて中
空糸膜5より剥離除去された鉄コロイドを含む濃縮液を
濃縮液タンク20に排出した。
FIG. 3 shows the change in backwash efficiency with the lapse of backwash time. As is clear from the figure, in this embodiment, 1
Backwashing efficiency of almost 100% can be obtained by backwashing for one minute. After this backwashing is continued for 5 minutes, the valves 26, 25 and 30 are closed to stop the supply of compressed air, and then the valve 17 is opened to concentrate the concentrated solution containing the iron colloid peeled off from the hollow fiber membrane 5. It was discharged to the tank 20.

しかる後、再び弁17を閉じ、弁8を開け、処理液を中
空糸膜収納容器4内に導入し、処理液が弁15を介して
オーバーフロータンク19に出てきたところで弁15を
閉じ、弁25、21を開け濾過処理を行なった。
Thereafter, the valve 17 is closed again, the valve 8 is opened, the treatment liquid is introduced into the hollow fiber membrane container 4, and when the treatment liquid comes out to the overflow tank 19 through the valve 15, the valve 15 is closed and the valve is closed. 25 and 21 were opened and filtration processing was performed.

このような濾過処理および逆洗処理のサイクルを複数回
繰返し、各サイクル毎に濾過処理後および逆洗処理後の
膜差圧を圧力計31、32により測定し、さらに逆洗効
率を測定した。その結果を第4図ないし第5図に示す。
Such a cycle of the filtration treatment and the backwash treatment was repeated a plurality of times, and the transmembrane pressure difference after the filtration treatment and after the backwash treatment was measured by the pressure gauges 31 and 32 for each cycle, and the backwash efficiency was further measured. The results are shown in FIGS. 4 to 5.

これらの図から明らかなように、この実施例では約25
時間の累積濾過処理時間の経過後でも膜差圧の変化がほ
とんどなく、かつ逆洗効率は100%に近い値を維持し
ている。次に比較例として弁8、25を閉じ、弁8′、
15′、21′、25′、26′等を操作して気泡発生
ノズル28による気泡の発生を除いて、実施例と同一の
条件で濾過処理および逆洗処理を行ない、第2図におけ
るB部による逆洗効率および膜差圧を測定した。その結
果を第3図ないし第5図中に示す。
As can be seen from these figures, in this example about 25
Even after the passage of the cumulative filtration time, the transmembrane pressure remained almost unchanged, and the backwash efficiency was maintained at a value close to 100%. Next, as a comparative example, the valves 8 and 25 are closed, and the valves 8'and
15 ', 21', 25 ', 26' and the like are operated to perform the filtering process and the backwashing process under the same conditions as those of the embodiment except that the bubble generation nozzle 28 does not generate bubbles. The backwash efficiency and transmembrane pressure difference were measured. The results are shown in FIGS. 3 to 5.

第3図ないし第5図に示した測定結果から明らかなよう
に、本発明の中空糸膜の逆洗方法によれば、各サイクル
毎に短時間でほぼ100%の逆洗効率が得られ、かつ初
期膜差圧がほとんど変化しないのに対して、中空糸膜の
外側から気泡を導入させない比較例においては、中空糸
膜で捕捉した鉄コロイドが中空糸膜より完全に剥離除去
されないため、50分間逆流してもほぼ60%の逆洗効
率しか得られず(第3図)また累積鉄コロイド負荷量が
60g (Fe )/m2程度(累積濾過処理時間約8時間経
過)になると徐々に初期差圧が上昇し、110g (Fe
)/m2付近(累積濾過処理時間14時間経過)で急激
に膜の初期差圧が上昇している。(第4図)これに伴っ
てサイクル毎の逆洗効率も徐々に低下し、累積鉄コロイ
ド負荷量が170g (Fe )/m2(累積濾過処理時間約
22時間経過)では10%以下となっている。(第5
図) 従って、本発明方法は従来法と比較して膜寿命が長くな
る上に除去対象物が放射性物質である場合には、濾過装
置の保守点検の簡易化および放射線被曝減少の観点から
きわめて有効であることがわかる。
As is clear from the measurement results shown in FIGS. 3 to 5, according to the method for backwashing hollow fiber membranes of the present invention, backwashing efficiency of almost 100% can be obtained in each cycle in a short time. And in the comparative example in which air bubbles are not introduced from the outside of the hollow fiber membrane, while the initial transmembrane pressure difference hardly changes, the iron colloid captured by the hollow fiber membrane is not completely peeled and removed from the hollow fiber membrane. Even when backwashing for a minute, only about 60% of backwashing efficiency was obtained (Fig. 3), and when the cumulative iron colloid loading became about 60 g (Fe) / m 2 (cumulative filtration treatment time of about 8 hours elapsed), it gradually increased. Initial differential pressure rises to 110g (Fe
) / M 2 (accumulation filtration time of 14 hours), the initial differential pressure of the membrane is rapidly increased. (Fig. 4) Along with this, the backwash efficiency for each cycle also gradually decreased, and was 10% or less when the cumulative iron colloid load was 170 g (Fe) / m 2 (cumulative filtration treatment time of about 22 hours). ing. (Fifth
Therefore, the method of the present invention has a longer membrane life than the conventional method and is extremely effective from the viewpoint of simplifying maintenance and inspection of the filtration device and reducing radiation exposure when the object to be removed is a radioactive substance. It can be seen that it is.

[発明の効果] 以上の実施例からも明らかなように、本発明によれば、
中空糸膜に付着した微粒子をほぼ完全に除去することが
でき、従って中空糸膜の寿命を延長することができる上
に除去対象物が放射性物質である場合には、保守点検お
よび放射性被曝の観点から非常に大きい利点を有する。
また、同一効率の装置を設計する場合には、装置自体を
小型化することも可能である。
EFFECTS OF THE INVENTION As is clear from the above embodiments, according to the present invention,
Fine particles adhering to the hollow fiber membrane can be removed almost completely, and therefore the life of the hollow fiber membrane can be extended, and when the object to be removed is a radioactive substance, maintenance and inspection and radiation exposure Has a huge advantage from.
Further, when designing a device with the same efficiency, it is possible to downsize the device itself.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用する中空糸膜の拡大断面図、第2
図は本発明の一実施例および比較例に使用する濾過逆洗
装置を示す構成図、第3図乃至第5図は本発明の効果を
示すグラフである。 4、4′……中空糸膜収納容器 4a 、4a ′……処理液溜 4b 、4b ′……瀘液溜 5、5′……中空糸膜 6、6′……モジュール 7、7′……シール部 9……処理液給送管 10……処理液タンク 12……撹拌機 17、17′……濃縮液排出配管 19、19′……オーバーフロータンク 20、20′……濃縮液タンク 22、29……流量計 23、23′……瀘液給送配管 24、24′……圧縮空気給送配管 27……加圧空気タンク 31、31′、32、32′、33……圧力計
FIG. 1 is an enlarged sectional view of a hollow fiber membrane used in the present invention, FIG.
FIG. 3 is a configuration diagram showing a filtration backwashing apparatus used in one embodiment and a comparative example of the present invention, and FIGS. 3 to 5 are graphs showing effects of the present invention. 4, 4 '... Hollow fiber membrane storage container 4a, 4a' ... Treatment liquid reservoir 4b, 4b '... Filtration reservoir 5, 5' ... Hollow fiber membrane 6, 6 '... Module 7, 7' ... … Seal part 9 …… Treatment liquid supply pipe 10 …… Treatment liquid tank 12 …… Stirrer 17,17 ′ …… Concentrated liquid discharge pipe 19,19 ′ …… Overflow tank 20,20 ′ …… Concentrated liquid tank 22 , 29 ... Flowmeter 23, 23 '... Filtrate feed pipe 24, 24' ... Compressed air feed pipe 27 ... Pressurized air tank 31, 31 ', 32, 32', 33 ... Pressure gauge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吊下された中空糸膜外表面に捕捉濃縮され
た微粒子を中空糸膜収納容器内の液中で逆洗除去する方
法において、前記中空糸膜内に気体または液体を導入し
て中空糸膜の内から外へ気体または液体を透過させると
ともに、中空糸膜収納容器内の中空糸膜の側方または下
方に気泡発生ノズルを配置しこのノズルから気泡を噴出
させて前記中空糸膜収納容器内の液体を撹拌し同時に中
空糸膜をも揺動することを特徴とする中空糸膜フィルタ
の逆洗方法。
1. A method of backwashing and removing fine particles trapped and concentrated on the outer surface of a suspended hollow fiber membrane in a liquid in a hollow fiber membrane storage container by introducing gas or liquid into the hollow fiber membrane. Gas or liquid permeates from inside to outside of the hollow fiber membrane, and a bubble generating nozzle is arranged on the side or below the hollow fiber membrane in the hollow fiber membrane container, and bubbles are ejected from this nozzle to blow the hollow fiber. A method for backwashing a hollow fiber membrane filter, which comprises agitating the liquid in the membrane container and at the same time rocking the hollow fiber membrane.
【請求項2】中空糸膜フィルタは、多数本の中空糸膜を
それぞれその両端を同方向に向けて集束させたモジュー
ルからなる特許請求の範囲第1項記載の中空糸膜フィル
タの逆洗方法。
2. The method of backwashing a hollow fiber membrane filter according to claim 1, wherein the hollow fiber membrane filter comprises a module in which a large number of hollow fiber membranes are bundled so that both ends thereof are oriented in the same direction. .
JP58127086A 1983-07-13 1983-07-13 Backwashing method for hollow fiber membrane filters Expired - Lifetime JPH0657302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127086A JPH0657302B2 (en) 1983-07-13 1983-07-13 Backwashing method for hollow fiber membrane filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127086A JPH0657302B2 (en) 1983-07-13 1983-07-13 Backwashing method for hollow fiber membrane filters

Publications (2)

Publication Number Publication Date
JPS6019002A JPS6019002A (en) 1985-01-31
JPH0657302B2 true JPH0657302B2 (en) 1994-08-03

Family

ID=14951230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127086A Expired - Lifetime JPH0657302B2 (en) 1983-07-13 1983-07-13 Backwashing method for hollow fiber membrane filters

Country Status (1)

Country Link
JP (1) JPH0657302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513785A (en) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド Immersion type membrane filtration system and overflow treatment method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137404A (en) * 1983-12-26 1985-07-22 Sankyo Seiki Mfg Co Ltd Backwashing process for suspended filter
JPS6230502A (en) * 1985-03-04 1987-02-09 Toyobo Co Ltd Hollow yarn type separation membrane
JP2672970B2 (en) * 1988-04-20 1997-11-05 株式会社滝澤鉄工所 Machine tool for machining non-circular cross-section body work and its control method
JPH02164494A (en) * 1988-12-15 1990-06-25 Kubota Ltd Sewage aeration treatment tank
US6322703B1 (en) 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
JP2001070763A (en) * 1999-09-08 2001-03-21 Asahi Kasei Corp Membrane washing method
AUPR692401A0 (en) * 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
JP4611982B2 (en) 2003-08-29 2011-01-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Backwash method
NZ544864A (en) * 2003-09-22 2010-02-26 Siemens Water Tech Corp Backwash and cleaning method for concentrating the solids of a liquid suspension by providing a pressure differential across membrane walls
WO2006029465A1 (en) 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
NZ562786A (en) 2005-04-29 2010-10-29 Siemens Water Tech Corp Chemical clean for membrane filter
ATE511911T1 (en) 2005-08-22 2011-06-15 Siemens Industry Inc WATER FILTRATION ARRANGEMENT TO MINIMIZE BACKWASH VOLUME
WO2008051546A2 (en) 2006-10-24 2008-05-02 Siemens Water Technologies Corp. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
WO2008153818A1 (en) 2007-05-29 2008-12-18 Siemens Water Technologies Corp. Membrane cleaning with pulsed airlift pump
JP2013500144A (en) 2008-07-24 2013-01-07 シーメンス インダストリー インコーポレイテッド Method and filtration system for providing structural support to a filtration membrane module array in a filtration system
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
SG183782A1 (en) 2010-04-16 2012-11-29 Asahi Kasei Chemicals Corp Deformed porous hollow fiber membrane, production method of deformed porous hollow fiber membrane, and module, filtration device, and water treatment method in which deformed porous hollow fiber membrane is used
ES2738898T3 (en) 2010-04-30 2020-01-27 Evoqua Water Tech Llc Fluid flow distribution device
CN103118766B (en) 2010-09-24 2016-04-13 伊沃夸水处理技术有限责任公司 The fluid of membrane filtration system controls manifold
CN103958024B (en) 2011-09-30 2016-07-06 伊沃夸水处理技术有限责任公司 The manifold arrangement improved
HUE058060T2 (en) 2011-09-30 2022-07-28 Rohm & Haas Electronic Mat Isolation valve
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
EP2900356A1 (en) 2012-09-27 2015-08-05 Evoqua Water Technologies LLC Gas scouring apparatus for immersed membranes
WO2015050764A1 (en) 2013-10-02 2015-04-09 Evoqua Water Technologies Llc A method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280572A (en) * 1975-12-26 1977-07-06 Nippon Enviro Kogyo Filtration method to be used in sedimentation separation*and filtration sedimentation separation system adopting said method
JPS53108882A (en) * 1977-03-04 1978-09-22 Kuraray Co Ltd Back washing method for hollow filament membrane
JPS6015362B2 (en) * 1978-01-11 1985-04-19 日立プラント建設株式会社 filtration device
JPS6029522B2 (en) * 1979-11-01 1985-07-11 日立プラント建設株式会社 Cleaning device for membrane support tubes for membrane separation equipment
JPS6043162B2 (en) * 1982-04-23 1985-09-26 日揮株式会社 Method and device for filtering liquids containing suspended matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513785A (en) * 1999-11-18 2003-04-15 ゼノン、エンバイロンメンタル、インコーポレーテッド Immersion type membrane filtration system and overflow treatment method

Also Published As

Publication number Publication date
JPS6019002A (en) 1985-01-31

Similar Documents

Publication Publication Date Title
JPH0657302B2 (en) Backwashing method for hollow fiber membrane filters
JP5366316B2 (en) Hollow fiber membrane module and method for purifying suspended water using the same
US6511602B1 (en) Apparatus and method for treating water
JP2003047830A (en) Dipping type membrane filtration apparatus and dipping type membrane filtration method
JPH02164423A (en) Method for washing hollow fiber membrane filter
JPS62262710A (en) Hollow yarn membrane filter
JP3091015B2 (en) Membrane separation device
JPH09103655A (en) Hollow fiber membrane filter
JPH0217924A (en) Method for backwashing hollow yarn membrane filter apparatus
US3542195A (en) Filter cartridge
JPH0464727B2 (en)
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JPS63171605A (en) Carbon dioxide cleaning method for hollow yarn membrane filter
JPH10137552A (en) Hollow-fiber membrane filter
JP2511038B2 (en) How to operate a hollow fiber membrane filter
JP2002273179A (en) Hollow fiber membrane module
JP2578572Y2 (en) Filter device
JPH05212254A (en) Hollow-fiber membrane module filter
JPS61157306A (en) Method for washing hollow yarn membrane
JPH084724B2 (en) How to operate a hollow fiber membrane filter
JP2740613B2 (en) Membrane treatment method
KR20040048679A (en) Wastewater treatment device and method using module type filtration equipment
JPS6329563B2 (en)
JP2656294B2 (en) Backwashing method for hollow fiber membrane filter device
JPH09220444A (en) Hollow yarn filter module