JP2003047830A - Dipping type membrane filtration apparatus and dipping type membrane filtration method - Google Patents

Dipping type membrane filtration apparatus and dipping type membrane filtration method

Info

Publication number
JP2003047830A
JP2003047830A JP2001238480A JP2001238480A JP2003047830A JP 2003047830 A JP2003047830 A JP 2003047830A JP 2001238480 A JP2001238480 A JP 2001238480A JP 2001238480 A JP2001238480 A JP 2001238480A JP 2003047830 A JP2003047830 A JP 2003047830A
Authority
JP
Japan
Prior art keywords
filtration
tubular
liquid
membrane
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001238480A
Other languages
Japanese (ja)
Other versions
JP4360057B2 (en
Inventor
Naoki Murakami
尚樹 村上
Shiro Tanshu
紫朗 丹宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001238480A priority Critical patent/JP4360057B2/en
Publication of JP2003047830A publication Critical patent/JP2003047830A/en
Application granted granted Critical
Publication of JP4360057B2 publication Critical patent/JP4360057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out filtration of a liquid to be treated by a dipping type membrane filtration method efficiently with a simple procedure over a long period. SOLUTION: A dipping type membrane filtration apparatus is designed for obtaining filtrate by applying a dipping type membrane filtration method to a liquid 31 to be treated which is stored in a storage tank 30, and is provided with a plurality of tubular filter membrane modules 5 each having a filtration function for the liquid to be treated 31 and an air bubble supply apparatus 9 for supplying air bubbles 14 toward the tubular filter membrane modules 5. A cover body 11 for passing the air bubbles 14 by being opened and for blocking the air bubbles 14 by being closed is provided above the tubular filter membrane nodule 5 and foreign substance deposited on an inlet 12 and also a cake layer stuck on the inside surface of the tubular filter membrane are removed by confining the air bubbles 14 in a filtration standstill process where the air bubbles 14 is blocked and discharging the confined air bubbles suddenly in a filtered component removing process where the air bubbles 14 are passed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、貯留槽内に貯留さ
れた被処理液を浸漬型膜濾過方式により濾過処理し、濾
液を得るための浸漬型膜濾過装置および浸漬型膜濾過方
法に関するもので、さらに詳しく言えば、浸漬型膜濾過
装置および浸漬型膜濾過方法に用いる管状濾過膜モジュ
ールによる濾過効率が、管状濾過膜の内面に付着するケ
ーク層によって低下する前に、被処理液の流れが阻害さ
れることによって低下するのを防止するようにしたこと
に関するものである。
TECHNICAL FIELD The present invention relates to an immersion type membrane filtration device and an immersion type membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration process by an immersion type membrane filtration system. More specifically, the filtration efficiency of the tubular filtration membrane module used in the submerged membrane filtration apparatus and the submerged membrane filtration method is such that the flow rate of the liquid to be treated is reduced before the cake layer attached to the inner surface of the tubular filtration membrane reduces the filtration efficiency. It is intended to prevent the decrease due to inhibition.

【0002】[0002]

【従来の技術とその課題】近年、被処理液中に膜モジュ
ールを浸漬し、空気泡の浮力を利用しながら濾過するク
ロスフロー濾過方法が、高汚濁液の省エネルギー精密ろ
過方式として多方面で利用されるようになった。このよ
うな濾過方法は、例えば、特開昭61−129094号
公報に記載されており、この濾過方法は浸漬型膜濾過方
法とも言われ、これに使用する膜モジュールは浸漬型膜
モジュールとも言われ、中空糸膜モジュールや平膜モジ
ュールを被処理液中に浸漬したものが使用されてきた。
同様に、被処理液中に膜モジュールを浸漬し、水頭差で
濾過する濾過方法にも、中空糸膜モジュールや平膜モジ
ュールが使用され、従来の砂濾過方法に代わる省エネル
ギー、低コストの濾過方法として注目されているが、こ
のような濾過方法も浸漬型膜濾過方法と言われ、これに
使用する膜モジュールも浸漬型膜モジュールと言われ
る。
2. Description of the Related Art In recent years, a cross-flow filtration method of immersing a membrane module in a liquid to be treated and filtering while utilizing the buoyancy of air bubbles has been used in various fields as an energy-saving microfiltration method for highly polluted liquids. Came to be. Such a filtration method is described in, for example, Japanese Patent Application Laid-Open No. 61-129094, and this filtration method is also called an immersion type membrane filtration method, and the membrane module used for this is also called an immersion type membrane module. A hollow fiber membrane module or a flat membrane module immersed in a liquid to be treated has been used.
Similarly, a hollow fiber membrane module or a flat membrane module is also used for the filtration method of immersing the membrane module in the liquid to be treated and filtering by the head difference, which is an energy-saving and low-cost filtration method that replaces the conventional sand filtration method. However, such a filtration method is also called an immersion type membrane filtration method, and the membrane module used for this is also called an immersion type membrane module.

【0003】このクロスフロー濾過方法や水頭差で濾過
する濾過方法と限外濾過方法とは、前者が空気泡の浮力
や水頭差を利用して被処理液を膜モジュールに供給して
いるのに対し、後者がポンプなどの機械的循環手段を用
いて膜モジュールに被処理液を供給している点で相違
し、それぞれは明確に区別されるものである。
The cross-flow filtration method, the filtration method of filtering with a water head difference, and the ultrafiltration method use the former to supply the liquid to be treated to the membrane module by utilizing the buoyancy of air bubbles and the water head difference. On the other hand, the latter is different in that the liquid to be treated is supplied to the membrane module by using a mechanical circulation means such as a pump, and each is clearly distinguished.

【0004】上記した浸漬型膜濾過方法の対象となる被
処理液中には、多様な夾雑物が混在しており、これに使
用する膜モジュールを長期間、良好な濾過効率で運転す
るためには、被処理液の流路が閉塞されないように、あ
らかじめ大きな夾雑物を除去しておいたり、逆洗によっ
て膜面に付着したケーク層を除去する必要がある。この
膜モジュールに、平膜モジュールを使用した場合は、そ
れと同じ幅の被処理液の流路が確保できて、あらかじめ
大きな夾雑物を除去しなくても被処理液の流路が閉塞さ
れることはないが、逆洗に耐える強度を持たせることが
難しく、中空糸膜モジュールを使用した場合は、中空糸
膜の耐圧を利用して逆洗を行うことができるが、中空糸
膜と中空糸膜との間隙が被処理液の流路になるため、あ
らかじめ大きな夾雑物を除去しておかないと被処理液の
流路が閉塞されて、早期に濾過効率が低下してしまうた
め、平膜モジュールや中空糸膜モジュールを使用して浸
漬型膜濾過方法を長期間安定に行うことは実質的に困難
であった。
Various impurities are mixed in the liquid to be treated which is the object of the above-mentioned immersion type membrane filtration method, and in order to operate the membrane module used for this for a long time with a good filtration efficiency. In order to prevent the flow path of the liquid to be treated from being blocked, it is necessary to remove large contaminants in advance or to remove the cake layer attached to the film surface by backwashing. When a flat membrane module is used for this membrane module, a flow passage for the liquid to be treated can be secured with the same width, and the flow passage for the liquid to be treated is blocked even if large contaminants are not removed in advance. However, it is difficult to provide sufficient strength to withstand backwashing. When a hollow fiber membrane module is used, backwashing can be performed by using the pressure resistance of the hollow fiber membrane. Since the gap between the membrane and the membrane becomes the flow path for the liquid to be treated, if large contaminants are not removed in advance, the flow passage for the liquid to be treated will be blocked, and the filtration efficiency will decline at an early stage. It has been substantially difficult to carry out the immersion type membrane filtration method stably for a long period of time using a module or a hollow fiber membrane module.

【0005】これに対し、推測ではあるが、管状濾過膜
モジュールは平膜モジュールや中空糸膜モジュールに対
して多くの利点がある。すなわち、すべての空気の流
れがクロスフローの平行流れを大きくするために利用で
きること、気泡と被処理液の通路が円筒形であるため
に物質移動係数が他の形式のモジュールに比べて大き
く、原理的にフラックス(単位膜面積当たりのろ過流
量)が大きくできること、膜自身が気泡と被処理液の
通路を構成するためにモジュール構造をコンパクトにで
きること、内径が中空糸膜よりもはるかに大きいの
で、圧力損失が小さく逆洗による効果が大きくできるこ
と、などである。ところが、管状濾過膜モジュールを浸
漬型膜濾過方式に適用することについては、浸漬型膜濾
過方法が適用される被処理液中には多様な夾雑物が含ま
れるために管状濾過膜自体がこれらによって閉塞すると
予想されたため、特別な関心が払われなかった。
On the other hand, it is speculated that the tubular filtration membrane module has many advantages over the flat membrane module and the hollow fiber membrane module. That is, all air flow can be used to increase the parallel flow of cross flow, and the mass transfer coefficient is large compared to other types of modules due to the cylindrical shape of the bubbles and the passage of the liquid to be treated. Since the flux (filtering flow rate per unit membrane area) can be increased, the module structure can be made compact because the membrane itself constitutes the passage for the bubbles and the liquid to be treated, and the inner diameter is much larger than the hollow fiber membrane, The pressure loss is small, and the effect of backwashing can be increased. However, regarding the application of the tubular filtration membrane module to the submerged membrane filtration method, since the liquid to be treated to which the submerged membrane filtration method is applied contains various contaminants, the tubular filtration membrane itself is No special attention was paid as it was expected to be blocked.

【0006】本発明の目的は、上記した事情に鑑み、浸
漬型膜濾過方法を、管状濾過膜モジュールを用いて実現
するに当たり、管状濾過膜自体が夾雑物によって閉塞さ
れないようにする簡易な方法を提供することにより、管
状濾過膜モジュールを用いた浸漬型膜濾過方法を、長期
間にわたって効率的に実施できるようにすることにあ
る。
In view of the above-mentioned circumstances, an object of the present invention is to realize a submerged membrane filtration method using a tubular filtration membrane module, and to provide a simple method for preventing the tubular filtration membrane itself from being blocked by foreign matters. By providing, the immersion type membrane filtration method using a tubular filtration membrane module can be efficiently performed over a long period of time.

【0007】[0007]

【課題を解決するための手段】すなわち、請求項1記載
の浸漬型膜濾過装置は、貯留槽内に貯留された被処理液
を浸漬型膜濾過方式によって濾過処理し、濾液を得るた
めのものであり、管状濾過膜モジュールと空気泡供給装
置とを少なくとも有し、前記管状濾過膜モジュールは、
内面に被処理液の濾過機能を有する管状濾過膜の複数本
が、筒状の収納容器内に収容されて両端部が保持される
とともに該両端部を上下方向に開口させるように貯留槽
内に配置され、前記空気泡供給装置は、空気泡を発生さ
せる空気泡発生装置と前記空気泡を管状濾過膜モジュー
ルに向けて案内する案内筒とを有し、前記空気泡によっ
て被処理液が管状濾過膜モジュールの下方から上方に流
れて濾過されるように管状濾過膜モジュールの下方に配
置され、かつ前記管状濾過膜モジュールは、開くことに
よって空気泡を通過させ、閉じることによって空気泡を
遮断させる蓋体が上方に配置されたことを特徴とするも
のであり、これにより、蓋体を閉じて空気泡を一旦管状
濾過膜の内側と案内筒内に閉じ込めておいてから、蓋体
を開いて閉じ込めた空気泡を一気に流出させるようにす
ることができるので、管状濾過膜の下方に滞留している
夾雑物、特に長繊維状のものを一気に押し出すことがで
きる。
[Means for Solving the Problems] That is, the submerged membrane filtration apparatus according to claim 1 is for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration treatment by the submerged membrane filtration system. Which has at least a tubular filtration membrane module and an air bubble supply device, the tubular filtration membrane module,
A plurality of tubular filtration membranes having a filtration function for the liquid to be treated on the inner surface are housed in a cylindrical container and both ends thereof are held, and the both ends are vertically opened in a storage tank. The air bubble supply device has an air bubble generation device that generates air bubbles and a guide tube that guides the air bubbles toward the tubular filtration membrane module, and the liquid to be treated is tubularly filtered by the air bubbles. A lid which is arranged below the tubular filtration membrane module so that it flows from below to above the membrane module to be filtered, and wherein the tubular filtration membrane module opens the air bubbles and closes them to block the air bubbles. This is characterized in that the body is placed above, so that the lid is closed and air bubbles are once trapped inside the tubular filtration membrane and in the guide tube, and then the lid is opened and trapped. It is possible to make a stroke to flow out of air bubbles, contaminants remaining in the lower portion of the tubular filtration membranes can be extruded particularly once those long-fiber.

【0008】また、請求項2記載の浸漬型膜濾過装置
は、請求項1記載のものにおいて、空気泡発生装置は、
大きさと形状が案内筒の軸方向に垂直な断面における内
周と実質的に同じであって、空気泡の圧力によって開閉
する噴出孔を全面に有している、ゴム弾性体からなる面
状ノズルを備えていることを特徴とするものであり、こ
れにより、すべての管状濾過膜に均等に空気泡を供給す
ることができる。
Further, the immersion type membrane filtration device according to claim 2 is the same as that according to claim 1, wherein the air bubble generating device is
A planar nozzle made of a rubber elastic body, the size and shape of which are substantially the same as the inner circumference of a cross section perpendicular to the axial direction of the guide tube, and which has an ejection hole which opens and closes by the pressure of air bubbles over the entire surface. It is characterized in that it is possible to uniformly supply air bubbles to all tubular filtration membranes.

【0009】また、請求項3記載の浸漬型膜濾過装置
は、請求項1または2記載のものにおいて、案内筒は、
被処理液を内部に導入する網状フィルターを有している
ことを特徴とするものであり、これにより、案内筒内に
夾雑物が流入するのを阻止することができるとともに、
蓋体を閉じて空気泡を一旦管状濾過膜の内側と案内筒内
に閉じ込めると、網状フィルターを介して被処理液が逆
流し、網状フィルターに堆積した夾雑物を除去すること
ができる。
The immersion type membrane filtration device according to claim 3 is the same as that according to claim 1 or 2, wherein the guide tube is
It is characterized by having a reticulated filter that introduces the liquid to be treated inside, whereby it is possible to prevent the inflow of impurities into the guide cylinder,
Once the lid is closed and the air bubbles are once confined inside the tubular filtration membrane and in the guide tube, the liquid to be treated flows back through the mesh filter, and the impurities accumulated on the mesh filter can be removed.

【0010】また、請求項4記載の浸漬型膜濾過装置
は、請求項1、2または3のいずれか一項記載のものに
おいて、管状濾過膜モジュールは、収納容器が濾液を排
出する排出口を有し、この排出口から延びる濾液排出経
路を有していることを特徴とするものであり、請求項5
記載の浸漬型膜濾過装置は、請求項1、2または3のい
ずれか一項記載のものにおいて、管状濾過膜モジュール
は、収納容器が、内側に間隔を設けて、濾液を導入する
導入口と濾液を排出する排出口を有する筒状の集水管を
有し、この間に管状濾過膜の複数本を収容し、前記排出
口から延びる濾液排出経路を有していることを特徴とす
るものであり、これにより、収納容器または集水管を通
じて濾液を円滑に排出することができる。
Further, the immersion type membrane filtration device according to claim 4 is the device according to any one of claims 1, 2 and 3, wherein the tubular filtration membrane module has a discharge port through which the storage container discharges the filtrate. And a filtrate discharge path extending from the discharge port.
The immersion type membrane filtration device according to claim 1, wherein the tubular filtration membrane module has an inlet for introducing a filtrate, the tubular container is provided with a space inside, and the tubular container is provided with a gap. It has a tubular water collecting pipe having a discharge port for discharging the filtrate, and accommodates a plurality of tubular filtration membranes between them, and has a filtrate discharge path extending from the discharge port. Thus, the filtrate can be smoothly discharged through the storage container or the water collecting pipe.

【0011】さらに、請求項6記載の浸漬型膜濾過方法
は、貯留槽内に貯留された被処理液を浸漬型膜濾過方式
によって濾過処理し、濾液を得るための浸漬型膜濾過方
法であって、内面に被処理液の濾過機能を有する管状濾
過膜の複数本が筒状の収納容器内に収容されて両端部が
保持された管状濾過膜モジュールを、該両端部を上下方
向に開口するように前記貯留槽内に配置し、この管状濾
過膜モジュールの下方から空気泡を供給して被処理液を
管状濾過膜の下方から上方に流して濾過する通常濾過工
程と、前記空気泡の流れを遮断して被処理液の濾過を休
止させる濾過休止工程と、遮断した空気泡の流れを再開
して管状濾過膜モジュールに蓄積した濾別成分を除去す
る濾別成分除去工程とを含むことを特徴とし、これによ
り、濾過休止工程で、空気泡を一旦管状濾過膜の内側と
案内筒内に閉じ込めておき、濾別成分除去工程で、閉じ
込めた空気泡を一気に流出させるようにすることができ
るので、管状濾過膜の下方に滞留している夾雑物、特に
長繊維状のものを一気に押し出すことができる。
Further, the immersion type membrane filtration method according to claim 6 is an immersion type membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration treatment by the immersion type membrane filtration method. Then, a tubular filtration membrane module, in which a plurality of tubular filtration membranes having a function of filtering the liquid to be treated on the inner surface are housed in a cylindrical container and both ends thereof are held, are opened vertically at both ends. As described above, the normal filtration step of arranging in the storage tank, supplying air bubbles from the lower side of the tubular filtration membrane module to flow the liquid to be treated upward from the lower side of the tubular filtration membrane and filtering, and the flow of the air bubbles. A filtration pause step of blocking the filtration of the liquid to be treated by stopping the filtration and a filtration component removal step of restarting the flow of the blocked air bubbles to remove the filtration component accumulated in the tubular filtration membrane module. Characterized by this, the filtration pause step Since air bubbles can be temporarily trapped inside the tubular filtration membrane and in the guide tube and the trapped air bubbles can be caused to flow out at once in the filtration component removal step, they will stay below the tubular filtration membrane. It is possible to extrude foreign substances, especially long-fiber-like substances, at a stretch.

【0012】また、請求項7記載の浸漬型膜濾過方法
は、請求項6記載の方法において、収納容器は濾液を排
出する排出口を有し、この排出口から排出される濾液を
加圧しながら前記排出口を通じて収納容器内に逆流させ
る逆洗工程を、さらに含んでいることを特徴とするもの
であり、請求項8記載の浸漬型膜濾過方法は、請求項6
記載の方法において、収納容器は濾液を導入する導入口
と濾液を排出する排出口を有する集水管が間隔を設けて
内側に配置され、この排出口から排出される濾液を加圧
しながら前記排出口を通じて収納容器内に逆流させる逆
洗工程を、さらに含んでいることを特徴とするものであ
り、これにより、濾過休止工程で、空気泡を一旦管状濾
過膜の内側と案内筒内に閉じ込めておき、濾別成分除去
工程で、閉じ込めた空気泡を一気に流出させても、管状
濾過膜の下方に滞留している夾雑物が押し出せないとき
に、それを除去することができるとともに、濾過膜の内
面に付着したケーク層も除去することができる。
Further, the immersion type membrane filtration method according to claim 7 is the method according to claim 6, wherein the storage container has a discharge port for discharging the filtrate, and the filtrate discharged from the discharge port is pressurized. 9. The submerged membrane filtration method according to claim 8, further comprising a backwashing step of backflowing into the storage container through the discharge port.
In the method described above, the storage container is disposed inside a water collecting pipe having an inlet for introducing a filtrate and an outlet for discharging the filtrate, and the outlet is provided while pressurizing the filtrate discharged from the outlet. The method is characterized by further including a backwashing step in which it backflows into the storage container through, so that air bubbles are temporarily trapped inside the tubular filtration membrane and in the guide tube in the filtration suspension step. In the filter component removal step, even if the trapped air bubbles are blown out all at once, when the impurities remaining below the tubular filtration membrane cannot be extruded, it can be removed and the filtration membrane The cake layer adhering to the inner surface can also be removed.

【0013】また、請求項8記載の浸漬型膜濾過方法
は、請求項6、7または8のいずれか一項記載の方法に
おいて、通常濾過工程の過程で、濾過休止工程と濾別成
分除去工程とを導入することを特徴とするものであり、
これにより、簡易な方法で管状濾過膜の下方に滞留して
いる夾雑物を押し出すことができる。
Further, the immersion type membrane filtration method according to claim 8 is the method according to any one of claims 6, 7 and 8, wherein in the normal filtration step, a filtration pause step and a filtered component removal step are carried out. It is characterized by introducing and
With this, it is possible to extrude the contaminants accumulated under the tubular filtration membrane by a simple method.

【0014】[0014]

【発明の実施の形態】図1は、本発明の実施の形態に係
る浸漬型膜濾過装置が採用される浸漬型膜濾過システム
の概略構成を示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic structure of an immersion type membrane filtration system in which an immersion type membrane filtration device according to an embodiment of the present invention is adopted.

【0015】図1において、浸漬型膜濾過システム46
は、被処理液31が貯留された貯留槽30内に、管状濾
過膜モジュール5と空気泡供給装置9とを主に備えた浸
漬型膜濾過装置2が浸漬されている。
In FIG. 1, a submerged membrane filtration system 46
In the storage tank 30 in which the liquid to be treated 31 is stored, the submerged membrane filtration device 2 mainly including the tubular filtration membrane module 5 and the air bubble supply device 9 is immersed.

【0016】前記貯留槽30は、上部に開口を有する容
器状に形成されており、内部に被処理液31が貯留され
ている。
The storage tank 30 is formed in the shape of a container having an opening at the top, and the liquid to be treated 31 is stored therein.

【0017】前記管状濾過膜モジュール5は、図2の一
部切欠き縦断面図に示したように、例えば樹脂製の部材
からなる円筒状の収納容器4と、この収納容器4内に充
填された複数本の管状濾過膜3とを備え、この管状濾過
膜3は内面に被処理液31の濾過機能を有していて、被
処理液31は、空気泡14とともに下方の入口12から
管状濾過膜3の内側の被処理液流路20を通って上方の
出口13に流れて濾過処理され、濾過処理後の被処理液
(濾液)は、管状濾過膜3の外側の処理液流路21を通
って、収納容器4側面の排出口6から排出されるように
構成されている。
The tubular filtration membrane module 5 is, as shown in the partially cut-away longitudinal sectional view of FIG. 2, a cylindrical container 4 made of, for example, a resin member, and the container 4 is filled with the cylindrical container 4. And a plurality of tubular filtration membranes 3. The tubular filtration membrane 3 has a function of filtering the liquid to be treated 31 on the inner surface thereof, and the liquid to be treated 31 is tubular filtered from the lower inlet 12 together with the air bubbles 14. The liquid to be treated (filtrate), which has been filtered by flowing through the liquid to be treated flow passage 20 inside the membrane 3 to the upper outlet 13, flows through the liquid to be treated flow passage 21 outside the tubular filtration membrane 3. It is configured to be discharged through the discharge port 6 on the side surface of the storage container 4.

【0018】前記複数本の管状濾過膜3は、細長な円筒
状に形成されたものであり、各管状濾過膜3は、図示し
ていない外周の突起によって互いに密着しないように、
すなわち互いに間隔を設けて、収納容器4の上下の開口
方向に沿って互いに平行に密に集合させ、その上端部お
よび下端部は、それぞれウレタン樹脂などの樹脂材料を
用いて形成された保持部によって各管状濾過膜の開放状
態を維持しつつ収納容器4に対して一体的に保持されて
固定されている。この結果、収納容器4の両端部は当該
保持部によって液密に閉鎖されることになる。
The plurality of tubular filtration membranes 3 are formed in a slender cylindrical shape, and the tubular filtration membranes 3 do not adhere to each other by a protrusion on the outer periphery, which is not shown.
That is, spaced apart from each other, the storage containers 4 are densely gathered in parallel with each other along the upper and lower opening directions, and the upper end and the lower end thereof are respectively held by a holding portion formed of a resin material such as urethane resin. Each tubular filtration membrane is held and fixed integrally with the storage container 4 while maintaining the open state. As a result, both ends of the storage container 4 are liquid-tightly closed by the holding portions.

【0019】上述の管状濾過膜3は、内面に被処理液3
1の濾過機能を持たせ、全体の強度を確保するために、
内周面側から外周面側に向けて順に濾過膜層および支持
膜層を備えた二層構造を有し、濾過膜層の種類は、特に
限定されるものではないが、被処理液から除去すべき濾
別成分の種類に応じて適宜選択することができる。たと
えば、微生物などの微粒子を除去する必要がある場合は
精密濾過膜が用いられる。精密濾過膜は、例えばJIS
K 3802によれば、0.01〜数μm程度の微粒
子および微生物を濾過によって分離するために用いる膜
と定義されているが、ここでは、20kPa以下の圧力
で実用的な濾過が可能な、孔径が0.04μmよりも大
きい微孔を多数有する、セルロース膜やポリオレフィン
系樹脂膜などの有機高分子多孔膜を用いるのが好まし
い。また、支持膜層は、上述の濾過膜層に対して形状保
持性を付与し、濾過膜層を円筒状に設定するためのもの
である。このような支持膜層は、通液性を有する多孔質
材料であれば各種のものを用いることができるが、通常
は、腰の強さ、優れた強度、優れた耐薬品性、高い耐熱
性および経済性を備えたポリプロピレン樹脂製あるいは
ポリエステル樹脂製の不織布を用いるのが好ましく、特
にポリエステル樹脂製の不織布を用いるのが好ましい。
The tubular filtration membrane 3 described above has an inner surface to be treated liquid 3 to be treated.
In order to have the filtration function of 1 and to secure the overall strength,
It has a two-layer structure including a filtration membrane layer and a support membrane layer in order from the inner peripheral surface side to the outer peripheral surface side, and the type of the filtration membrane layer is not particularly limited, but it is removed from the liquid to be treated. It can be appropriately selected depending on the kind of the filter component to be filtered. For example, a microfiltration membrane is used when it is necessary to remove fine particles such as microorganisms. The microfiltration membrane is, for example, JIS
According to K 3802, it is defined as a membrane used for separating fine particles of about 0.01 to several μm and microorganisms by filtration, but here, a pore diameter that allows practical filtration at a pressure of 20 kPa or less. It is preferable to use an organic polymer porous membrane such as a cellulose membrane or a polyolefin resin membrane having a large number of micropores having a diameter of 0.04 μm or more. The support membrane layer is for imparting shape retention to the above-mentioned filtration membrane layer and setting the filtration membrane layer in a cylindrical shape. Various kinds of porous materials having liquid permeability can be used for such a supporting membrane layer, but in general, waist strength, excellent strength, excellent chemical resistance, and high heat resistance. It is preferable to use a non-woven fabric made of polypropylene resin or polyester resin which is economical and economical, and particularly preferable to use a non-woven fabric made of polyester resin.

【0020】上述のような管状濾過膜3は、内径が3〜
15mmであるのが好ましく、5〜10mmに設定され
ているのがより好ましい。内径が3mm未満の場合は、
被処理液、特に、高汚濁の被処理液を濾過する際におい
て、被処理液中に含まれる各種の濾別成分や夾雑物によ
り管状濾過膜3が閉塞しやすくなり、濾過処理を長期間
安定に継続するのが困難になるおそれがある。逆に、内
径が15mmを超える場合は、容積の限られた収納容器
4内に充填可能な管状濾過膜3の本数が減少することに
なるため、管状濾過膜モジュール5の単位容積当りの濾
過面積(有効膜面積)が小さくなる。その結果、濾過流
量が低下することになるので、管状濾過膜モジュール5
のコンパクト化を図りながら被処理液の効率的な濾過処
理を実施するのが困難になるおそれがある。
The tubular filtration membrane 3 as described above has an inner diameter of 3 to 3.
It is preferably 15 mm, more preferably 5 to 10 mm. If the inner diameter is less than 3 mm,
When filtering a liquid to be treated, especially a highly polluted liquid to be treated, various filtration components and contaminants contained in the liquid to be treated tend to cause the tubular filtration membrane 3 to be clogged, so that the filtration treatment is stable for a long period of time. May be difficult to continue. On the other hand, when the inner diameter exceeds 15 mm, the number of tubular filtration membranes 3 that can be filled in the storage container 4 having a limited volume decreases, so that the filtration area per unit volume of the tubular filtration membrane module 5 decreases. (Effective film area) becomes smaller. As a result, the filtration flow rate decreases, so that the tubular filtration membrane module 5
There is a possibility that it may be difficult to carry out an efficient filtration treatment of the liquid to be treated while achieving the compactness.

【0021】また、管状濾過膜3は、支持膜層と濾過膜
層の和で表される肉厚(A)と外径(B)との比(A/
B)が0.025〜0.1であるのが好ましく、0.0
3〜0.1に設定されているのがより好ましい。この比
が0.025未満の場合は、管状濾過膜3に対して外側
から圧力を加えた場合、管状濾過膜3が潰れやすくな
る。この結果、管状濾過膜3の内周面に堆積する濾別成
分などからなるケーク層を排除するために、管状濾過膜
3に対して外側から圧力を加えて逆洗操作を実施した場
合、管状濾過膜が潰れてしまい、管状濾過膜3を逆洗す
るのが実質的に困難になる。なお、20kPa以上の耐
圧性を達成するためには、この比を0.03以上に設定
するのが好ましい。一方、この比が0.1を超える場合
は、管状濾過膜モジュール5の単位容積当りの濾過面積
(有効膜面積)が小さくなる。その結果、濾過流量が低
下することになるため、管状濾過膜モジュール5のコン
パクト化を図りながら被処理液の効率的な濾過処理を実
施するのが困難になるおそれがある。
The tubular filtration membrane 3 has a ratio (A /) of the thickness (A) expressed by the sum of the support membrane layer and the filtration membrane layer to the outer diameter (B).
B) is preferably 0.025 to 0.1, and 0.0
More preferably, it is set to 3 to 0.1. When this ratio is less than 0.025, the tubular filtration membrane 3 is likely to be crushed when pressure is applied to the tubular filtration membrane 3 from the outside. As a result, when the backwashing operation is performed by applying pressure from the outside to the tubular filtration membrane 3 in order to remove the cake layer composed of the filtering component and the like accumulated on the inner peripheral surface of the tubular filtration membrane 3, The filtration membrane is crushed and it becomes substantially difficult to backwash the tubular filtration membrane 3. In order to achieve a pressure resistance of 20 kPa or higher, this ratio is preferably set to 0.03 or higher. On the other hand, when this ratio exceeds 0.1, the filtration area (effective membrane area) per unit volume of the tubular filtration membrane module 5 becomes small. As a result, the filtration flow rate is reduced, which may make it difficult to carry out an efficient filtration treatment of the liquid to be treated while making the tubular filtration membrane module 5 compact.

【0022】また、前述した突起の高さ、すなわち支持
膜層の表面からの突出量は、0.02〜0.2mmであ
るのが好ましい。突起の高さが0.02mm未満の場合
は、管状濾過膜3同士が密着し易くなり、結果的に濾過
液の流動性を高めるのが困難になるおそれがある。一
方、0.2mmを超える場合は、管状濾過膜3の本数、
すなわち、管状濾過膜モジュール5の収納容器4内に充
填可能な管状濾過膜3の本数が減少することになるた
め、管状濾過膜モジュール5の単位容積当りの濾過面積
が小さくなる。その結果、濾過流量が低下することにな
るため、管状濾過膜モジュール5のコンパクト化を図り
ながら被処理液の効率的な濾過処理を実施するのが困難
になるおそれがある。なお、突起の高さは、被処理液の
種類に応じて適宜選択することもできる。たとえば、被
処理液が活性汚泥液のように濾過流量が比較的小さいも
のである場合は、濾過面積を確保する観点から突起は低
めに設定するのが好ましい。一方、被処理液が河川の水
のように濾過流量が比較的大きいものである場合は、濾
液の流動性を高める観点から、突起は高めに設定するの
が好ましい。
The height of the above-mentioned protrusions, that is, the amount of protrusion from the surface of the support film layer is preferably 0.02 to 0.2 mm. When the height of the protrusion is less than 0.02 mm, the tubular filtration membranes 3 are likely to adhere to each other, and as a result, it may be difficult to enhance the fluidity of the filtrate. On the other hand, when it exceeds 0.2 mm, the number of tubular filtration membranes 3,
That is, since the number of tubular filtration membranes 3 that can be filled in the container 4 of the tubular filtration membrane module 5 is reduced, the filtration area per unit volume of the tubular filtration membrane module 5 is reduced. As a result, the filtration flow rate is reduced, which may make it difficult to carry out an efficient filtration treatment of the liquid to be treated while making the tubular filtration membrane module 5 compact. The height of the protrusions can be appropriately selected according to the type of liquid to be treated. For example, when the liquid to be treated has a relatively small filtration flow rate, such as activated sludge liquid, it is preferable to set the protrusions to a low value from the viewpoint of ensuring the filtration area. On the other hand, when the liquid to be treated has a relatively large filtration flow rate, such as river water, it is preferable to set the protrusions higher from the viewpoint of increasing the fluidity of the filtrate.

【0023】このような管状濾過膜3は、支持膜層上に
濾過膜層が一体に積層された、幅が2cmのテープ状複
合膜を準備し、これを直径が7mmの心棒に対し、支持
膜層が表面になるように幅方向の両端部を重ね合わせな
がら螺旋状に巻き付け、重なり部分を超音波溶着するこ
とによって作製する。こうして、内径が7mm、肉厚が
0.15mmの管状濾過膜3を得ることができ、重なり
部分によって前述した突起を形成することができる。
For such a tubular filtration membrane 3, a tape-shaped composite membrane having a width of 2 cm, in which a filtration membrane layer is integrally laminated on a support membrane layer, is prepared and supported on a mandrel having a diameter of 7 mm. It is manufactured by spirally winding while overlapping both ends in the width direction so that the film layer is on the surface and ultrasonically welding the overlapping portion. In this way, the tubular filtration membrane 3 having an inner diameter of 7 mm and a wall thickness of 0.15 mm can be obtained, and the above-mentioned protrusion can be formed by the overlapping portion.

【0024】上記した管状濾過膜3を用いて管状濾過膜
モジュール5を作製する方法は、複数本の管状濾過膜3
の両端をヒートシ−ルし、これを収納容器4に充填し、
未硬化のウレタン樹脂を入れたシリコン製のモールド内
に一端を浸漬し、ウレタン樹脂が硬化するまで放置す
る。そして、他端もこれと同様のことを行う。そうする
と、それぞれ収納容器4と管状濾過膜3との間隙が閉鎖
されるので、閉鎖された後の管状濾過膜3の両端を収納
容器4に合わせて切り揃える。こうして、長さが375
mm、管状濾過膜3の本数が7本の管状濾過膜モジュー
ル5を作製する。
The method for producing the tubular filtration membrane module 5 using the above-mentioned tubular filtration membrane 3 is carried out by using a plurality of tubular filtration membranes 3.
Heat seal both ends of, and fill this into the storage container 4,
One end is dipped in a silicone mold containing uncured urethane resin and left to stand until the urethane resin is cured. Then, the other end does the same. Then, since the gap between the storage container 4 and the tubular filtration membrane 3 is closed, both ends of the closed tubular filtration membrane 3 are cut and aligned according to the storage container 4. Thus, the length is 375
A tubular filtration membrane module 5 having a size of 7 mm and a tubular filtration membrane 3 of 7 is prepared.

【0025】一方、空気泡供給装置9は、管状濾過膜モ
ジュール5に対して空気泡14を供給するためのもので
あり、図1に示すように、貯留槽30内において、管状
濾過膜モジュール5の下方に配置されている。この空気
泡供給装置9は、空気を送出するブロワー41、この空
気を貯留槽30内の被処理液31中に導入する空気供給
パイプ42および導入された空気によって発生した空気
泡14の圧力で開閉する噴出口を全面に有しているゴム
弾性体からなる面状ノズル7からなる空気泡発生装置4
3と前記空気泡14を管状濾過膜モジュール5に向けて
案内する案内筒8とを有し、空気泡14によって被処理
液31が管状濾過膜モジュール5の下方から上方に流れ
て濾過されるように構成されている。なお、前記面状ノ
ズル7は、大きさと形状を案内筒8の軸方向に垂直な断
面における内周と実質的に同じにし、発生した空気泡1
4を均等に管状濾過膜モジュール5に送出できるように
している。
On the other hand, the air bubble supply device 9 is for supplying the air bubbles 14 to the tubular filtration membrane module 5, and as shown in FIG. It is located below. The air bubble supply device 9 is opened / closed by a blower 41 that sends out air, an air supply pipe 42 that introduces this air into the liquid to be treated 31 in the storage tank 30, and the pressure of the air bubbles 14 generated by the introduced air. Air bubble generation device 4 including a planar nozzle 7 made of a rubber elastic body having a jetting port that
3 and a guide tube 8 for guiding the air bubbles 14 toward the tubular filtration membrane module 5, so that the liquid 31 to be treated flows upward from below the tubular filtration membrane module 5 and is filtered by the air bubbles 14. Is configured. The planar nozzle 7 has a size and shape substantially the same as the inner circumference of the guide tube 8 in a cross section perpendicular to the axial direction, and the generated air bubbles 1
4 can be evenly delivered to the tubular filtration membrane module 5.

【0026】また、濾過によって得られた濾液は排出口
6から濾液排出経路44を通って外部に排出される。な
お、図1のものでは、濾液排出経路44に設けたポンプ
40による吸引によって排出しているが、このようなポ
ンプを用いずに水頭差によって排出することもできる。
The filtrate obtained by filtration is discharged from the discharge port 6 through the filtrate discharge path 44 to the outside. In FIG. 1, the filtrate is discharged by suction with the pump 40 provided in the discharge path 44, but it is also possible to discharge by the head difference without using such a pump.

【0027】前記排出口6は、図1のものでは収納容器
4に設けられているが、管状濾過膜モジュール5を、収
納容器4が内側に間隔を設けて集水管を有したもので、
この間に管状濾過膜3の複数本を収納したものとする
と、該集水管に濾液を導入する導入口と濾液を排出する
排出口を設け、この排出口から濾液排出経路を通って外
部に排出されるようにしてもよい。
Although the discharge port 6 is provided in the storage container 4 in FIG. 1, the discharge port 6 is a tubular filtration membrane module 5 in which the storage container 4 has a water collecting pipe with a space provided inside.
Assuming that a plurality of tubular filtration membranes 3 are accommodated in the meantime, an inlet for introducing the filtrate and an outlet for discharging the filtrate are provided in the water collecting pipe, and the water is discharged from the outlet through the filtrate discharging path to the outside. You may do it.

【0028】さらに、管状濾過膜モジュール5には、開
くことによって空気泡14を通過させ、閉じることによ
って空気泡14を遮断させる蓋体11が、上方の出口1
3が開閉可能なように設けられている。
Further, the tubular filtration membrane module 5 is provided with a lid 11 which allows the air bubbles 14 to pass therethrough by opening and shuts off the air bubbles 14 by closing the same.
3 is provided so that it can be opened and closed.

【0029】また、前記案内筒8には、側面に、被処理
液31から長繊維状の夾雑物の流入を阻止しながら被処
理液31を内部に導入する目開きが7mmの網状フィル
ター10が設けられている。
Further, the guide tube 8 has a mesh filter 10 on its side surface with a 7 mm opening for introducing the liquid to be treated 31 into the inside while blocking the inflow of long fiber-like impurities from the liquid to be treated 31. It is provided.

【0030】上記した網状フィルター10によって長繊
維状の夾雑物の流入を阻止することができるので、入口
12にこのような夾雑物が蓄積するの防止することがで
きるとともに、面状ノズル7によって発生した空気泡1
4を確実に管状濾過膜3の内側に送り込むことができる
ので、長期間にわたってすぐれた濾過効率で濾過を行う
ことができる。なお、図1のものでは、面状ノズル7か
ら入口12までの距離は250mmにしている。
Since the inflow of long-fiber-like impurities can be blocked by the mesh filter 10 described above, it is possible to prevent such impurities from accumulating at the inlet 12, and at the same time, generate them by the planar nozzle 7. Air bubbles 1
Since 4 can be reliably fed into the inside of the tubular filtration membrane 3, filtration can be performed with excellent filtration efficiency for a long period of time. In FIG. 1, the distance from the planar nozzle 7 to the inlet 12 is 250 mm.

【0031】そして、長期間の運転で入口12に夾雑物
が滞留して濾過効率が低下したときは、前記蓋体11で
出口13を閉じて、管状濾過膜3の内側と案内筒8内に
空気泡14を閉じ込めておいてから、蓋体11を開いて
閉じ込めた空気泡14を一気に流出させるようにする
と、入口12に滞留している夾雑物を一気に押し出すこ
とができ、濾過効率を回復させることができる。
When impurities are accumulated in the inlet 12 due to long-term operation and the filtration efficiency is lowered, the outlet 13 is closed by the lid 11 so that the inside of the tubular filtration membrane 3 and the inside of the guide tube 8 are closed. When the air bubbles 14 are confined and then the lid 11 is opened to allow the confined air bubbles 14 to flow out at a stretch, the contaminants retained in the inlet 12 can be pushed out at a stretch, and the filtration efficiency is restored. be able to.

【0032】また、蓋体11で出口13を閉じて、管状
濾過膜3の内側と案内筒8内に空気泡14を閉じ込める
と、網状フィルター10を通って空気泡14が貯留槽3
0内に流出し、その流れによって網状フィルター10に
付着した長繊維状の夾雑物を除去することもできる。
When the outlet 13 is closed by the lid 11 and the air bubbles 14 are confined inside the tubular filtration membrane 3 and the guide tube 8, the air bubbles 14 pass through the mesh filter 10 and the storage tank 3 is formed.
It is also possible to remove the long-fiber-like impurities adhering to the reticulated filter 10 by flowing out to the inside of the mesh.

【0033】次に、図1、図2を参照して、上述の浸漬
型膜濾過装置2を用いた被処理液31の濾過処理操作、
すなわち浸漬型膜濾過方法について説明する。
Next, referring to FIG. 1 and FIG. 2, an operation of filtering the liquid to be treated 31 using the above-mentioned immersion type membrane filtering device 2,
That is, the immersion type membrane filtration method will be described.

【0034】先ず、貯留槽30内に、例えば微小ゲル、
コロイド成分、微生物などの濾別成分を含む被処理液3
1を供給して貯留する。この状態で、ブロワー41から
空気供給パイプ42を介して空気を供給すると、この空
気は面状ノズル7から空気泡14となって噴出する。こ
の空気泡14は案内筒8により案内されながら被処理液
31中を上昇し、管状濾過膜モジュール5に含まれる各
管状ろ過膜3の入口12から内部の被処理液流路20に
対してほぼ均等に供給される。
First, in the storage tank 30, for example, a fine gel,
Liquid to be treated 3 which contains colloidal components, filtered components such as microorganisms 3
1 is supplied and stored. In this state, when air is supplied from the blower 41 through the air supply pipe 42, this air is ejected from the planar nozzle 7 as air bubbles 14. The air bubbles 14 ascend in the liquid to be treated 31 while being guided by the guide tube 8, and from the inlets 12 of the tubular filtration membranes 3 included in the tubular filtration membrane module 5 to the liquid to be treated flow passage 20 inside. Supplied evenly.

【0035】このようにして管状濾過膜モジュール5に
対して供給される空気泡14の浮力により、貯留槽30
内に貯留された被処理液31は、図1、図2に矢印で示
すように、各管状濾過膜3内の被処理液流路20を下側
から上側に向けて通過し、出口13から管状濾過膜モジ
ュール5の外部に出て被処理液31中に戻るが、各管状
濾過膜3内の被処理液流路20を通過する際、被処理液
31を濾過し、得られた濾液を排出口6から濾液排出経
路44を通って外部に排出するため、濾液排出経路44
に設けたポンプ40による吸引を行っている。なお、図
1のものでは、ポンプ40による吸引によって排出して
いるが、このようなポンプ40を用いずに水頭差によっ
て排出することもできる。こうして、被処理液31中に
含まれる濾別成分は管状濾過膜3の濾過膜層20によっ
て採取され、被処理液31から取り除かれる。このよう
な濾過処理により、貯留槽30内の被処理液31は、図
1に矢印で示すように、管状濾過膜モジュール5を下側
から上側方向に通過して自然に循環することになる。
By the buoyancy of the air bubbles 14 thus supplied to the tubular filtration membrane module 5, the storage tank 30 is
The to-be-processed liquid 31 stored inside passes through the to-be-processed liquid flow path 20 in each tubular filtration membrane 3 from the lower side to the upper side, as shown by the arrow in FIGS. Although it goes out of the tubular filtration membrane module 5 and returns to the liquid to be treated 31, the liquid to be treated 31 is filtered when passing through the liquid to be treated flow path 20 in each tubular filtration membrane 3, and the obtained filtrate is Since the liquid is discharged from the discharge port 6 to the outside through the filtrate discharge route 44, the filtrate discharge route 44
The suction is performed by the pump 40 provided in the. In addition, in FIG. 1, the discharge is performed by suction by the pump 40, but it is also possible to discharge by the head difference without using such a pump 40. Thus, the filtered component contained in the liquid to be treated 31 is collected by the filtration membrane layer 20 of the tubular filtration membrane 3 and removed from the liquid to be treated 31. By such a filtration process, the liquid to be treated 31 in the storage tank 30 naturally passes through the tubular filtration membrane module 5 from the lower side to the upper side and circulates as shown by the arrow in FIG.

【0036】上述のような通常濾過工程において、被処
理液31中に含まれる濾別成分のうち、長繊維状の夾雑
物は、案内筒8の側面に設けた網状フィルター10によ
って流入が阻止されるが、長期間、運転を継続すると、
管状濾過膜モジュール5の入口12に上記した長繊維状
の夾雑物が少しずつ滞留し始め、濾過効率も少しずつ低
下し始める。また、管状濾過膜3の内周面、すなわち濾
過膜層の表面には濾別成分が徐々に堆積してケーク層を
形成し、管状濾過膜3の濾過性能を低下させる。このよ
うな状況下になった場合、蓋体11で出口13を閉じ
て、管状濾過膜3の内側と案内筒8内に空気泡14を閉
じ込めて濾過を休止させる濾過休止工程にしておいてか
ら、蓋体11を開いて閉じ込めた空気泡14を一気に流
出させる濾別成分除去工程にすると、入口12に滞留し
ている夾雑物を一気に押し出すことができるとともに、
管状濾過膜3の内周面に形成されたケーク層の一部も剥
離させることができ、濾過効率を回復させることができ
る。また、前述した濾過休止工程では、網状フィルター
10を通って被処理液31が貯留槽30内に逆流するの
で、その流れによって網状フィルター10に付着した長
繊維状の夾雑物を除去することもできる。
In the normal filtration step as described above, long-fiber-like impurities out of the filtered components contained in the liquid to be treated 31 are prevented from flowing by the mesh filter 10 provided on the side surface of the guide tube 8. However, if you continue driving for a long time,
The above long-fiber-like contaminants gradually start to accumulate at the inlet 12 of the tubular filtration membrane module 5, and the filtration efficiency also begins to gradually decrease. Further, the filtering component is gradually deposited on the inner peripheral surface of the tubular filtration membrane 3, that is, the surface of the filtration membrane layer, to form a cake layer, and the filtration performance of the tubular filtration membrane 3 is deteriorated. In such a situation, the outlet 13 is closed by the lid 11 and the air bubble 14 is trapped inside the tubular filtration membrane 3 and the guide tube 8 to stop the filtration before the filtration pause step. In the filter component removal step in which the air bubbles 14 trapped by opening the lid 11 are caused to flow out at once, it is possible to push out contaminants staying at the inlet 12 at once.
A part of the cake layer formed on the inner peripheral surface of the tubular filtration membrane 3 can also be peeled off, and the filtration efficiency can be recovered. Further, in the above-described filtration suspension step, the liquid to be treated 31 flows back into the storage tank 30 through the mesh filter 10, so that the flow can remove the long fiber-like contaminants adhering to the mesh filter 10. .

【0037】そして、上記した各工程を行っても濾過性
能が回復しない場合は、管状濾過膜モジュールに対して
逆洗工程を実施し、これによってケーク層を取り除き、
濾過性能の回復を図ることができる。この逆洗工程を実
施するために、排出される濾液を加圧しながら排出口6
を通じて収納容器4内に逆流させるようにする。
If the filtration performance is not recovered even after the above-mentioned steps, the tubular filter membrane module is backwashed to remove the cake layer.
The filtration performance can be recovered. In order to carry out this backwashing process, the discharge port 6 is pressurized while pressurizing the discharged filtrate.
So as to flow back into the storage container 4.

【0038】なお、管状濾過膜3は、上述した如く潰れ
圧が大きいため(例えば、少なくとも潰れ圧が20kP
aに設定されているため)、このような逆洗工程の加圧
力により押し潰されてしまうことがなく、逆洗工程を実
施した後も形状を維持し、引き続き上述のような通常濾
過工程に適用することができる。
The tubular filtration membrane 3 has a large crushing pressure as described above (for example, at least the crushing pressure is 20 kP).
Since it is set to a), it will not be crushed by the pressure force of such a backwashing step, and the shape will be maintained even after the backwashing step is carried out, and the normal filtration step as described above will be continued. Can be applied.

【0039】従って、上述の浸漬型膜濾過システム46
は、浸漬型膜濾過装置2において、通常濾過工程の過程
で濾過休止工程と濾別成分除去工程とを定期的に繰返す
ことにより、管状濾過膜モジュール5を、長期間交換し
なくても、濾過性能を回復させることができ、被処理液
31の濾過処理を長期間に渡って効率的に継続すること
ができる。
Accordingly, the submerged membrane filtration system 46 described above.
In the submerged type membrane filtration device 2, the tubular filtration membrane module 5 can be filtered without exchanging the tubular filtration membrane module 5 for a long period of time by periodically repeating the filtration suspension step and the filtration component removal step in the course of the normal filtration step. The performance can be restored, and the filtering process of the liquid to be processed 31 can be efficiently continued for a long period of time.

【0040】なお、上述の浸漬型膜濾過装置2を用いた
浸漬型膜濾過方法において、通常濾過工程の過程で濾過
休止工程と濾別成分除去工程とを定期的に繰返す方法
は、手動で行ってもよいし、タイマーを用いて自動的に
行ってもよい。
In the immersion type membrane filtration method using the above-mentioned immersion type membrane filtration device 2, a method of periodically repeating the filtration pause step and the filtered component removing step in the process of the normal filtration step is performed manually. Alternatively, it may be automatically performed using a timer.

【0041】[0041]

【実施例】次に、上述の実施の形態に係る管状濾過膜モ
ジュール5を用いた浸漬型膜濾過装置2の実施例につい
て説明する。
EXAMPLES Next, examples of the immersion type membrane filtration device 2 using the tubular filtration membrane module 5 according to the above-described embodiment will be described.

【0042】貯留槽30内の被処理液31中に長さが5
〜15cmの長繊維状夾雑物を約50本入れ、ブロワー
41から空気供給パイプ42を介して空気を供給し、面
状ノズル7から10リットル/m2/分程度の空気泡1
4を噴出させると、この空気泡14のエアーリフト作用
により、被処理液流路20内の被処理液に上昇流が発生
するので、排出口6からポンプ40で吸引すると、処理
液流路21内が負圧になって被処理液流路20内の被処
理液が管状濾過膜3で濾過され、濾過されない成分は管
状濾過膜モジュール5の出口13から貯留槽30内の被
処理液31中に戻される。
The liquid to be treated 31 in the storage tank 30 has a length of 5
Approximately 50 long fiber-like contaminants of up to 15 cm are put in, air is supplied from the blower 41 through the air supply pipe 42, and air bubbles of about 10 liter / m 2 / min from the planar nozzle 7
When 4 is jetted, an upward flow is generated in the liquid to be processed in the liquid to be processed 20 due to the air-lifting action of the air bubbles 14, so when the pump 40 sucks from the discharge port 6, the liquid to be processed 21 is discharged. The inside of the liquid to be treated in the liquid to be treated 20 is filtered by the tubular filtration membrane 3 due to a negative pressure, and the unfiltered components are discharged from the outlet 13 of the tubular filtration membrane module 5 into the liquid to be treated 31 in the storage tank 30. Returned to.

【0043】上記した濾過処理を数分間継続し、網状フ
ィルター10に長繊維状夾雑物が多数堆積し始めた頃
に、管状濾過膜モジュール5の出口13を蓋体11で閉
じると、網状フィルター10から被処理液31が逆流
し、数秒で堆積した長繊維状夾雑物が貯留槽30内の被
処理液31中に戻って浮遊することがわかった。
The above-described filtration treatment is continued for several minutes, and when the long fiber-like contaminants start to accumulate on the reticulated filter 10, the outlet 13 of the tubular filtration membrane module 5 is closed by the lid 11, and the reticulated filter 10 is closed. From the results, it was found that the liquid to be treated 31 flows backward, and the long fiber-like contaminants deposited in a few seconds return and float in the liquid to be treated 31 in the storage tank 30.

【0044】次に、前記網状フィルター10を浸漬型膜
濾過装置2から取り外した状態で同様の濾過処理を継続
すると、数分間で長繊維状夾雑物が管状濾過膜モジュー
ル5の入口12に堆積し始めたので、管状濾過膜モジュ
ール5の出口13を蓋体11で閉じ、網状フィルター1
0を取り外した箇所から被処理液31が逆流し始める直
前に蓋体11を開いて空気泡14を一気に流出させる
と、入口12に堆積していた長繊維状夾雑物が管状濾過
膜3の被処理液流路20を通って出口13から押し出さ
れ、貯留槽30内の被処理液31中に戻って浮遊するこ
とがわかった。
Next, when the same filtration treatment is continued with the mesh filter 10 removed from the immersion type membrane filtration device 2, long-fiber-like contaminants are deposited at the inlet 12 of the tubular filtration membrane module 5 within a few minutes. Since it started, the outlet 13 of the tubular filtration membrane module 5 was closed with the lid 11, and the mesh filter 1
When the lid 11 is opened and the air bubbles 14 are blown out at once just before the liquid to be treated 31 starts to flow back from the place where the 0 is removed, the long fiber-like impurities accumulated at the inlet 12 are covered with the tubular filtration membrane 3. It was found that the liquid was extruded from the outlet 13 through the treatment liquid flow path 20, returned to the treatment liquid 31 in the storage tank 30 and floated.

【0045】上述の実施例では、濾液の排出口6が収納
容器4の側面に設けられている管状濾過膜モジュール5
を用いた場合について説明したが、他の形式の管状濾過
膜モジュール5であってもよい。すなわち、濾液を導入
する導入口と濾液を排出する排出口を有する集水管と管
状濾過膜3とを収納容器4の内側に配置したものであっ
てもよい。
In the above-mentioned embodiment, the tubular filtration membrane module 5 in which the filtrate discharge port 6 is provided on the side surface of the storage container 4
Although the case where the above is used has been described, the tubular filtration membrane module 5 of another type may be used. That is, the water collecting pipe having the inlet for introducing the filtrate and the outlet for discharging the filtrate and the tubular filtration membrane 3 may be arranged inside the storage container 4.

【0046】[0046]

【発明の効果】本発明の浸漬型膜濾過装置は、上述のよ
うに、管状濾過膜モジュールに、開くことによって空気
泡を通過させ、閉じることによって空気泡を遮断させる
蓋体を出口側に配置しているので、被処理液の濾過処理
を、長期間、効率的に実施するのに寄与することができ
る。
As described above, in the submerged membrane filtration apparatus of the present invention, the tubular filtration membrane module is provided with a lid on the outlet side for opening air bubbles to pass therethrough and closing air bubbles to close air bubbles. Therefore, it is possible to contribute to efficiently performing the filtration treatment of the liquid to be treated for a long period of time.

【0047】また、本発明の浸漬型膜濾過方法は、上述
のような管状濾過膜モジュールを用いて被処理液を濾過
する通常濾過工程に、濾過休止工程と濾別成分除去工程
を含ませているため、被処理液の濾過処理を、長期間、
効率的に実施することができる。
Further, in the immersion type membrane filtration method of the present invention, the ordinary filtration step for filtering the liquid to be treated using the tubular filtration membrane module as described above includes a filtration suspension step and a filtered component removal step. Therefore, the filtration of the liquid to be treated can be
It can be implemented efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る浸漬型膜濾過装置の
概略図である。
FIG. 1 is a schematic view of an immersion type membrane filtration device according to an embodiment of the present invention.

【図2】前記浸漬型膜ろ過装置に採用された管状濾過膜
モジュールの一部切り欠き縦断面図である。
FIG. 2 is a partially cutaway vertical sectional view of a tubular filtration membrane module used in the immersion type membrane filtration device.

【符号の説明】[Explanation of symbols]

2 浸漬型膜濾過装置 3 管状濾過膜 4 収納容器 5 管状濾過膜モジュール 6 排出口 7 面状ノズル 8 案内筒 9 空気泡供給装置 10 面状フィルター 11 蓋体 12 入口 13 出口 14 空気泡 20 被処理液流路 21 処理液流路 30 貯留槽 31 被処理液 40 ポンプ 41 ブロワー 42 空気供給パイプ 43 空気泡発生装置 44 濾液排出経路 46 浸漬型膜濾過システム 2 Immersion type membrane filtration device 3 tubular filtration membrane 4 storage containers 5 Tubular filtration membrane module 6 outlets 7-sided nozzle 8 guide tubes 9 Air bubble supply device 10 surface filter 11 lid 12 entrance 13 exit 14 air bubbles 20 Process liquid flow path 21 Processing liquid flow path 30 storage tanks 31 liquid to be treated 40 pumps 41 Blower 42 Air supply pipe 43 Air bubble generator 44 Filtrate discharge route 46 Immersion type membrane filtration system

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA07 HA28 HA93 JA10A JA19Z JA31A JA31Z JA39Z KA12 KA43 KA87 KC03 KC14 MA31 MA33 MC11 MC22 MC23 MC48 PB15    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA07 HA28 HA93 JA10A                       JA19Z JA31A JA31Z JA39Z                       KA12 KA43 KA87 KC03 KC14                       MA31 MA33 MC11 MC22 MC23                       MC48 PB15

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 貯留槽内に貯留された被処理液を浸漬型
膜濾過方式によって濾過処理し、濾液を得るための浸漬
型膜濾過装置であって、前記浸漬型膜濾過装置は管状濾
過膜モジュールと空気泡供給装置とを少なくとも有し、
前記管状濾過膜モジュールは、内面に被処理液の濾過機
能を有する管状濾過膜の複数本が、筒状の収納容器内に
収容されて両端部が保持されるとともに該両端部を上下
方向に開口させるように前記貯留槽内に配置され、前記
空気泡供給装置は、空気泡を発生させる空気泡発生装置
と前記空気泡を管状濾過膜モジュールに向けて案内する
案内筒とを有し、前記空気泡によって被処理液が管状濾
過膜モジュールの下方から上方に流れて濾過されるよう
に管状濾過膜モジュールの下方に配置され、かつ前記管
状濾過膜モジュールは、開くことによって空気泡を通過
させ、閉じることによって空気泡を遮断させる蓋体が上
方に配置されたことを特徴とする浸漬型膜濾過装置。
1. An immersion type membrane filtration device for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration process by an immersion type membrane filtration system, wherein the immersion type membrane filtration device is a tubular filtration membrane. At least a module and an air bubble supply device,
In the tubular filtration membrane module, a plurality of tubular filtration membranes having an inner surface having a function of filtering a liquid to be treated are housed in a cylindrical storage container so that both ends are held and the both ends are vertically opened. Is arranged in the storage tank so that the air bubble supply device has an air bubble generation device for generating air bubbles and a guide tube for guiding the air bubbles toward the tubular filtration membrane module, The liquid to be treated is disposed below the tubular filtration membrane module so that the liquid to be treated flows and is filtered upward from below the tubular filtration membrane module, and the tubular filtration membrane module passes through and closes air bubbles by opening. The submerged membrane filtration device is characterized in that a lid for blocking air bubbles is arranged above.
【請求項2】 請求項1記載の浸漬型膜濾過装置におい
て、空気泡発生装置は、大きさと形状が案内筒の軸方向
に垂直な断面における内周と実質的に同じであって、空
気泡の圧力によって開閉する噴出孔を全面に有してい
る、ゴム弾性体からなる面状ノズルを備えていることを
特徴とする浸漬型膜濾過装置。
2. The submerged membrane filtration device according to claim 1, wherein the air bubble generation device has substantially the same size and shape as the inner circumference of a cross section of the guide cylinder perpendicular to the axial direction, 1. An immersion type membrane filtration device comprising a planar nozzle made of a rubber elastic body, which has a jet nozzle which opens and closes by the pressure of 1.
【請求項3】 請求項1または2記載の浸漬型膜濾過装
置において、案内筒は、被処理液を内部に導入する網状
フィルターを有していることを特徴とする浸漬型膜濾過
装置。
3. The immersion type membrane filtration device according to claim 1 or 2, wherein the guide tube has a reticulated filter into which the liquid to be treated is introduced.
【請求項4】 請求項1、2または3のいずれか一項記
載の浸漬型膜濾過装置において、管状濾過膜モジュール
は、収納容器が濾液を排出する排出口を有し、この排出
口から延びる濾液排出経路を有していることを特徴とす
る浸漬型膜濾過装置。
4. The immersion type membrane filtration device according to claim 1, 2 or 3, wherein the tubular filtration membrane module has a discharge port through which the storage container discharges the filtrate, and extends from this discharge port. An immersion type membrane filtration device having a filtrate discharge route.
【請求項5】 請求項1、2または3のいずれか一項記
載の浸漬型膜濾過装置において、管状濾過膜モジュール
は、収納容器が、内側に間隔を設けて、濾液を導入する
導入口と濾液を排出する排出口を有する筒状の集水管を
有し、この間に管状濾過膜の複数本を収容し、前記排出
口から延びる濾液排出経路を有していることを特徴とす
る浸漬型膜濾過装置。
5. The immersion-type membrane filtration device according to claim 1, 2 or 3, wherein the tubular filtration membrane module is such that the storage container has an inlet for introducing the filtrate with a space provided inside. A submerged membrane having a tubular water collecting pipe having a discharge port for discharging a filtrate, accommodating a plurality of tubular filtration membranes between them, and having a filtrate discharge path extending from the discharge port. Filtration device.
【請求項6】 貯留槽内に貯留された被処理液を浸漬型
膜濾過方式によって濾過処理し、濾液を得るための浸漬
型膜濾過方法であって、内面に被処理液の濾過機能を有
する管状濾過膜の複数本が筒状の収納容器内に収容され
て両端部が保持された管状濾過膜モジュールを、該両端
部を上下方向に開口するように前記貯留槽内に配置し、
この管状濾過膜モジュールの下方から空気泡を供給して
被処理液を管状濾過膜モジュールの下方から上方に流し
て濾過する通常濾過工程と、前記空気泡の流れを遮断し
て被処理液の濾過を休止させる濾過休止工程と、遮断し
た空気泡の流れを再開して管状濾過膜モジュールに蓄積
した濾別成分を除去する濾別成分除去工程とを含むこと
を特徴とする浸漬型膜濾過方法。
6. A submerged membrane filtration method for obtaining a filtrate by subjecting a liquid to be treated stored in a storage tank to a filtration treatment by a submerged membrane filtration method, the inner surface having a function of filtering the liquid to be treated. A tubular filtration membrane module in which a plurality of tubular filtration membranes are accommodated in a cylindrical storage container and both ends thereof are held, is arranged in the storage tank so as to open the both ends in the vertical direction,
A normal filtration step of supplying air bubbles from below the tubular filtration membrane module to flow the liquid to be treated upward from below the tubular filtration membrane module and filtering, and filtering the liquid to be treated by blocking the flow of the air bubbles. And a filtration component removal step of restarting the flow of blocked air bubbles to remove the filtration component accumulated in the tubular filtration membrane module.
【請求項7】 請求項6記載の浸漬型膜濾過方法におい
て、収納容器は濾液を排出する排出口を有し、この排出
口から排出される濾液を加圧しながら前記排出口を通じ
て収納容器内に逆流させる逆洗工程を、さらに含んでい
ることを特徴とする浸漬型膜濾過方法。
7. The immersion type membrane filtration method according to claim 6, wherein the storage container has a discharge port for discharging the filtrate, and the filtrate discharged from the discharge port is pressurized into the storage container through the discharge port. A submerged membrane filtration method, which further comprises a backwashing step of backflowing.
【請求項8】 請求項6記載の浸漬型膜濾過方法におい
て、収納容器は濾液を導入する導入口と濾液を排出する
排出口を有する筒状の集水管が間隔を設けて内側に配置
され、この排出口から排出される濾液を加圧しながら前
記排出口を通じて収納容器内に逆流させる逆洗工程を、
さらに含んでいることを特徴とする浸漬型膜濾過方法。
8. The submerged membrane filtration method according to claim 6, wherein the storage container has a cylindrical water collecting pipe having an inlet for introducing the filtrate and an outlet for discharging the filtrate, and the inside of the tubular water collecting pipe is arranged at an interval. A backwashing step in which the filtrate discharged from this discharge port is back-flowed into the storage container through the discharge port while pressurizing,
A submerged membrane filtration method, which further comprises:
【請求項9】 請求項6、7または8のいずれか一項記
載の浸漬型膜濾過方法において、通常濾過工程の過程
で、濾過休止工程と濾別成分除去工程とを導入すること
を特徴とする浸漬型膜濾過方法。
9. The immersion membrane filtration method according to claim 6, wherein a filtration suspension step and a filtered component removal step are introduced in the process of the normal filtration step. Immersion type membrane filtration method.
JP2001238480A 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method Expired - Fee Related JP4360057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238480A JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238480A JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Publications (2)

Publication Number Publication Date
JP2003047830A true JP2003047830A (en) 2003-02-18
JP4360057B2 JP4360057B2 (en) 2009-11-11

Family

ID=19069378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238480A Expired - Fee Related JP4360057B2 (en) 2001-08-06 2001-08-06 Immersion membrane filtration apparatus and immersion membrane filtration method

Country Status (1)

Country Link
JP (1) JP4360057B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033078A1 (en) * 2002-10-10 2004-04-22 U.S. Filter Wastewater Group, Inc. Backwash method
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
KR101415678B1 (en) 2009-07-03 2014-08-05 메이덴샤 코포레이션 Membrane separation activated sewage treatment method and treatment device
US8808540B2 (en) * 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
CN107626180A (en) * 2017-11-09 2018-01-26 南京思睿达新材料科技有限公司 First level filtering device for air purifier
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN113501859A (en) * 2021-07-01 2021-10-15 宁夏杞奕农业发展有限公司 Lycium barbarum glycopeptide purification and standing equipment and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181772A (en) * 1986-02-05 1987-08-10 Kurita Water Ind Ltd Bioreactor
JPH0670825U (en) * 1993-03-17 1994-10-04 石垣機工株式会社 Undiluted liquid filtration device with internal pressure type filtration membrane
JPH10165782A (en) * 1996-12-05 1998-06-23 Matsushita Electric Ind Co Ltd Membrane module and operation thereof
JP2001009246A (en) * 1999-06-25 2001-01-16 Hitachi Plant Eng & Constr Co Ltd Immersion type flat membrane filtering device
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181772A (en) * 1986-02-05 1987-08-10 Kurita Water Ind Ltd Bioreactor
JPH0670825U (en) * 1993-03-17 1994-10-04 石垣機工株式会社 Undiluted liquid filtration device with internal pressure type filtration membrane
JPH10165782A (en) * 1996-12-05 1998-06-23 Matsushita Electric Ind Co Ltd Membrane module and operation thereof
JP2001009246A (en) * 1999-06-25 2001-01-16 Hitachi Plant Eng & Constr Co Ltd Immersion type flat membrane filtering device
JP2001104760A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US7931463B2 (en) 2001-04-04 2011-04-26 Siemens Water Technologies Corp. Apparatus for potting membranes
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
WO2004033078A1 (en) * 2002-10-10 2004-04-22 U.S. Filter Wastewater Group, Inc. Backwash method
US7938966B2 (en) * 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8372282B2 (en) 2002-12-05 2013-02-12 Siemens Industry, Inc. Mixing chamber
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) * 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US7718065B2 (en) 2004-04-22 2010-05-18 Siemens Water Technologies Corp. Filtration method and apparatus
US7862719B2 (en) 2004-08-20 2011-01-04 Siemens Water Technologies Corp. Square membrane manifold system
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US7718057B2 (en) 2005-10-05 2010-05-18 Siemens Water Technologies Corp. Wastewater treatment system
US7722769B2 (en) 2005-10-05 2010-05-25 Siemens Water Technologies Corp. Method for treating wastewater
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
KR101415678B1 (en) 2009-07-03 2014-08-05 메이덴샤 코포레이션 Membrane separation activated sewage treatment method and treatment device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN107626180A (en) * 2017-11-09 2018-01-26 南京思睿达新材料科技有限公司 First level filtering device for air purifier
CN113501859A (en) * 2021-07-01 2021-10-15 宁夏杞奕农业发展有限公司 Lycium barbarum glycopeptide purification and standing equipment and use method thereof

Also Published As

Publication number Publication date
JP4360057B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4360057B2 (en) Immersion membrane filtration apparatus and immersion membrane filtration method
JP4227651B2 (en) Hollow fiber membrane module and manufacturing method thereof
EP1043276B1 (en) Apparatus and method for treating water
US20070051679A1 (en) Water filtration using immersed membranes
JPH05184885A (en) Method for cleaning meso-porous tubular membrane of ultrafiltration
JP2006116495A (en) Filter device
JP2007505727A (en) Improved cleaning method for membrane modules
WO2005082498A1 (en) Water filtration using immersed membranes
JP2013056346A (en) Filtration apparatus
JPWO2017086313A1 (en) Hollow fiber membrane module and cleaning method thereof
JPH10504996A (en) Cleaning of hollow fiber membrane
JPH0999227A (en) Immersion type membrane separation device
JP3091015B2 (en) Membrane separation device
JPH11244671A (en) Hollow-fiber membrane module for treating crude oil, treatment of crude oil using the module and crude oil treating device
KR20080087899A (en) Membrane filtration apparatus and its operating method
JP2000343095A (en) Activated sludge treating device
JP5326571B2 (en) Filtration method
JP2001029756A (en) Treatment system using spiral membrane module and operation method thereof
JP2000271457A (en) Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JPH09131517A (en) Hollow fiber membrane module and method for using the same
KR100236921B1 (en) Immersion type hollow fiber membrane module and method for treating waste water by using the same
JP6937175B2 (en) Hollow fiber membrane filtration device and its cleaning method
JP3801046B2 (en) Immersion membrane filtration apparatus and immersion membrane filtration method
JP2010188250A (en) Water treatment method
JP2003093849A (en) Immersion type membrane filter device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees