JPH0634625B2 - Variable speed turbine generator - Google Patents

Variable speed turbine generator

Info

Publication number
JPH0634625B2
JPH0634625B2 JP60014775A JP1477585A JPH0634625B2 JP H0634625 B2 JPH0634625 B2 JP H0634625B2 JP 60014775 A JP60014775 A JP 60014775A JP 1477585 A JP1477585 A JP 1477585A JP H0634625 B2 JPH0634625 B2 JP H0634625B2
Authority
JP
Japan
Prior art keywords
generator
turbine
guide valve
output
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60014775A
Other languages
Japanese (ja)
Other versions
JPS61173698A (en
Inventor
英二 原口
博人 中川
尚夫 桑原
彰廣 酒寄
阪東  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Kansai Denryoku KK
Original Assignee
Hitachi Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kansai Denryoku KK filed Critical Hitachi Ltd
Priority to JP60014775A priority Critical patent/JPH0634625B2/en
Publication of JPS61173698A publication Critical patent/JPS61173698A/en
Publication of JPH0634625B2 publication Critical patent/JPH0634625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/16Regulating, i.e. acting automatically by power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/10Special adaptation of control arrangements for generators for water-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は巻線形誘導発電機を用いた可変速水車発電装置
の制御装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a controller for a variable speed turbine generator using a wound-rotor induction generator.

〔発明の背景〕[Background of the Invention]

この種可変速水車発電装置の制御装置として、第7図に
示すようなものが提案されている(例えば、特願昭57-1
82920号参照)。
As a control device of this kind of variable speed turbine generator, a device as shown in FIG. 7 has been proposed (for example, Japanese Patent Application No. 57-1).
82920).

第7図において、1は巻線形誘導発電機で、その回転子
に直結された水車2によつて回転駆動されるとともに、
発電機1の二次巻線1bには、サイクロコンバータ3に
より発電機1の回転速度に応じて所定の位相に調整され
た交流励磁電流が供給され、、発電機1の一次巻線1a
からは電力系統4の定格周波数と等しい一定の周波数が
交流電力が出力されるように、可変速運転が行なわされ
る。5は水車特性関数発生器で、回転速度検出器6で検
出された回転速度信号Nと、外部から与えられる発電出
力指令Pの他必要に応じて水位検出信号Hを入力し
て、最高効率で運転するための最適回転速度指令N
最適案内弁開度指令Yを発生する。7はスリツプ位相
検出用誘導機で、その回転子が発電機1に直結されると
ともに、一次巻線7aが発電機1の出力側に接続され、
二次巻線7bからスリツプ位相信号Sを出力する。こ
のスリツプ位相信号Sと最適回転速度指令Nはサイ
クロコンバータ3に与えられ、前記したように、発電機
1の二次巻線1bに供給する交流励磁電流の位相等を制
御し、また最適案内弁開度指令Yは案内弁駆動装置8
に与えられ、水車出力Pが最適値になるように案内弁
9の開度を制御する。
In FIG. 7, reference numeral 1 is a wound-rotor induction generator, which is rotationally driven by a water turbine 2 directly connected to its rotor,
The secondary winding 1b of the generator 1 is supplied with an AC excitation current adjusted to a predetermined phase by the cycloconverter 3 according to the rotation speed of the generator 1, and the primary winding 1a of the generator 1 is supplied.
From the above, the variable speed operation is performed such that the constant frequency equal to the rated frequency of the electric power system 4 outputs the AC power. 5 is a hydraulic turbine characteristic function generator, a rotational speed signal N detected by the rotation speed detector 6, and enter the water level detection signal H depending on other necessary power output command P o given from outside, maximum efficiency The optimum rotation speed command N a and the optimum guide valve opening command Y a for driving the engine are generated. 7 is a slip phase detecting induction machine, the rotor of which is directly connected to the generator 1 and the primary winding 7a is connected to the output side of the generator 1,
The slip phase signal S p is output from the secondary winding 7b. The slip phase signal S p and the optimum rotation speed command N a are given to the cycloconverter 3 to control the phase of the AC exciting current supplied to the secondary winding 1b of the generator 1 and the like, as described above. The guide valve opening command Y a is given by the guide valve driving device 8
And the opening of the guide valve 9 is controlled so that the turbine output P T becomes an optimum value.

このような制御装置において、いま発電出力Pをステ
ツプ状に上昇させようとして、発電出力指令Pを第8
図(a)に示すように変化させた場合、発電出力指令P
のステツプ状の上昇に伴つて最適回転速度指令N
最適案内弁開度指令Yも、第8図(b)、(c)に示
す如くステツプ状に上昇し、案内弁9の開度Yは案内弁
駆動装置8により、第8図(d)に示すように、最適案
内弁開度指令Yの値と一致するように制御され、この
案内弁9の開度の変化に従つて水車出力Pも、第8図
(e)に示すように変化して、発電出力指令Pに対応
した値となる。一方、発電機1の回転速度Nを、第8図
(f)に示すように上昇させて、最適回転速度指令N
に一致させるためには、その上昇分に見合うだけの発電
装置の回転系の運転エネルギが必要であるが、この運動
エネルギは水車出力Pで発電機1にかかる電気的負
荷、すなわち発電出力Pのいずれか一方から補ぎなう
しか方法がない。しかし、前記したように、水車出力P
は最適案内弁開度指令Yに応じて変化する案内弁9
の開度Yによつて決められているため、早急には上昇し
ない。このため、前記運転エネルギを発電出力Pから
補ぎなうことになり、第8図(g)に示すように、上昇
させるべき発電出力Pが過渡的に逆に下がつてしま
い、電力系統の運転上問題が生じる。この問題は発電出
力指令Pをステツプ状に下げようとする場合にも同様
に生じる。
In such a control device, the power generation output command P o is set to the eighth value in an attempt to increase the power generation output P G stepwise.
When changing as shown in FIG.
The optimum rotation speed command N a and the optimum guide valve opening command Y a also increase stepwise as shown in FIGS. 8 (b) and 8 (c), and the guide valve 9 opens. the degree Y is guided valve driving device 8, as shown in FIG. 8 (d), is controlled to match the value of the optimum guide valve opening command Y a, follow the change of the opening degree of the guide valve 9 Then, the turbine output P T also changes as shown in FIG. 8 (e) and becomes a value corresponding to the power generation output command P o . On the other hand, the rotational speed N of the generator 1, is raised as shown in FIG. 8 (f), the optimum rotational speed command N a
In order to match the amount of increase, the operating energy of the rotating system of the power generator corresponding to the increase is required, but this kinetic energy is the electrical load applied to the generator 1 at the turbine output P T, that is, the power generation output P T. There is no alternative but to supplement from either G. However, as described above, the turbine output P
T is guided valve varies according to the optimum guide valve opening command Y a 9
Since it is determined by the opening degree Y of, it does not rise immediately. For this reason, the operating energy is not supplemented from the power generation output P G , and as shown in FIG. 8 (g), the power generation output P G to be increased is transiently decreased in reverse, and the power system is reduced. Driving problems occur. This problem also occurs when the power generation output command P o is to be stepwise lowered.

〔発明の目的〕[Object of the Invention]

本発明の目的は、前記した従来技術の問題点を解決し、
発電効率を低下させることなく、発電出力を発電出力指
令に円滑に追従させて、電力系統の安定度を高め得る可
変速水車発電装置の制御装置を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art,
It is an object of the present invention to provide a control device for a variable-speed turbine generator that can increase the stability of the power system by smoothly causing the power generation output to follow the power generation output command without lowering the power generation efficiency.

〔発明の概要〕[Outline of Invention]

この目的を達成するために基本的に、サイクロコンバー
タ側の制御を電力偏差による制御とし、案内弁側の制御
を回転速度偏差による制御とする。また、電力偏差制御
と回転速度偏差制御の目標値は、いずれも電力指令から
与える。このように構成すると、電気系統であるサイク
ロコンバータ側の制御の方が機械系統である案内弁側の
制御よりも応答が早いために、電力が回転速度に先行し
て変化し、初期の目的である電力変動が円滑に行える。
To achieve this object, basically, the control on the cycloconverter side is controlled by the power deviation, and the control on the guide valve side is controlled by the rotational speed deviation. The target values for the power deviation control and the rotation speed deviation control are both given from the power command. With this configuration, the control on the side of the cycloconverter, which is the electrical system, has a quicker response than the control on the side of the guide valve, which is the mechanical system. Certain power fluctuations can be done smoothly.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例について説明するが、その前に
本発明の前提とする基本構成とこの場合の問題点につい
て第1図を用いて説明する。なお、第1図中、第7図と
同一符号は同一物または相当物を示す。
Hereinafter, one embodiment of the present invention will be described, but before that, a basic configuration on which the present invention is based and problems in this case will be described with reference to FIG. In FIG. 1, the same reference numerals as those in FIG. 7 denote the same or corresponding parts.

水車特性関数発生器5には発電出力指令Pが入力され
て、最適回転速度指令Nと最適案内弁開度指令Y
発生する。最適回転速度指令Nは回転検出器6で検出
された実際の回転速度信号と比較器10で比較され、そ
の偏差ΔN(=N−N)が演算器11に入力される。
演算器11は比例要素K,積分要素K2/S、微分要素K
Sおよび加算器12からなり、前記偏差ΔNがある限
りこれを零にするように最適案内弁開度指令Yを補正
する補正信号ΔCを出力する。この補正信号ΔCは加算
器13で最適案内弁開度指令Yと加算され、加算器1
3からの出力、すなわち補正された案内弁開度指令(Y
+ΔC)が案内弁駆動装置8に入力される。案内弁駆
動装置8は加算器14と積分要素K4/Sからなり、その出
力が加算器14に負帰帰還されている。また、前記発電
出力指令Pは比較器15にも入力され、他方の入力で
ある発電出力検出器16で検出された実際の発電出力信
号Pと比較されて、その偏差ΔP(=P−P)が
電力制御装置17に入力される。電力制御装置17は比
例要素K、積分要素K6/Sおよび加算器18からなり、
その出力がサイクロコンバータ3に入力される。
The waterwheel characteristic function generator 5 is inputted power generation output command P o, the optimum rotational speed command N a and the optimum guide valve opening command Y a is generated. The optimum rotating speed command N a is compared in comparator 10 with the actual rotational speed signal detected by the rotation detector 6, the deviation ΔN (= N a -N) is input to the arithmetic unit 11.
The calculator 11 has a proportional element K 1 , an integral element K 2 / S, and a derivative element K.
3 S and an adder 12, and outputs a correction signal ΔC for correcting the optimum guide valve opening command Y a so that the deviation ΔN becomes zero as long as the deviation ΔN exists. The correction signal ΔC is added to the optimum guide valve opening command Y a at the adder 13, the adder 1
3 output, that is, the corrected guide valve opening command (Y
a + ΔC) is input to the guide valve driving device 8. The guide valve driving device 8 is composed of an adder 14 and an integral element K 4 / S, and its output is negatively returned to the adder 14. The power generation output command P o is also input to the comparator 15 and compared with the actual power generation output signal P G detected by the power generation output detector 16, which is the other input, and the deviation ΔP (= P o -P G) is input to the power control unit 17. The power controller 17 comprises a proportional element K 5 , an integral element K 6 / S and an adder 18,
The output is input to the cycloconverter 3.

このように構成された本実施例の制御装置において、い
ま時点tで例えば発電出力Pをステツプ状に上昇さ
せようとして、発電出力指令Pを第2図(a)に示す
ようにステツプ状に上昇させると、発電機1の発電出力
は、第2図(g)に示すように、発電出力指令P
の変化に追従して上昇する。すなわち、電力制御装置1
7に含まれる積分要素K1/Sと、電力制御装置17,サイ
クロコンバータ3,発電機1,発電出力検出器16およ
び比較器15によつて構成される負帰還回路により、偏
差ΔP(=P−P)は次第に減少して定常時にP
=Pとなる。一方、最適案内弁開度指令Yに対して
の案内弁9の開度Yの応答性は、前述の発電出力指令P
に対しての発電出力Pの応答性よりも遅い。このた
め、発電出力指令Pの急変後過渡的に発電出力P
りも水車出力Pの方が小さくなり、第2図(f)に示
すように、回転速度Nは一時的に減速され、その後、時
点tで第2図(d)に示すように、案内弁開度Yは最
適案内弁開度Yと等しくなり、発電出力Pと水車出
力Pがほぼ等しくなるので、回転速度Nの低下は止
む。なお、時点tでは実際の回転速度Nの方が最適回
転速度指令Nよりも低く、偏差ΔN(=N−N)が
正で、演算器11から出力される補正信号ΔCは正であ
るから、この補正信号ΔCで補正された案内弁開度指令
(Y+ΔC)は最適案内弁開度指令Yよりも大とな
り、やがて水車出力Pは発電出力Pよりも大とな
る。したがつて、回転速度Nは増大して最適回転速度指
令Nに近付くとともに、補正信号ΔCも零に近付き、
最終的に案内弁開度Yは最適案内弁開度指令Yと一致
し、回転速度Nは最適回転速度指令と等しくなる。すな
わち、演算器11に含まれる積分要素K2/Sと、加算器1
2、加算器13、案内弁駆動装置8、案内弁9、水車
2、発電機1、回転速度検出器6および比較器10によ
つて構成される負帰還回路により、偏差ΔN(=N
N)は次第に減少して定常時にN=Nとなる。また、
定常時、偏差ΔY(=Y−Y)=0、すなわちY
Yは次のようにして達成される(イ)水車特性関数発生
器5から出力される最適案内弁開度指令Yは当然のこ
とであるが発電出力指令Pに相当するものである。
(ロ)前記したように、定常時P=Pとなる。
(ハ)水車2のランナ、発電機1の回転子等の総ての回
転部の慣性効果は水車出力Pと発電出力Pの差によ
つて加速されたり、減速されたりするもので、一種の積
分要素とみることができ、しかも前記したように11,
13,8,9,2,1,6,10によつて負帰還回路が
構成されているので、定常時にはP=Pとなる。
(ニ)案内弁開度Yは水車出力Pに相当するものであ
る。以上(イ)〜(ニ)を総合すれば、偏差ΔY(=Y
−Y)=0、すなわちY=Yとなる。この第1図の
方式によれば、第2図に示すように発電出力が迅速に負
荷追従する反面、回転速度の低下が大きい。第3図の実
施例はこの点を補う本発明の一実施例である。
In the control apparatus of the present embodiment configured as described above, the power generation output command P o is set to the step as shown in FIG. 2 (a) in order to increase the power generation output P G in a stepwise manner at the time point t o . increasing the Jo, the power generation output P G of the generator 1, as shown in FIG. 2 (g), the power generation output command P o
Rises following changes in. That is, the power control device 1
The deviation ΔP (= P is obtained by the negative feedback circuit formed by the integral element K 1 / S included in 7 and the power control device 17, the cycloconverter 3, the generator 1, the generation output detector 16 and the comparator 15. o- P G ) gradually decreases and P G
= P o . On the other hand, the responsiveness of the opening Y of the guide valve 9 to the optimum guide valve opening command Y a is determined by the above-mentioned power generation output command P
It is slower than the response of the power generation output P G with respect to o . Therefore, the turbine output P T becomes transiently smaller than the power generation output P G after the sudden change of the power generation output command P o , and the rotation speed N is temporarily reduced as shown in FIG. 2 (f). , then, as shown in FIG. 2 at time t 1 (d), the guide valve opening Y becomes equal to the optimum guide valve opening Y a, since the power generation output P G and hydraulic turbine output P T is approximately equal, The rotation speed N stops decreasing. Incidentally, lower than the optimum rotational speed command N a direction of time t 1 in the actual rotational speed N, with the deviation ΔN (= N G -N) is positive, the correction signal ΔC which is output from the calculator 11 is positive Therefore, the guide valve opening command (Y a + ΔC) corrected by the correction signal ΔC becomes larger than the optimum guide valve opening command Y a , and eventually the turbine output P T becomes larger than the power generation output P G. . Therefore, the rotation speed N increases and approaches the optimum rotation speed command N a , and the correction signal ΔC also approaches zero,
Finally guided valve opening Y coincides with the optimum guide valve opening command Y a, rotational speed N is equal to the optimum rotating speed instruction. That is, the integral element K 2 / S included in the calculator 11 and the adder 1
2, the adder 13, the guide valve drive device 8, the guide valve 9, the water turbine 2, the generator 1, the rotation speed detector 6, and the negative feedback circuit configured by the comparator 10 make the deviation ΔN (= N a
N) gradually decreases and becomes N = N a in a steady state. Also,
Steady state, error ΔY (= Y a -Y) = 0, i.e. Y a =
Y is achieved in the following manner (a) The optimum guide valve opening command Y a output from the turbine characteristic function generator 5 is, of course, equivalent to the power generation output command P o .
(B) As described above, P G = P o in the steady state.
(C) The inertial effects of all the rotating parts such as the runner of the water turbine 2 and the rotor of the generator 1 are accelerated or decelerated by the difference between the turbine output P T and the power generation output P G. It can be regarded as a kind of integral element, and as mentioned above, 11,
Since the negative feedback circuit is composed of 13, 8, 9, 2, 1, 6, and 10, P T = P G in the steady state.
(D) The guide valve opening Y corresponds to the turbine output P T. If the above (i) to (d) are integrated, the deviation ΔY (= Y
a -Y) = 0, that is, Y a = Y. According to the method shown in FIG. 1, the power generation output rapidly follows the load as shown in FIG. 2, but the rotation speed is greatly reduced. The embodiment shown in FIG. 3 is an embodiment of the present invention which compensates for this point.

この実施例では、演算器11からの補正信号ΔCが、最
適案内弁開度指令Yに加算される代りに、加算器19
で発電出力指令Pと加算されて水車特性関数発生器5
に入力されている。その他の構成は第1図の実施例と同
様である。
In this embodiment, instead the correction signal ΔC from the arithmetic unit 11, which is added to the optimum guide valve opening command Y a, an adder 19
Is added to the power generation output command Po, and the turbine characteristic function generator 5 is added.
Has been entered in. Other configurations are similar to those of the embodiment shown in FIG.

したがつて、この実施例によれば、発電出力指令P
補正信号ΔCで補正されて水車特性関数発生器5へ入力
され、その出力である最適案内弁開度指令Yが、第4
図(b)に示すように、第1図の実施例における案内弁
駆動装置8への入力信号(Y+ΔC)と同様に増大す
るので、第1図の実施例と同様の作用効果が得られる。
なお、発電出力指令Pが補正信号ΔCによつて補正さ
れると、最適回転速度指令Nも変化するが、その変化
は過渡的にのみ生ずるもので実害は全くない。
Was although connexion, according to this embodiment, the power generation output command P o is input is corrected by the correction signal ΔC to hydraulic turbine characteristic function generator 5, the optimum guide valve opening command Y a is the output of the fourth
As shown in FIG. 2B, since it increases similarly to the input signal (Y a + ΔC) to the guide valve driving device 8 in the embodiment of FIG. 1, the same effect as the embodiment of FIG. 1 can be obtained. To be
When the power generation output command P o is corrected by the correction signal ΔC, the optimum rotation speed command N a also changes, but the change only occurs transiently and has no actual harm.

さらに、第5図は本発明のさらに他の実施例に係る制御
装置のブロツク図である。
Further, FIG. 5 is a block diagram of a control device according to still another embodiment of the present invention.

この実施例が第1図の実施例と異なる点は、最適回転速
度指令Nと回転速度Nとの偏差ΔNを入力して、その
値が所定値を越えたときに、電力補正信号ΔPを発生
する電力補正関数発生器21と、この電力補正信号ΔP
を発電出力指令Pから減じる加算器22が設けられ
ていることである。
This embodiment is different from the embodiment shown in FIG. 1 in that when the deviation ΔN between the optimum rotation speed command N a and the rotation speed N is input and the value exceeds a predetermined value, the power correction signal ΔP c And a power correction function generator 21 for generating
adder 22 which subtracts the c from the generator output command P o is that are provided.

したがつて、この実施例によれば、発電出力指令P
ステツプ状に上昇させ、最適回転速度指令Nと回転速
度Nの偏差ΔNが所定値を越えた場合に、電力補正関数
発生器21から電力補正信号ΔPが発生し、これが加
算器22に加えられて発電出力指令Pから減じられる
ので、発電出力Pは、第7図(g)に示すように、第
2図(g)に比べてゆるやかに発電出力指令Pの変化
に追従して上昇することになる。一方、回転速度Nの低
下は、第7図(f)に示すように、その分だけ抑えら
れ、最適回転速度指令Nの変化に対する回転速度Nの
応答が早くなる。すなわち、発電出力Pと回転速度N
を、両者の調和をとりながら発電出力指令Pの変化に
追従させることができる。
Therefore, according to this embodiment, when the power generation output command P o is increased stepwise and the deviation ΔN between the optimum rotation speed command N a and the rotation speed N exceeds the predetermined value, the power correction function generator is generated. 21 generates a power correction signal ΔP c , which is added to the adder 22 and subtracted from the power generation output command P o, so that the power generation output P G is as shown in FIG. Compared to g), it gradually rises following the change in the power generation output command Po . On the other hand, the decrease in the rotation speed N is suppressed by that amount as shown in FIG. 7 (f), and the response of the rotation speed N to the change in the optimum rotation speed command N a becomes faster. That is, the power generation output P G and the rotation speed N
Can be made to follow the change of the power generation output command P o while keeping the both in harmony.

本発明の実施例の水車特性関数発生器の入力は発電出力
指令のみを考えている。
Only the power generation output command is considered as the input of the turbine characteristic function generator of the embodiment of the present invention.

水位の変動が比較的小さい発電所ではこのように水位信
号を入力しなくとも水車特性関数発生器の精度が損われ
ることはない。
In a power plant where the fluctuation of the water level is relatively small, the accuracy of the turbine characteristic function generator is not impaired without inputting the water level signal in this way.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、サイクロコンバ
ータ側の制御を電力偏差によう制御とし、案内弁側の制
御を回転速度偏差による制御とし、電力偏差制御と回転
速度偏差制御の目標値は、いずれも電力指令から与え
る。このように構成すると、電気系統であるサイクロコ
ンバータ側の制御の方が機械系統である案内弁側の制御
よりも応答が早いために、電力が回転速度に先行して変
化し、初期の目的である電力変動が円滑に行える。
As described above, according to the present invention, the control on the cycloconverter side is controlled to be the power deviation, the control on the guide valve side is the control based on the rotation speed deviation, and the target values of the power deviation control and the rotation speed deviation control are , Both are given from the power command. With this configuration, the control on the side of the cycloconverter, which is the electrical system, has a quicker response than the control on the side of the guide valve, which is the mechanical system. Certain power fluctuations can be done smoothly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る制御装置のブロツク
図、第2図(a)〜(g)は同制御装置の各部における
信号の波形図、第3図は本発明の他の実施例に係る制御
装置のブロツク図、第4図(a)〜(g)は同制御装置
の各部における信号の波形図、第5図は本発明のさらに
他の実施例に係る制御装置のブロツク図、第6図(a)
〜(g)は同制御装置の各部における信号の波形図、第
7図は従来の制御装置の一例を示すブロツク図、第8図
は(a)〜(g)は同制御装置の各部における信号の波
形図である。 1……巻線形誘導発電機、2……水車、3……サイクロ
コンバータ、5……水車特性関数発生器、6……回転速
度検出器、7……スリツプ位相検出用誘導機、8……案
内弁駆動装置、9……案内弁、10……比較器、11…
…演算器、13……加算器、15……比較器、16……
発電出力検出器、17……電力制御装置、19……加算
器、21……電力補正関数発生器、22……加算器。
FIG. 1 is a block diagram of a control device according to an embodiment of the present invention, FIGS. 2 (a) to 2 (g) are waveform diagrams of signals in respective parts of the control device, and FIG. 3 is another embodiment of the present invention. Block diagrams of a control device according to an example, FIGS. 4 (a) to (g) are waveform diagrams of signals in respective parts of the control device, and FIG. 5 is a block diagram of a control device according to still another embodiment of the present invention. , Fig. 6 (a)
~ (G) is a waveform diagram of a signal in each part of the control device, Fig. 7 is a block diagram showing an example of a conventional control device, and Fig. 8 (a) ~ (g) is a signal in each part of the control device. It is a waveform diagram of. 1 ... Winding type induction generator, 2 ... Hydro turbine, 3 ... Cycloconverter, 5 ... Hydro turbine characteristic function generator, 6 ... Rotation speed detector, 7 ... Induction machine for slip phase detection, 8 ... Guide valve drive device, 9 ... Guide valve, 10 ... Comparator, 11 ...
… Calculator, 13 …… Adder, 15 …… Comparator, 16 ……
Power generation output detector, 17 ... Power control device, 19 ... Adder, 21 ... Power correction function generator, 22 ... Adder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 尚夫 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 酒寄 彰廣 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 阪東 明 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Kuwahara 3-1-1 Hitachi-machi, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Akihiro Sakeyori 3-chome, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Plant (72) Inventor Akira Bando 3-1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd., Hitachi Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電力系統に接続された巻線型誘導発電機
と、この巻線型誘導発電機の二次巻線を交流励磁するサ
イクロコンバータと、巻線型誘導発電機を回転駆動する
水車と、この水車に供給される水車を調整する案内弁と
を備えた可変速水車発電装置において、 可変速水車発電装置に対する発電出力指令と巻線型誘導
発電機の発電出力との偏差を入力としてサイクロコンバ
ータに制御出力を与える電力制御装置と、少なくとも前
記可変速水車発電装置に対する発電出力指令を入力とし
てこの可変速水車発電装置の回転速度の目標信号と前記
案内弁の開度目標信号を与える水車特性関数発生器と、
この水車特性関数発生器の回転速度の目標信号と可変速
水車発電装置の回転速度との偏差を入力として出力を得
る演算器と、該演算器の出力を前記案内弁開度目標信号
に加算する加算器と、前記加算器の出力に応じて前記案
内弁の開度を制御する案内弁駆動装置とを備えたことを
特徴とする可変速水車発電装置。
1. A winding type induction generator connected to an electric power system, a cycloconverter for AC-exciting a secondary winding of the winding type induction generator, and a water turbine for rotationally driving the winding type induction generator. In a variable speed turbine generator equipped with a guide valve for adjusting the turbine supplied to the turbine, the cycloconverter is controlled by inputting the deviation between the power generation output command to the variable speed turbine generator and the power output of the wound-rotor induction generator. A power control device that gives an output, and a turbine characteristic function generator that receives a power generation output command to at least the variable speed turbine generator as an input and provides a target signal of the rotation speed of the variable speed turbine generator and a target signal of the opening of the guide valve. When,
An arithmetic unit that obtains an output by inputting the deviation between the target signal of the rotational speed of the turbine characteristic function generator and the rotational speed of the variable speed turbine generator, and the output of the arithmetic unit is added to the guide valve opening target signal. A variable speed turbine generator, comprising: an adder; and a guide valve drive device that controls the opening of the guide valve according to the output of the adder.
JP60014775A 1985-01-28 1985-01-28 Variable speed turbine generator Expired - Lifetime JPH0634625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014775A JPH0634625B2 (en) 1985-01-28 1985-01-28 Variable speed turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014775A JPH0634625B2 (en) 1985-01-28 1985-01-28 Variable speed turbine generator

Publications (2)

Publication Number Publication Date
JPS61173698A JPS61173698A (en) 1986-08-05
JPH0634625B2 true JPH0634625B2 (en) 1994-05-02

Family

ID=11870425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014775A Expired - Lifetime JPH0634625B2 (en) 1985-01-28 1985-01-28 Variable speed turbine generator

Country Status (1)

Country Link
JP (1) JPH0634625B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834717B2 (en) * 1985-09-25 1996-03-29 関西電力株式会社 Variable speed winding type induction machine controller
JPH0650959B2 (en) * 1986-11-28 1994-06-29 株式会社日立製作所 Variable speed pumped storage system
JPH0634632B2 (en) * 1986-11-28 1994-05-02 株式会社日立製作所 Variable speed pumped storage system
JPH0681554B2 (en) * 1986-12-01 1994-10-12 株式会社日立製作所 Variable speed pumped storage system operation controller
JPH0683594B2 (en) * 1987-01-19 1994-10-19 東京電力株式会社 Variable speed turbine generator system controller
KR920008189B1 (en) * 1987-12-18 1992-09-25 가부시기가이샤 히다찌세이사꾸쇼 Variable speed pumping-up system
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972998A (en) * 1982-10-20 1984-04-25 Hitachi Ltd Operating method for variable speed water wheel generator
JPS59169396A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972998A (en) * 1982-10-20 1984-04-25 Hitachi Ltd Operating method for variable speed water wheel generator
JPS59169396A (en) * 1983-03-14 1984-09-25 Kansai Electric Power Co Inc:The Control system of generator

Also Published As

Publication number Publication date
JPS61173698A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
EP0141372B1 (en) Method and apparatus for controlling variable-speed hydraulic power generaton system
KR940009966B1 (en) Control system for variable speed generator apparatus
US4754156A (en) Control apparatus for variable-speed hydraulic power generating system
KR940002928B1 (en) Variable speed wind turbine
JPS62282169A (en) Variable speed pumping equipment
JPH0634625B2 (en) Variable speed turbine generator
US4980629A (en) AC-excited generator/motor apparatus
JP3884260B2 (en) Wind power generator
JP2004040987A (en) Gas turbine power generation system and control method therefor
JPH0634626B2 (en) Control device for variable speed turbine generator
JP3912911B2 (en) Wind power generator
JPS6271497A (en) Controller for variable-speed hydraulic turbine generator
JPS61170300A (en) Controller of variable speed water wheel generator
JP2749314B2 (en) Variable speed turbine generator control unit
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP2680009B2 (en) Variable speed generator
JP2526605B2 (en) Variable speed power generation control device
JP2858139B2 (en) Variable speed generator
JP2781562B2 (en) Variable speed generator
JP2554123B2 (en) Control method and control device for variable speed power generation system
JP2771474B2 (en) Variable speed generator
JPH0610464B2 (en) Variable speed hydraulic machine control method
JP2512414Y2 (en) Control device for main shaft drive generator
CN1120265A (en) Variable speed pumping-up generator
JPS6343598A (en) Operation controller for variable-speed pump-storage generating system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term