JPS6271497A - Controller for variable-speed hydraulic turbine generator - Google Patents

Controller for variable-speed hydraulic turbine generator

Info

Publication number
JPS6271497A
JPS6271497A JP60210004A JP21000485A JPS6271497A JP S6271497 A JPS6271497 A JP S6271497A JP 60210004 A JP60210004 A JP 60210004A JP 21000485 A JP21000485 A JP 21000485A JP S6271497 A JPS6271497 A JP S6271497A
Authority
JP
Japan
Prior art keywords
power generation
command
water turbine
guide valve
generation output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60210004A
Other languages
Japanese (ja)
Other versions
JPH0834717B2 (en
Inventor
Eiji Haraguchi
原口 英二
Hiroto Nakagawa
博人 中川
Akira Bando
明 阪東
Hisao Kuwabara
尚夫 桑原
Goo Nohara
野原 哈夫
Kenichi Ono
健一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60210004A priority Critical patent/JPH0834717B2/en
Priority to EP86113077A priority patent/EP0220492B1/en
Priority to DE8686113077T priority patent/DE3677887D1/en
Priority to CA000518847A priority patent/CA1273695A/en
Priority to US06/911,131 priority patent/US4694189A/en
Publication of JPS6271497A publication Critical patent/JPS6271497A/en
Publication of JPH0834717B2 publication Critical patent/JPH0834717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To improve the stability of an AC system by directly controlling a generating output in response to a generating output command from the outside. CONSTITUTION:A rotational-speed command arithmetic section 15 outputs an optimum revolution-number command Na in response to an external generating output command P0 and a water-level signal H. A rotational speed controller 16 compares the optimum revolution-number command Na with a rotational speed signal N, and outputs a guide-valve opening command Ya to a guide valve 11 for a hydraulic turbine 2. A frequency controller 3 controls the phase of AC exciting current fed to a secondary winding 1b for a winding type induction motor 1 in response to the external generating output command P0, a slip-phase signal SP and a generating output P. Accordingly, the generating output can be followed up smoothly to the generating output command, thus improving the stability of an AC system.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導機とこの誘導機の2次側に接続した2次励
磁制御装置を用いた可変速水車発電装置に係り、特に最
高効率点での運転と周波数制御を実現するのに好適な可
変速水車発電装置の制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a variable speed water turbine power generation system using an induction machine and a secondary excitation control device connected to the secondary side of the induction machine, and particularly relates to a variable speed water turbine power generation system using an induction machine and a secondary excitation control device connected to the secondary side of the induction machine. The present invention relates to a control device for a variable speed water turbine generator suitable for realizing operation and frequency control.

〔発明の背景〕[Background of the invention]

回転電気機械の速度制御を行う主要目的の1つはポンプ
水車などのターボ機械の負荷に応じて回転速度を制御し
てターボ機械の最高効率での運転を実現する事であった
。水車発電装置の水車を可変速運転する方法は2種に大
別できる。
One of the main purposes of controlling the speed of rotating electric machines is to control the rotational speed according to the load of a turbomachine such as a pump water turbine, thereby realizing the highest efficiency operation of the turbomachine. Methods for variable speed operation of the water turbine of a water turbine generator can be roughly divided into two types.

第1は、交流系統と発電機の間に周波数変換器を設ける
方法である。特開昭48−21045号公報では任意の
回転速度で発電機を運転しても交流系統に電力を供給可
能とし、水車の案内弁開閉により回転速度を調整して水
車の最高効率点での運転を実現する方法が提案されてい
る。
The first method is to provide a frequency converter between the AC system and the generator. Japanese Patent Laid-Open No. 48-21045 makes it possible to supply power to the AC system even when the generator is operated at any rotation speed, and the rotation speed is adjusted by opening and closing the guide valve of the water turbine to operate the water turbine at its highest efficiency point. A method to achieve this has been proposed.

第2は、巻線型誘導機の1次側を交流系統に接続し2次
側と交流系統の間に周波数変換器を設ける方法である。
The second method is to connect the primary side of the wound induction machine to the AC system and provide a frequency converter between the secondary side and the AC system.

この方法は巻線型誘導機の1次側を交流系統に接続し2
次側と交流系統の間に周波数変換器を設けて発電機出力
に応じて回転速度を制御す8方法の典型的な応用例とし
て従来より知られ、電気工学ハンドブック(電気学会発
行、昭和42年版)などにも記載されでいる。この種の
可変速水車発電装置の制御装置としては1例えば特開昭
52−46428号公報、特願昭57−182920号
明細書および図面、特開昭55−56499号公報など
に開示されたものが提案されている。
This method connects the primary side of a wire-wound induction machine to an AC system.
It has long been known as a typical application example of the 8 methods of installing a frequency converter between the next side and the AC system and controlling the rotation speed according to the generator output, and is based on the Electrical Engineering Handbook (published by the Institute of Electrical Engineers of Japan, 1966 edition). ) etc. are also described. Examples of control devices for this type of variable speed water turbine generator include those disclosed in JP-A No. 52-46428, the specification and drawings of Japanese Patent Application No. 57-182920, and JP-A No. 55-56499. is proposed.

上記2種゛の可変速水車発電装置に共通する課題は、水
車出力と発電機出力をどの様に制御して回転速度を制御
するかである。具体的には水車運転条件を示す外部から
の外部発電出力指令信号POを含む信号から演算する最
適回転速度指令値Naと回転速度検出値Nを比較した速
度偏差信号(Na−N)をどの様にして水車と発電機の
出力制御に用いるかが課題となる。何故ならば、水車と
発電機を機械的に接続したもので回転速度を調整する場
合、水路系の流体運動エネルギーは機械系の回転運動エ
ネルギーよりも小さく1発電機の損失は殆んど無視出来
るのが一般的であり、水車出力と発電機出力の差の殆ん
どが回転運動エネルギーの増加減分となるからである。
A problem common to the above two types of variable speed water turbine generators is how to control the water turbine output and the generator output to control the rotation speed. Specifically, how is the speed deviation signal (Na-N) obtained by comparing the optimum rotational speed command value Na calculated from a signal including the external power generation output command signal PO indicating the water turbine operating conditions with the rotational speed detection value N? The challenge is how to use it to control the output of water turbines and generators. This is because when adjusting the rotational speed by mechanically connecting a water turbine and a generator, the fluid kinetic energy of the waterway system is smaller than the rotational kinetic energy of the mechanical system, and the loss of one generator can be almost ignored. This is because most of the difference between the water turbine output and the generator output is an increase or decrease in rotational kinetic energy.

ここに外部からの外部発電出力指令Poとは水車や発電
機1周波数変換装置などの可変速発電装置を構成する機
器の電圧、電流、周波数、位相、回転速度などの測定信
号から演算される内部の発電出力指令以外の発電出力指
令を意味する。具体的には中央給電指令所など発電装置
の外部からの発電出力指令を意味する。
Here, the external power generation output command Po is an internal power generation output command calculated from measurement signals such as voltage, current, frequency, phase, and rotation speed of equipment that constitutes a variable speed power generation device such as a water turbine or generator 1 frequency conversion device. means a power generation output command other than the power generation output command. Specifically, it means a power generation output command from outside the power generation device, such as a central power dispatch center.

可変速水車発電装置の制御装置で巻線型誘導機の1次側
を交流系統に接続し2次側と交流系統の間に周波数変換
器を設ける方法に関する提案として挙げた特開昭55−
56499号公報の装置では、駆動媒体の速11(水車
であれば流水量)、回転速度、発電機固定子出力の3種
の測定信号を発電機出力制御と水車出力制御に用いる構
成を提案している。
Japanese Unexamined Patent Publication No. 1983-1983, which was cited as a proposal for a method of connecting the primary side of a wound type induction machine to an AC system and installing a frequency converter between the secondary side and the AC system in a control device for a variable speed water turbine generator.
The device of Publication No. 56499 proposes a configuration in which three types of measurement signals, namely the speed 11 of the driving medium (water flow rate in the case of a water turbine), rotation speed, and generator stator output, are used for generator output control and water turbine output control. ing.

しかしながら、どのように発電機出力と水車出力を制御
して回転速度を制御するのかについて具体的提案は無い
、また、外部発電出力指令Poに対してどのように発電
機出力を応答させるのかについても具体的な提案が無い
However, there are no concrete proposals regarding how to control the generator output and water turbine output to control the rotation speed, nor how to make the generator output respond to the external power generation output command Po. There are no concrete proposals.

この種の可変速水車発電装置の制御装置にかかる提案と
して挙げた特開昭52−46428号公報、特願昭57
−182920号明細書および図面では回転速度偏差信
号を用いて発電機出力の制御を行なう制御方式を提案し
ている。
Japanese Patent Application Laid-open No. 52-46428 and Japanese Patent Application No. 57/1987 cited as proposals for a control device for this type of variable speed water turbine generator.
The specification and the drawings of No. 182920 propose a control method for controlling the generator output using a rotational speed deviation signal.

これらの可変速水車発電装置の制御装置の構成例を第1
6図に示す、第16図において、1は誘導機でその回転
子に直結された水車2によって回転駆動されると共に誘
導機1の2次巻線1bには周波数変換器を備えた2次励
磁制御装!i!3により誘導機1の回転速度に応じて所
定の位相に調整された交流励磁電流が供給され、誘導機
1の1次巻線1aからは交流系統4と等しい周波数の交
流電力が出力される様に可変速運転が行なわれる。5は
水車特性関数発生器で、外部から与えられる外部発電出
力指令Poと水位検出信号Hを入力して最高効率で運転
する為の最適回転速度指令Naと最適案内弁開・度指令
Yaを発生する。7はスリップ位相検出器で前記交流系
統4の電圧位相と電気角で表わした前記誘導機2次側回
転位相の差に等しいスリップ位相Spを検出する。スリ
ップ位相検出器7の回転子は誘導機1の1次巻線1aと
並列に接続された3相巻線が設けられ、スリップ位相検
出器7の固定子側には電気角でπ/2だけ異なる位置に
ホールコンバータがそれぞれ1個設けられていて誘導機
1の2次側から見た交流系統4の電圧位相が一致した信
号が該ホールコンバータより検出され、スリップ位相S
pに変換される。
An example of the configuration of a control device for these variable speed turbine generators is shown in the first example.
6, in FIG. 16, 1 is an induction machine that is rotationally driven by a water wheel 2 directly connected to its rotor, and the secondary winding 1b of the induction machine 1 is equipped with a frequency converter for secondary excitation. Control equipment! i! 3 supplies an AC excitation current adjusted to a predetermined phase according to the rotational speed of the induction machine 1, and the primary winding 1a of the induction machine 1 outputs AC power with a frequency equal to that of the AC system 4. Variable speed operation is performed. 5 is a water turbine characteristic function generator which inputs the external power generation output command Po and water level detection signal H given from the outside, and generates the optimal rotation speed command Na and the optimal guide valve opening/degree command Ya for operation at maximum efficiency. do. A slip phase detector 7 detects a slip phase Sp that is equal to the difference between the voltage phase of the AC system 4 and the secondary rotation phase of the induction machine expressed in electrical angle. The rotor of the slip phase detector 7 is provided with a three-phase winding connected in parallel with the primary winding 1a of the induction machine 1, and the stator side of the slip phase detector 7 has an electrical angle of π/2. One Hall converter is provided at different positions, and a signal in which the voltage phase of the AC system 4 as seen from the secondary side of the induction machine 1 matches is detected by the Hall converter, and the slip phase S is detected by the Hall converter.
converted to p.

8は誘導機出力指令装置で前記水車特性関数発生器5か
らの最適回転速度指令Naと回転速度検出器6からの回
転速度検出信号Nを比較して誘導機出力指令PGを発生
する。この誘導機出力指令PGと前記スリップ位相検出
器7のスリップ位相信号spは2次励磁制御装置3に入
力され、有効電力検出器9で検出される誘導機1の出力
検出信号Pが誘導機出力指令PGに等しくなる様に誘導
機1の2次側巻線1bに供給する交流励磁電流を制御す
る。具体的には特公昭57−60645号公報で提案さ
れている制御方法などが適用できる。10は案内弁駆動
装置で水車特性関数発生器5からの最適案内弁開度指令
Yaに応じて案内弁11の開度を調整し、水車出力PT
を制御する。
Reference numeral 8 denotes an induction motor output command device which compares the optimum rotation speed command Na from the water turbine characteristic function generator 5 with the rotation speed detection signal N from the rotation speed detector 6 to generate an induction motor output command PG. This induction machine output command PG and the slip phase signal sp of the slip phase detector 7 are input to the secondary excitation control device 3, and the output detection signal P of the induction machine 1 detected by the active power detector 9 is the induction machine output. The AC excitation current supplied to the secondary winding 1b of the induction machine 1 is controlled so as to be equal to the command PG. Specifically, the control method proposed in Japanese Patent Publication No. 57-60645 can be applied. 10 is a guide valve driving device which adjusts the opening degree of the guide valve 11 according to the optimum guide valve opening command Ya from the water turbine characteristic function generator 5, and adjusts the opening degree of the guide valve 11 to generate the water turbine output PT.
control.

このような制御装置において、いま発電出力Pをステッ
プ状に上昇させようとして外部発電出力指令Poを第1
7図(a)に示すように変化させた場合1発電出力指令
Poのステップ状の上昇に伴って最適回転速度指令Na
と最適案内弁開度指令Yaも第17図(b)、(c)に
示す如くステップ状に上昇し、案内弁11の開度Yは案
内弁駆動装置10により第17図(d)に示す様に順次
案内弁開度指令Yaに一致する様に制御され、この案内
弁11の開度Yの変化に伴って水車出力PTも第17図
(e)に示す様に変化して外部発電出力指令Poに対応
した値となる。一方、誘導機1の回転速度Nを第17図
(f)に示す様に上昇させて最適回転速度指令Naに一
致させるためにはその上昇分に見合うだけの発電装置の
回転系の運動エネルギーを増加させる必要がある。この
運動エネルギー増加分は水車出力PTを増すか発電出力
Pを減らして補うしか方法はない、しかし前記の如く最
適案内弁開度指令Yaに応じて変化する案内弁11の開
度Yによって水車出力PTは決められている為に水車出
力FTは早急には上昇しない。この為に前記運動エネル
ギー増加分を発電出力Pを減らし・て回転系に供給する
事になり第17図(g)に示すように上昇させるべき発
電出力Pが過渡的に逆に低下してしまい電力系統の運用
上問題が生じる。この過渡的な発電出力Pの低下を防止
する為には誘導機出力指令装置8の内部で水車特性関数
発生器5からの最適回転速度指令Naを一次週九要素な
どの信号急変を抑える装置に入力した上でこの装置の出
力と回転速度検出器6からの回転速度検出信号Nを比較
して誘導機出力指令PGを発生する方法が考えられる。
In such a control device, in order to increase the power generation output P in a stepwise manner, the external power generation output command Po is set to the first level.
When changed as shown in Fig. 7 (a), the optimum rotational speed command Na increases as the power generation output command Po increases in a stepwise manner.
The optimum guide valve opening command Ya also increases in a stepwise manner as shown in FIGS. As shown in FIG. 17(e), as the opening degree of the guide valve 11 changes, the water turbine output PT also changes as shown in FIG. The value corresponds to the command Po. On the other hand, in order to increase the rotational speed N of the induction machine 1 as shown in FIG. 17(f) to match the optimum rotational speed command Na, the kinetic energy of the rotation system of the power generation device is required to correspond to the increase. need to be increased. The only way to compensate for this increase in kinetic energy is to increase the water turbine output PT or reduce the power generation output P.However, as mentioned above, the water turbine output is determined by the opening Y of the guide valve 11, which changes in accordance with the optimum guide valve opening command Ya. Since PT is fixed, the water turbine output FT will not increase immediately. For this reason, the increase in kinetic energy is supplied to the rotating system by reducing the power generation output P, and as shown in Fig. 17 (g), the power generation output P that should be increased temporarily decreases. Problems arise in the operation of the power system. In order to prevent this transient decrease in the power generation output P, the optimum rotation speed command Na from the water turbine characteristic function generator 5 is set within the induction motor output command device 8 to a device that suppresses sudden changes in signals such as primary weekly nine factors. A conceivable method is to compare the output of this device with the rotational speed detection signal N from the rotational speed detector 6 to generate the induction machine output command PG.

この方法により水車出力PTの上昇分の一部を回転運動
エネルギー上昇分に供給し、残りを誘導機の1の出力P
の上昇分に振り分ける事が出来る。しかしながらこの方
法でも水車出力PTの上昇よりも速く誘導機1の出力P
を」二昇させる事は出来ず、発電装置としての応答速度
が案内弁駆動装置10の応答で抑えられてしまう欠点が
あった。この問題は外部発電出力指令Poをステップ状
に下げようとする場合にも生じる。これらの問題は根本
的には誘導機1の出力のみを調整して回転速度Nを制御
している為に生ずる問題である。
With this method, a part of the increase in the water turbine output PT is supplied to the increase in rotational kinetic energy, and the rest is supplied to the increase in the output P of the induction motor 1.
It can be divided into the increase in However, even with this method, the output P of the induction machine 1 increases faster than the increase in the turbine output PT.
It is not possible to increase the current by 2,000 yen, and the response speed of the power generator is suppressed by the response of the guide valve drive device 10. This problem also occurs when attempting to lower the external power generation output command Po in a stepwise manner. These problems fundamentally arise because the rotational speed N is controlled by adjusting only the output of the induction machine 1.

以上、可変速水車発電装置の出力制御と回、転速度制御
に関する従来技術の問題点について説明した。次に、可
変速水車発電装置で交流系統の周波数制御を行う時の問
題点について説明する。
The problems of the conventional technology regarding output control, rotation speed control, and rotation speed control of a variable speed water turbine power generation device have been described above. Next, problems when controlling the frequency of an AC system using a variable speed water turbine generator will be explained.

誘導機の2次側と交流系統の間に周波数変換器を備えた
2次励磁制御装置を設けて可変運転を行なう発電装置の
特徴と−して回転速度と交流系統の周波数が一致しない
点が挙げられる。この点に対応して交流系統の周波数を
所定の値に制御する方法として特開昭58−19904
1号の装置が提案されている。この提案は周波数を制御
する為には交流系統への発電出力を制御する必要がある
が、一方で回転速度を最適値に保つ為には発電出力の変
化に見合う出力を水車から供給せねばならなぬ点に着目
したものである。この提案の構成例を第18図に示す。
A characteristic feature of power generation equipment that performs variable operation by installing a secondary excitation control device equipped with a frequency converter between the secondary side of the induction machine and the AC system is that the rotation speed and the frequency of the AC system do not match. Can be mentioned. In response to this point, Japanese Patent Application Laid-Open No. 58-19904 describes a method for controlling the frequency of an AC system to a predetermined value.
Device No. 1 has been proposed. This proposal suggests that in order to control the frequency, it is necessary to control the power generation output to the AC system, but on the other hand, in order to maintain the rotational speed at an optimal value, the water turbine must supply an output that matches the change in the power generation output. This is a study that focuses on the unknown points. A configuration example of this proposal is shown in FIG.

第18図の中で前述の第16図と同一番号の品は同一品
を示す。ここでは第18図の中で第16図と異なる部分
についてのみ説明する。
Items in FIG. 18 with the same numbers as those in FIG. 16 above indicate the same items. Here, only the parts in FIG. 18 that are different from FIG. 16 will be explained.

13は交流系統4の周波数fを検出する周波数検出器で
、14は周波数制御装置で周波数検出信号jと周波数設
定値を比較して発電出方指令修正信号APoを演算する
。この発電出力指令修正信号APoがステップ状に上昇
し水車特性関数発生器5への入力がステップ状に上昇し
た場合を考える。
13 is a frequency detector that detects the frequency f of the AC system 4, and 14 is a frequency control device that compares the frequency detection signal j and the frequency setting value and calculates the power generation output command correction signal APo. Consider a case where this power generation output command correction signal APo increases stepwise and the input to the water turbine characteristic function generator 5 increases stepwise.

この場合、誘導機1の出力Pの応答は前記の第17図(
g)と全く同様の変化を示す、従って当初の目的である
周波数制御は誘導機1の出力Pが発電。
In this case, the response of the output P of the induction machine 1 is as shown in FIG.
The change is exactly the same as in g).Therefore, the original purpose of frequency control is to use the output P of the induction machine 1 to generate electricity.

出力指令修正信号IPoの変化に対応した応答をせぬ為
に過渡的に周波数偏差を大きくする問題があった。
There is a problem in that the frequency deviation increases transiently because no response is made in response to changes in the output command correction signal IPo.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記した従来技術の問題点を解決し、
発電効率を低下させることなく発電出力を発電出力指令
に円滑に追従させて交流系統の安定度を高めることにあ
る。
The purpose of the present invention is to solve the problems of the prior art described above,
The purpose is to increase the stability of an AC system by making the power generation output follow the power generation output command smoothly without reducing the power generation efficiency.

〔発明の概要〕[Summary of the invention]

可変速水車発電装置では水の位置エネルギーを水車と発
電機を用いて電気エネルギーに変換する際に、水車出力
と発電機出力(正確には発電機入力であるが一般に発電
機損失は無視しうる)の差が回転部の運動エネルギーを
増減し、この結果として回転速度が変化する。
In a variable speed water turbine power generation system, when converting the potential energy of water into electrical energy using a water wheel and a generator, the water turbine output and generator output (to be exact, it is the generator input, but in general the generator loss can be ignored) ) increases or decreases the kinetic energy of the rotating part, resulting in a change in rotational speed.

本発明は可変速水車発電装置の場合にはこの回転部の運
動エネルギーが電気エネルギーと比較して無視し得ない
値であることに着目し、基本的には発電機出力応答に対
する水車の出力応答の遅れは過渡的に回転部の運動エネ
ルギーで吸収させ、発電機出力を発電出力指令に応じて
直接的に制御するものであり、外部からの発電出力指令
信号を含む水車運転条件を示す信号を入力して最適回転
速度指令信号と回転速度検出器からの回転速度検出信号
を比較して案内弁駆動装置への案内弁開度制御信号を制
御する回転速度制御装置を設けたことを特徴とする。
The present invention focuses on the fact that in the case of a variable speed water turbine generator, the kinetic energy of this rotating part is a value that cannot be ignored compared to the electrical energy, and basically the output response of the water turbine to the generator output response is This delay is transiently absorbed by the kinetic energy of the rotating part, and the generator output is directly controlled according to the power generation output command, and signals indicating the turbine operating conditions, including the power generation output command signal from the outside, are The present invention is characterized by being provided with a rotation speed control device that inputs an optimum rotation speed command signal and compares the rotation speed detection signal from the rotation speed detector to control the guide valve opening control signal to the guide valve drive device. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は特許請求の範囲第1項の一実施例を示す図で、
従来例を説明するのに用いた前記第16図と同一番号の
構成部品は同一品を示す。ここでは第16図と異なる部
分について詳述し、共通部分の説明は省略する。15は
回転速度指令演算器で外部からの外部発電出力指令Po
と外部からの水位信号Hに応じて最適回転数指令Naを
発生する。水位変動の少ない発電装置の場合は水位信号
Hを入力せずに外部発電出力指令Paのみ力1ら最適回
転数指令Naを発生しても良い、16は回転速度制御装
置で最適回転指令Naと回転速度検出器6で検出される
回転速度信号Nを比較して案内弁開度指令Yaを発生す
る。
FIG. 1 is a diagram showing an embodiment of claim 1,
Components having the same numbers as those in FIG. 16 used to explain the conventional example indicate the same products. Here, the parts different from those in FIG. 16 will be explained in detail, and the explanation of the common parts will be omitted. 15 is a rotational speed command calculator that receives an external power generation output command Po.
An optimum rotational speed command Na is generated in response to a water level signal H from the outside. In the case of a power generation device with little water level fluctuation, the optimum rotation speed command Na may be generated from only the external power generation output command Pa without inputting the water level signal H. 16 is a rotation speed control device that generates the optimum rotation speed command Na. The rotation speed signal N detected by the rotation speed detector 6 is compared to generate the guide valve opening command Ya.

第2図は回転速度制御装置1116の一実施例を示す。FIG. 2 shows one embodiment of the rotational speed control device 1116.

17は比較器で回転速度偏差ΔNを出力する。17 is a comparator which outputs the rotational speed deviation ΔN.

この回転速度偏差JNは比較要素(Kl)18と積分要
素(K2/5)19に入力され、これらの出力は加算器
20により案内弁開度指令Yaとして案内弁駆動装置1
0に入力される。
This rotational speed deviation JN is inputted to a comparison element (Kl) 18 and an integral element (K2/5) 19, and these outputs are sent to the guide valve drive device 1 by an adder 20 as a guide valve opening command Ya.
It is input to 0.

一方、外部発電出力指令POは前記回転速度指令演算器
15に入力されると共に2次励磁制御装置3への発電出
力指令として入力される。
On the other hand, the external power generation output command PO is input to the rotational speed command calculator 15 and is also input to the secondary excitation control device 3 as a power generation output command.

この様に構成された制御装置において、いま時点10で
例えば発電出力Pをステップ状に上昇させようとして発
電出力指令POを第3図(a)に示すようにステップ状
に上昇させると誘導機1の発電出力Pは第3図(g)に
示すように発電出力指令POの変化に追従して上昇する
。一方、案内弁開度指令Yaは最適回転速度指令Naが
第3図(e)に示すようにステップ状に上昇するために
比例要素18の出力変化によ一゛り第3図(b)のよう
にステップ状に変化する。しかしながら案内弁11の開
度Yの応答は前述の発電出力指令POに対する誘導機出
力Pの応答速度よりも遅い、このため誘導機出力Pより
も水車出力PTの方が小さくなり回転速度Nは発電出力
指令Paの急変後一時的に減速され、その後時点t1で
発電出力Pと水車出力PTが等しくなり回転速度Nは極
小となる。なお時点t1では速度偏差ANは正なので案
内弁開度指令Yaは積分要素19により上昇を続ける。
In the control device configured in this manner, if the power generation output command PO is increased in steps as shown in FIG. The power generation output P increases following the change in the power generation output command PO as shown in FIG. 3(g). On the other hand, since the optimum rotation speed command Na increases in a stepwise manner as shown in FIG. 3(e), the guide valve opening degree command Ya increases due to the change in the output of the proportional element 18, as shown in FIG. 3(b). It changes in steps like this. However, the response of the opening degree Y of the guide valve 11 is slower than the response speed of the induction motor output P to the above-mentioned power generation output command PO. Therefore, the water turbine output PT is smaller than the induction motor output P, and the rotation speed N is lower than the power generation output command PO. After the sudden change in the output command Pa, the speed is temporarily decelerated, and then at time t1, the power generation output P and the water turbine output PT become equal, and the rotational speed N becomes minimum. Note that since the speed deviation AN is positive at time t1, the guide valve opening command Ya continues to increase due to the integral element 19.

このため案内弁開度Yは増加し続け1時点t2で回転速
度Nは最適回転速度指令Naと等しくなり、案内弁開度
Yaは極大となる。その後、案内弁開度Yと回転速度N
は減衰振動しなから回転速度Nは最適回転速度指令Na
に整定する。第3図の時点t3とt5で水車出力PTと
発電出力Pは等しく、時点t4では回転速度Nと最−回
転速度指令Naが等しい。
Therefore, the guide valve opening degree Y continues to increase, and at one point in time t2, the rotational speed N becomes equal to the optimum rotational speed command Na, and the guide valve opening degree Ya becomes maximum. After that, guide valve opening degree Y and rotation speed N
Since there is no damped vibration, the rotational speed N is the optimum rotational speed command Na
Set to . At time t3 and t5 in FIG. 3, water turbine output PT and power generation output P are equal, and at time t4, rotational speed N and maximum rotational speed command Na are equal.

以上より外部発電出力指令Poの変化に対して案内弁1
1の応答よりも速く発電出力Pを追従させ、回転速度N
を最適回転速度Naに整定させる一事が可能である。こ
れは外部発電出力指令POの変化に対して発電出力Pを
追従させる為に最初に回転運動エネルギーを用い、誘導
機1の出力Pを外部発電出力指令POに保つ一方で最適
回転速度指令Naに回転速度Nを調整するのに必要な回
転、゛運動エネルギーは案内弁11を制御して供給する
事で実現したものである。
From the above, guide valve 1 responds to changes in external power generation output command Po.
The power generation output P follows faster than the response of 1, and the rotational speed N
It is possible to settle the rotation speed Na to the optimum rotation speed Na. This first uses rotational kinetic energy to make the power generation output P follow the change in the external power generation output command PO, and while keeping the output P of the induction machine 1 at the external power generation output command PO, the optimum rotation speed command Na is maintained. The rotational and kinetic energy necessary to adjust the rotational speed N is realized by controlling and supplying the guide valve 11.

第4図は他の実施例を示す図である。ここでは第1図と
異なる部分について詳述し、共通部分の説明は省略する
。5は水車特性関数発生器で、外部発電出力指令Poと
水位信号Hとから最適案内弁開度指令Yaと最適回転速
度指令Naを発生する。水位変動が小さい場合は水位信
号Hを省略することも出来る0回転速度制御装置16は
第2図と同じ構成で案内弁開度補正信号ΔYを出力し。
FIG. 4 is a diagram showing another embodiment. Here, the parts that are different from those in FIG. 1 will be explained in detail, and the explanation of the common parts will be omitted. Reference numeral 5 denotes a water turbine characteristic function generator, which generates an optimum guide valve opening degree command Ya and an optimum rotational speed command Na from the external power generation output command Po and the water level signal H. If the water level fluctuation is small, the water level signal H can be omitted.The zero rotation speed control device 16 has the same configuration as that shown in FIG. 2 and outputs the guide valve opening correction signal ΔY.

水車特性関数発生器5からの最適案内弁開度指令Yaは
加算器21によって前記案内弁開度補正信号、l!IY
と加算されて案内弁駆動装置10に入力される構成をと
っている。
The optimum guide valve opening command Ya from the water turbine characteristic function generator 5 is converted into the guide valve opening correction signal l! by an adder 21. IY
The configuration is such that the sum is added and input to the guide valve drive device 10.

この様に構成された本実施例の制御装置において、いま
時点10で例えば発電出力Pをステップ状に上昇させよ
うとして発電出力指令POを第5図(a)に示す様にス
テップ状に上昇させると、誘導機1の発電出力Pは第5
図(g)に示すように発電出力指令Poの変化に追従し
て上昇する。一方、発電出力指令POに対する発電出力
Pの応答よりも最適案内弁開度指令Yaに対する案内弁
11の開度Yの応答は遅い、このため、発電出力Pより
も水車出力PTの方が小さくなり回転速度Nは発電出力
指令Po急変後一時的に減速され、その後時点t1で発
電出力Pと水車出力PTが等しくなり回転速度Nは極小
となる。なおこの時点t1では速度偏差ΔNは正なので
案内弁開度補正信号ΔYは正で、案内弁開度Yは最適案
内弁開度指令Yaよりも更に大きくなる。従って水車出
力PTは発電出力Pよりも大きくなり、回転速度Nは第
5図(f)の様に上昇し始める。そして回転速度Nの上
昇と共に最適回転速度指令Naとの偏差が小さくなり、
案内弁開・度補正信号AYの減少と共に水車出力PTが
減少し、回転速度Nの加速度は減少する。
In the control device of this embodiment configured as described above, at time point 10, for example, in order to increase the power generation output P in a stepwise manner, the power generation output command PO is increased in a stepwise manner as shown in FIG. 5(a). and the power generation output P of the induction machine 1 is the fifth
As shown in Figure (g), it increases following the change in the power generation output command Po. On the other hand, the response of the opening Y of the guide valve 11 to the optimum guide valve opening command Ya is slower than the response of the power generation output P to the power generation output command PO. Therefore, the water turbine output PT is smaller than the power generation output P. The rotational speed N is temporarily decelerated after the sudden change in the power generation output command Po, and thereafter, at time t1, the power generation output P and the water turbine output PT become equal, and the rotational speed N becomes minimum. Note that at this time t1, the speed deviation ΔN is positive, so the guide valve opening degree correction signal ΔY is positive, and the guide valve opening degree Y becomes even larger than the optimum guide valve opening degree command Ya. Therefore, the water turbine output PT becomes larger than the power generation output P, and the rotational speed N starts to increase as shown in FIG. 5(f). As the rotational speed N increases, the deviation from the optimum rotational speed command Na becomes smaller.
As the guide valve opening/degree correction signal AY decreases, the water turbine output PT decreases, and the acceleration of the rotation speed N decreases.

第4図の実施例を用いると定常状態における速度偏差Δ
Nは積分要素19により零になる。一方、水車特性関数
発生器5からの最適案内弁開度指令Yaと案内弁開度Y
の偏差は水車特性関数発生器5内に記憶された水車特性
と水車2の現実の特性の誤差に対応するもので水車特性
関数の精度を高める事により殆んど零にする事が可能で
ある。従って、定常時の案内弁開度偏差(Ya−Y)の
みを積分要素19が発生すれば良い事になる。これは第
1図の実施例では定常時の案内弁開度指令Yaの全てを
積分要素19が発生せねばならないのと対照的である。
Using the embodiment shown in Fig. 4, the speed deviation Δ in steady state is
N becomes zero due to the integral element 19. On the other hand, the optimum guide valve opening command Ya and the guide valve opening Y from the water turbine characteristic function generator 5
The deviation corresponds to the error between the water turbine characteristics stored in the water turbine characteristic function generator 5 and the actual characteristics of the water turbine 2, and can be reduced to almost zero by increasing the accuracy of the water turbine characteristic function. . Therefore, it is sufficient for the integral element 19 to generate only the guide valve opening deviation (Ya-Y) during steady state. This is in contrast to the embodiment shown in FIG. 1, in which the integral element 19 must generate all of the guide valve opening command Ya during steady state.

結果的に第1図の実施例では案内弁11の応答を早める
為に積分要素19の利得に2をある程度以上大きくせざ
るを得ぬ代償として第3図(e)、(f)の如く水車出
力PTと回転速度Nはある程度振動性の応答となる。一
方、第4図の実施例では制動結果のある比例要素18の
利得に1を大きくして積分要素19の利得に2を相対的
に小さくしても応答速度を早く出来る。しかも第5図(
e)、(f)の如く水車出力PTと回転速度Nを制動さ
せずに整定する事が出来る。
As a result, in the embodiment shown in FIG. 1, in order to speed up the response of the guide valve 11, the gain of the integral element 19 has to be increased by more than a certain degree, but as a compensation, the water turbine as shown in FIGS. 3(e) and 3(f) is used. The output PT and rotational speed N have a somewhat oscillatory response. On the other hand, in the embodiment shown in FIG. 4, the response speed can be increased even if the gain of the proportional element 18 with the braking result is increased by 1 and the gain of the integral element 19 is relatively decreased by 2. Furthermore, Figure 5 (
As shown in e) and (f), the water turbine output PT and rotational speed N can be stabilized without braking.

第6図は更に他の実施例を示す図である。この実施例は
前述した第4図の実施例を変形したものであるので、第
4図と異なる部分について詳述し。
FIG. 6 is a diagram showing still another embodiment. Since this embodiment is a modification of the embodiment shown in FIG. 4, the parts different from those in FIG. 4 will be described in detail.

共通部分の説明は省略する。22は比較器で最適回転速
度指令Naと回転速度検出値Nの偏差ΔNを出力する。
Explanation of common parts will be omitted. A comparator 22 outputs a deviation ΔN between the optimum rotational speed command Na and the detected rotational speed value N.

この回転速度偏差ANを発電出力修正指令袋fi!23
に入力し、この発電出力修正指令装置i!23の出力信
号ΔP1と外部からの発電出力指令信号Paは加算器2
4を通して2次励磁制御装置!3に発電出力指令信号と
、して入力される構成をとっている。
This rotational speed deviation AN is the power generation output correction command bag fi! 23
input to this power generation output correction command device i! The output signal ΔP1 of 23 and the power generation output command signal Pa from the outside are sent to the adder 2.
Secondary excitation control device through 4! 3 as a power generation output command signal.

発電出力修正指令装置23の機能を説明する。The functions of the power generation output modification command device 23 will be explained.

回転速度偏差ΔNの絶対値がN1より小さい時は。When the absolute value of rotational speed deviation ΔN is smaller than N1.

発電出力修正指令信号ΔP1は零を保ち、N1を越える
と回転速度偏差ΔNの絶対値の増加に比例して発電出力
修正指令信号ΔP1の絶対値も増加する。この発電出力
修正指令信号JPIの絶対値はPlを越えぬ様に出力さ
れる。
The power generation output correction command signal ΔP1 remains zero, and when it exceeds N1, the absolute value of the power generation output correction command signal ΔP1 also increases in proportion to the increase in the absolute value of the rotational speed deviation ΔN. The absolute value of this power generation output correction command signal JPI is outputted so as not to exceed Pl.

この様に構成された制御装置において、いま時点toで
例えば発電出力Pをランプ状に水車最大出力付近の値に
上昇させようとして発電出力指令POを第711(a)
に示すようにランプ状に上昇させるときの応答を説明す
る。まず、比較対照する為に第4図の実施例で同じ条件
で発電出力指令をランプ状に上昇させる時の応答を第8
図に示す。
In the control device configured in this manner, for example, in order to increase the power generation output P in a ramp-like manner to a value near the maximum output of the water turbine, the power generation output command PO is set as 711(a).
The response when increasing in a ramp shape as shown in Figure 2 will be explained. First, for comparison, the response when the power generation output command is ramped up under the same conditions in the example shown in Fig. 4 is shown in Fig. 8.
As shown in the figure.

第8図(a)の如く時点toからt3までランプ状に発
電出力指令Poを上昇させる場合、時点tlまでは第8
図(c)の如く最適回転速度指令Naは2次励磁制御装
置の定格電圧などで定まる最低回転速度のままである0
時点t1までは第8m(b)の如く最適案内弁開度指令
Yaと案内弁開度Yは殆んど等しい6時点t1からは発
電出力指令pOの上昇と共に最適回転速度指令Naは上
昇し、回転速度Nとの偏差ΔNにより案内弁開度Yは水
車特性関数発生器5からの最適案内弁開度指令Yaより
も大きくなり、水車出力の一部を回転運動エネルギー増
加分として供給し始める。時点t2で案内弁開度Yは最
大値に達し、水車出力PTは第8図(d)の如くほぼ一
定となる0回転速度Nを最適回転速度指令Naに近づけ
る為には、水車出力PTを発電出力Pよりも大きくシテ
回転運動エネルギーを増加させる必要がある。しかしな
がら第8図(d)(e)の如く時点t3からは回転運動
エネルギー増加分は発電出力指令Poの最終値が大きく
なればなる程小さくなり、回転速度Nの加速度も小さく
なる。結果的に回転速度偏差ANが小さくなって案内弁
開度Yが最適案内弁開度指令Yaに整定し始める時点t
4までの時間が長くなり、回転速度Nが最適回転速度指
令Naに整定するまセ水車2の最高効率での運転が実現
出来ない。この為の効率低下が無視し得ない場合もある
。一方、第6図の実施例における第7図の応答について
は時点t1までは前に説明した第8図の応答と全く同じ
である。第7図(c)の如く最適回転速度指令Naが上
昇し始める時点t1から回転速度偏差ΔNが増加し始め
、時点t2で回転速度偏差ΔNは発電出力修正指令装置
23で設定したN1に達する。時点t2を過ぎると発電
出力修正指令装置23は2次励磁制御装置3へ入力され
る外部からの発電出力指令POを相殺する方向に発電出
力修正指令ΔP1を発生する。これにより第7[!r(
e)の如く発電出力Pは発電出力指令Paよりも低くな
り、水車出力PTと発電出力Pの差が大きくなった分だ
け回転速度Nの加速度は大きくなる。時点t3で案内弁
開度Yと最大となり、時点t4で発電出力指令POは最
大値に達する1時点t5で回転速度偏差ΔNは再びN1
まで減少し5発電出力指令指令信号ΔP1は零となる1
時点t6で回転速度Nが最適回転速度指令Naに近づく
と共に案内弁開度Yは減少し始めて最適案内弁開度Ya
に整定する。結果的に時点t2から時点t5までの発電
出力Pを抑える事により、最適回転速度指令値Naへの
加速を早める事が出来る0本実施例は発電出力指令Po
を大きく変える時に有効で、特に回転部の慣性モーメン
トが発電出力定格に対して相対的に大きい可変速水車発
電装置の制御装置に適する。
When increasing the power generation output command Po in a ramp-like manner from time to to t3 as shown in FIG. 8(a), up to time tl, the
As shown in Figure (c), the optimum rotational speed command Na remains at the minimum rotational speed determined by the rated voltage of the secondary excitation control device, etc.
Until time t1, the optimum guide valve opening degree command Ya and the guide valve opening degree Y are almost equal as shown in 8th m(b).6 From time point t1, the optimum rotational speed command Na increases as the power generation output command pO increases, Due to the deviation ΔN from the rotational speed N, the guide valve opening degree Y becomes larger than the optimum guide valve opening degree command Ya from the water turbine characteristic function generator 5, and a part of the water turbine output starts to be supplied as an increase in rotational kinetic energy. At time t2, the guide valve opening degree Y reaches the maximum value, and the water turbine output PT remains almost constant as shown in Fig. 8(d).In order to bring the 0 rotation speed N closer to the optimum rotation speed command Na, the water turbine output PT must be adjusted. It is necessary to increase the rotary kinetic energy to a value greater than the power generation output P. However, as shown in FIGS. 8(d) and 8(e), from time t3 onwards, the increase in rotational kinetic energy becomes smaller as the final value of the power generation output command Po becomes larger, and the acceleration of the rotational speed N also becomes smaller. As a result, the rotational speed deviation AN becomes small and the guide valve opening Y starts to settle to the optimum guide valve opening command Ya.
4, and the water turbine 2 cannot be operated at its highest efficiency until the rotational speed N settles to the optimum rotational speed command Na. In some cases, the efficiency decrease due to this cannot be ignored. On the other hand, the response shown in FIG. 7 in the embodiment shown in FIG. 6 is exactly the same as the response shown in FIG. 8 described above up to time t1. As shown in FIG. 7(c), the rotational speed deviation ΔN starts to increase from the time t1 when the optimum rotational speed command Na starts to rise, and the rotational speed deviation ΔN reaches N1 set by the power generation output correction command device 23 at the time t2. After time t2, the power generation output correction command device 23 generates a power generation output correction command ΔP1 in a direction that offsets the power generation output command PO input from the outside to the secondary excitation control device 3. This results in the 7th [! r(
As shown in e), the power generation output P becomes lower than the power generation output command Pa, and the acceleration of the rotational speed N increases as the difference between the water turbine output PT and the power generation output P increases. At time t3, the guide valve opening Y reaches its maximum value, and at time t4, the power generation output command PO reaches its maximum value.At time t5, the rotational speed deviation ΔN becomes N1 again.
5, and the power generation output command command signal ΔP1 becomes zero.
At time t6, as the rotational speed N approaches the optimum rotational speed command Na, the guide valve opening degree Y begins to decrease and reaches the optimum guide valve opening degree Ya.
Set to . As a result, by suppressing the power generation output P from time t2 to time t5, acceleration to the optimum rotational speed command value Na can be accelerated.
This method is effective when changing the power significantly, and is particularly suitable for controlling a variable speed water turbine power generator where the moment of inertia of the rotating part is relatively large relative to the rated power output.

第9図は更に他の実−施例を示す図である。この実施例
は第4図に示した実施例の変形例である。
FIG. 9 is a diagram showing still another embodiment. This embodiment is a modification of the embodiment shown in FIG.

ここでは、第4図と異なる部分について詳述し、共通部
分の説明は省略する。回転速度検出器6で検出された回
転速度Nを発電出力修正指令装置25に入力し、この発
電出力指令指令装ff!25の出力信号ΔP2と外部か
らの発電出力指令信号POは加算器26を通して2次励
磁制御装置3に発電出力指令信号として入力される構成
をとっている。第9図に示す発電出力修正指令装置25
の機能を説明する6回転速度Nが設定値N2とN3の間
にある時は発電出力修正指令信号ΔP2は零を保ち1回
転速度Nが設定値N2よりも低くなると発電出力修正指
令信号ΔP2は回転速度Nの低下に比例して減少する。
Here, the parts different from those in FIG. 4 will be explained in detail, and the explanation of the common parts will be omitted. The rotational speed N detected by the rotational speed detector 6 is input to the power generation output correction command device 25, and this power generation output command command deviceff! The output signal ΔP2 of 25 and the power generation output command signal PO from the outside are inputted to the secondary excitation control device 3 as a power generation output command signal through an adder 26. Power generation output correction command device 25 shown in FIG.
6 When the rotation speed N is between the set value N2 and N3, the power generation output correction command signal ΔP2 remains zero, and when the 1 rotation speed N becomes lower than the set value N2, the power generation output correction command signal ΔP2 It decreases in proportion to the decrease in rotational speed N.

一方1回転速度Nが設定値N3よりも高くなると発電出
力修正指令信号ΔP2は回転速度Nの上昇に比例して増
加する。
On the other hand, when the rotational speed N becomes higher than the set value N3, the power generation output correction command signal ΔP2 increases in proportion to the increase in the rotational speed N.

この発電出力修正指令信号ΔP2の絶対値はP2を越え
ぬ様に出力される。ここで設定値N2とN3は2次励磁
制御装置3を構成する周波数変換装置の電圧定格と周波
数出力範囲、誘導機1と水車2の機械部分の強度などで
定まる回転速度範囲に対応する。
The absolute value of this power generation output correction command signal ΔP2 is outputted so as not to exceed P2. Here, the set values N2 and N3 correspond to the rotation speed range determined by the voltage rating and frequency output range of the frequency converter constituting the secondary excitation control device 3, the strength of the mechanical parts of the induction machine 1 and the water turbine 2, etc.

この様に構成された制御装置において、いま時点toで
回転速度Nが設定値N2付近の状態で発電出力Pをステ
ップ状に上昇させようとして発電出力指令POを第10
図(a)に示すようにステップ状に上昇させるときの応
答を説明する0時点10で発電出力指令POが上昇する
と前述の第5図と同じく回転速度Nは最適回転速度指令
Naの変化とは逆に第10図(f)の如くいったん低下
する。そして回転速度Nが設定値N2より低くなると発
電出力修正指令ΔP2により2次励磁制御装置3に入力
される発電出力指令は外部からの発電出力指令POより
も小さくなる。従って水車出力PTと発電出力Pが一致
する時点t1は水車出力FTが発電出力指令Poに一致
する時点t2よりも早くなる。従って本実施例を採用す
る事により回転速度Nが極小となる時点は第10図(f
)の破線の如く時点t2であったものが時点t1へ移る
In the control device configured in this way, the power generation output command PO is set to 10 in order to increase the power generation output P in a stepwise manner when the rotational speed N is around the set value N2 at the current time to.
As shown in Figure (a), the response when increasing stepwise is explained. When the power generation output command PO increases at time 0 10, the rotation speed N changes as in the above-mentioned Figure 5. What is the change in the optimum rotation speed command Na? On the contrary, it once decreases as shown in FIG. 10(f). When the rotational speed N becomes lower than the set value N2, the power generation output command input to the secondary excitation control device 3 by the power generation output correction command ΔP2 becomes smaller than the power generation output command PO from the outside. Therefore, the time t1 at which the water turbine output PT and the power generation output P match is earlier than the time t2 at which the water turbine output FT matches the power generation output command Po. Therefore, by adopting this embodiment, the point in time when the rotational speed N becomes minimum is shown in Fig. 10 (f
), what was at time t2 moves to time t1.

同時に過渡的な速度の逆方向のオーバーシュートも大幅
に低減させる事が可能である。本実施例は可変速水車発
電装置の回転速度設定範囲内に回転速度を制御するのに
有効である。言うまでもなく本実施例は第6図の実施例
と組合せて実施する事も出来る。
At the same time, it is also possible to significantly reduce overshoot in the opposite direction of transient speed. This embodiment is effective for controlling the rotation speed within the rotation speed setting range of the variable speed water turbine generator. Needless to say, this embodiment can also be implemented in combination with the embodiment shown in FIG.

一11図は更に他の実施例を示す図である。この実施例
は第4図の実施例の変形例であるので、前述の第4図と
異なる部分について詳述し、共通部分の説明は省略する
。13は交流系統4の周波数fを検出する周波数検出器
で、27は周波数制御装置で交流系統4の周波数検出信
号fと周波数設定値foを比較して発電出力修正指令信
号AP3を出力する。この発電出力修正指令信号AP3
を加算器28により外部からの発電出力指令Poに付勢
して水車特性関数発生器5と2次励磁制御装置3に入力
する構成をとっている。第12図は周波数制御装置27
の一実施例を示す図である。
FIG. 111 shows still another embodiment. Since this embodiment is a modification of the embodiment shown in FIG. 4, parts different from those shown in FIG. 4 described above will be described in detail, and explanations of common parts will be omitted. 13 is a frequency detector that detects the frequency f of the AC system 4, and 27 is a frequency control device that compares the frequency detection signal f of the AC system 4 with the frequency setting value fo and outputs a power generation output correction command signal AP3. This power generation output correction command signal AP3
is applied to the power generation output command Po from the outside by the adder 28 and inputted to the water turbine characteristic function generator 5 and the secondary excitation control device 3. FIG. 12 shows the frequency control device 27.
It is a figure showing one example of this.

29は比較器で周波数設定値foと周波数検出信号fの
偏差Afを出力する。この周波数偏差Afは30の比例
要素に3と31の積分要素(K4/S)に入力され、こ
れらの出力は加算器32を経てリミッタ33に入力され
る。リミッタ33は発電出力修正指令信号ΔP3の絶対
値をP3以下に抑制する構成をとっている。
A comparator 29 outputs a deviation Af between the frequency setting value fo and the frequency detection signal f. This frequency deviation Af is input to a proportional element 30 and an integral element (K4/S) 31, and the outputs of these are input to a limiter 33 via an adder 32. The limiter 33 is configured to suppress the absolute value of the power generation output correction command signal ΔP3 to below P3.

この様な構成により周波数偏差Δfから演算した発電出
力修正指令信号ΔP3を水車案内弁駆動装置10と2次
励磁制御装置3の両方の調整に用いる事が出来、周波数
制御と安定な回転数制御を実現する事が出来る。
With this configuration, the power generation output correction command signal ΔP3 calculated from the frequency deviation Δf can be used to adjust both the water turbine guide valve drive device 10 and the secondary excitation control device 3, thereby achieving frequency control and stable rotation speed control. It can be achieved.

第13図は更に他の実施例を示す図である。この実施例
では第4図に示した実施例の変形例であるので、第4図
と異なる部分について詳述し、共通部分の説明は省略す
る。可変速水車発電装置で外部からの発電出力指令が発
電装置の発電可能範囲を外れた時の処理方法について具
体的な提案は未だないが、第13図はこの処理方法の一
例を示す図である。34は発電出力制限演算器で、外部
からの発電出力指令信号P、oが設定値P5を越える時
は出力をP5に、設定値P4より小さい時は出力P4に
抑制して2次励磁制御装置3と水車特性関数発生器5へ
入力する構成をとっている。
FIG. 13 is a diagram showing still another embodiment. Since this embodiment is a modification of the embodiment shown in FIG. 4, parts different from those in FIG. 4 will be described in detail, and explanations of common parts will be omitted. Although there is no concrete proposal yet on how to handle the situation when the power generation output command from the outside is outside the power generation range of the power generation device in a variable speed water turbine power generation device, Fig. 13 is a diagram showing an example of this processing method. . 34 is a power generation output limiting calculator, which controls the output to P5 when the power generation output command signals P and o from the outside exceed the set value P5, and suppresses the output to P4 when it is smaller than the set value P4, and controls the secondary excitation control device. 3 and is input to the water turbine characteristic function generator 5.

第14図は第13図の実施例を変形した他の実施例を示
す図である。35は発電出力制限演算器で、前述の発電
出力制限演算器34と同じく発電出力指令Poを設定値
P4とP5で定まる範囲に抑制する構成としている。但
し、発電出力制限演算器35においては設定値P4とP
5を発電限界関数発生器36から入力する構成としてい
る0発電限界関数発生器36は水位信号Hを入力し発電
出力上限値P5と下限値P4を発生する。これらの上下
限値P4、P5は水車2の水力学的特性、誘導機1の出
力限界、2次励磁制御装置3の電圧出力限界、出力周波
数範囲などにより定まる0本実施例によれば水位変動の
大きな可変速水車発電装置の過負荷防止を実現する事が
出来る。
FIG. 14 is a diagram showing another embodiment that is a modification of the embodiment shown in FIG. 13. Reference numeral 35 denotes a power generation output limit calculator, which, like the power generation output limit calculator 34 described above, is configured to suppress the power generation output command Po within a range determined by set values P4 and P5. However, in the power generation output limit calculator 35, the set values P4 and P
The 0 power generation limit function generator 36, which has a configuration in which 5 is inputted from the power generation limit function generator 36, receives the water level signal H and generates the power generation output upper limit value P5 and lower limit value P4. These upper and lower limit values P4 and P5 are determined by the hydraulic characteristics of the water turbine 2, the output limit of the induction machine 1, the voltage output limit of the secondary excitation control device 3, the output frequency range, etc. According to this embodiment, water level fluctuation It is possible to prevent overload of a large variable speed water turbine generator.

第15図は第14図の実施例を変形した他の実施例を示
す図である。341と342は発電出力制限演算器で前
述の発電出力制限演算器34と同様の構成をもっている
。発電出力制限演算器341は周波数制御の為の加算器
28と水車特性関数発 。
FIG. 15 is a diagram showing another embodiment that is a modification of the embodiment shown in FIG. 14. Reference numerals 341 and 342 denote power generation output limit calculation units having the same configuration as the power generation output limit calculation unit 34 described above. The power generation output limit calculator 341 includes an adder 28 for frequency control and a water turbine characteristic function generator.

生検5の発電出力指令入力の間に設置し、発電出力制限
演算器342は回転数調整の為の加算器26と2次励磁
制御装置3の発電出力指令入力の間に設置する構成をと
っている0本実施例によれば周波数制御や回転数調整の
為に水車及び誘導機への出力指令が修正された場合にも
過負荷防止を実現出来る。
The power generation output limit calculator 342 is installed between the power generation output command input of the biopsy 5 and the power generation output command input of the secondary excitation control device 3. According to this embodiment, overload prevention can be realized even when the output commands to the water turbine and induction machine are modified for frequency control or rotation speed adjustment.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば発電出方を外部から発
電出力指令に応じて直接的に制御するようにしたので発
電出力指令を急変させた場合も発電出力を発電出力指令
に円滑に追従させて交流系統の安定度を高める効果があ
る。また1回転速度と最適回転速度の偏差が大きい時に
は発電出方を過渡的に調整するようにしたので発電効率
を低下させずに運転する効果がある。
As explained above, according to the present invention, the power generation output is directly controlled from outside according to the power generation output command, so even if the power generation output command suddenly changes, the power generation output can smoothly follow the power generation output command. This has the effect of increasing the stability of the AC system. Furthermore, when there is a large deviation between the 1-rotation speed and the optimum rotation speed, the way the power generation is output is adjusted transiently, which has the effect of operating without reducing power generation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る制御装置のブロック図
、第2図は第1図の一部をなす回転速度制御装置の一実
施例に係るブロック図、第3図(a)〜(g)は同制御
装置の各部における信号の波形図、第4図は本発明の他
の実施例に係る制御装置のブロック図、第5図(a)〜
(g)は同制御装置の各部における信号の波形図、第6
図は本発明の更に他の実施例に係る制御装置のブロック
図、第7図(a)〜(e)は同制御装置の各部における
信号の波形図、第8図(a)〜(e)は第7図と比較対
照する為の第4図の制御装置の各部における信号の波形
図、第9図は本発明の更に他の実施例に係る制御装置の
ブロック図、第10図(a)〜(g)は同制御装置の各
部における信号の波形図、第11図は本発明の更に他の
実施例に、係る制御装置のブロック図、第12図は第1
1図の一部をなす周波数制御装置の実施例に係るブロッ
ク図、第13図。 第14図、第15図は本発明の更に他の実施例に係る制
御装置のブロック図、第16図は従来の制御装置の一例
を示すブロック図、第17図(a)〜(g)は同制御装
置の各部における信号の波形図。 第18図は従来の制御装置のその他の一例を示すブロッ
ク図である。 1・・・誘導機、2・・・水車、3・・・2次励磁制御
装置。 4・・・交流系統、5・・・水車特性関数発生器、6・
・・回転速度検出器、10・・・案内弁駆動装置、11
・・・案内弁、15・・・回転速度指令演算器、16・
・・回転速度制御装置。
FIG. 1 is a block diagram of a control device according to an embodiment of the present invention, FIG. 2 is a block diagram of an embodiment of a rotational speed control device forming a part of FIG. 1, and FIGS. (g) is a waveform diagram of signals in each part of the control device, FIG. 4 is a block diagram of a control device according to another embodiment of the present invention, and FIGS.
(g) is a waveform diagram of signals in each part of the control device,
The figure is a block diagram of a control device according to still another embodiment of the present invention, FIGS. 7(a) to (e) are waveform diagrams of signals in each part of the same control device, and FIGS. 8(a) to (e) is a waveform diagram of signals in each part of the control device in FIG. 4 for comparison and contrast with FIG. 7, FIG. 9 is a block diagram of a control device according to still another embodiment of the present invention, and FIG. 10(a) -(g) are waveform diagrams of signals in each part of the control device, FIG. 11 is a block diagram of a control device according to still another embodiment of the present invention, and FIG.
FIG. 13 is a block diagram of an embodiment of the frequency control device forming a part of FIG. 1; 14 and 15 are block diagrams of a control device according to still another embodiment of the present invention, FIG. 16 is a block diagram showing an example of a conventional control device, and FIGS. 17(a) to (g) are FIG. 3 is a waveform diagram of signals in each part of the control device. FIG. 18 is a block diagram showing another example of the conventional control device. 1... Induction machine, 2... Water turbine, 3... Secondary excitation control device. 4... AC system, 5... Water turbine characteristic function generator, 6...
...Rotation speed detector, 10... Guide valve drive device, 11
... Guide valve, 15... Rotation speed command calculator, 16.
...Rotation speed control device.

Claims (1)

【特許請求の範囲】 1、交流系統に1次側が接続された誘導機と、この誘導
機の2次側に接続され外部からの発電出力指令信号に応
じて前記交流系統と同一周波数の交流電力を前記誘導機
に発生させるための励磁電流を供給する2次励磁制御装
置と、前記誘導機を回転駆動する水車と、この水車に供
給される水量を調整する案内弁と、この案内弁の開度を
案内弁開度指令信号に応じて制御する案内弁駆動装置と
、前記誘導機の回転速度を検出する回転速度検出器とを
備えた可変速水車発電装置において、外部からの発電出
力指令信号を含む水車運転条件を示す信号を入力して最
適回転速度指令を演算する演算手段と、この最適回転速
度指令信号と前記回転速度検出器からの回転速度検出信
号を比較して前記案内弁駆動装置への案内弁開度制御信
号を制御する回転速度制御装置を設けた事を特徴とする
可変速水車発電装置の制御装置。 2、特許請求の範囲第1項において、前記演算手段は、
外部からの発電出力指令信号を少なくとも含む水車運転
条件を示す信号を入力して最適案内弁開度指令を演算す
る水車特性関数発生器を備え、この最適案内弁開度指令
信号を前記回転速度制御装置から出力される案内弁開度
制御信号に加えて前記案内弁駆動装置に入力する構成と
したことを特徴とする可変速水車発電装置の制御装置。
[Claims] 1. An induction machine whose primary side is connected to an AC system, and an AC power source connected to the secondary side of the induction machine and which has the same frequency as the AC system in response to an external power generation output command signal. a secondary excitation control device that supplies an excitation current to generate the induction machine, a water wheel that rotationally drives the induction machine, a guide valve that adjusts the amount of water supplied to the water turbine, and an opening of the guide valve. In a variable speed water turbine power generation device comprising a guide valve driving device that controls the degree of rotation according to a guide valve opening command signal, and a rotation speed detector that detects the rotation speed of the induction machine, a power generation output command signal from an external source is used. a calculation means for calculating an optimum rotational speed command by inputting a signal indicating water turbine operating conditions including the above; 1. A control device for a variable speed water turbine power generation device, characterized in that a rotation speed control device is provided to control a guide valve opening degree control signal. 2. In claim 1, the calculation means:
A water turbine characteristic function generator is provided which calculates an optimum guide valve opening command by inputting a signal indicating water turbine operation conditions including at least an external power generation output command signal, and the optimum guide valve opening command signal is used to control the rotation speed. 1. A control device for a variable speed water turbine power generator, characterized in that the control device is configured to input a guide valve opening control signal to the guide valve drive device in addition to a guide valve opening control signal output from the device.
JP60210004A 1985-09-25 1985-09-25 Variable speed winding type induction machine controller Expired - Lifetime JPH0834717B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60210004A JPH0834717B2 (en) 1985-09-25 1985-09-25 Variable speed winding type induction machine controller
EP86113077A EP0220492B1 (en) 1985-09-25 1986-09-23 Control system for variable speed hydraulic turbine generator apparatus
DE8686113077T DE3677887D1 (en) 1985-09-25 1986-09-23 CONTROL SYSTEM FOR A HYDRAULIC TURBINE GENERATOR WITH VARIABLE SPEED.
CA000518847A CA1273695A (en) 1985-09-25 1986-09-23 Control system for variable speed hydraulic turbine generator apparatus
US06/911,131 US4694189A (en) 1985-09-25 1986-09-24 Control system for variable speed hydraulic turbine generator apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210004A JPH0834717B2 (en) 1985-09-25 1985-09-25 Variable speed winding type induction machine controller

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7096503A Division JP2551401B2 (en) 1995-04-21 1995-04-21 Variable speed winding type induction machine controller

Publications (2)

Publication Number Publication Date
JPS6271497A true JPS6271497A (en) 1987-04-02
JPH0834717B2 JPH0834717B2 (en) 1996-03-29

Family

ID=16582252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210004A Expired - Lifetime JPH0834717B2 (en) 1985-09-25 1985-09-25 Variable speed winding type induction machine controller

Country Status (1)

Country Link
JP (1) JPH0834717B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232173A (en) * 1988-03-10 1989-09-18 Hitachi Ltd Variable speed hydraulic turbine generator controller
JPH01244169A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Emergency stopping method for variable speed generating machine
US4920277A (en) * 1987-08-14 1990-04-24 Hitachi, Ltd. Control system for a variable speed hydro-power plant apparatus
US5561358A (en) * 1993-12-24 1996-10-01 Hitachi, Ltd. Variable speed pumping-up generator
JPH1146499A (en) * 1997-05-30 1999-02-16 Hitachi Ltd Apparatus and method for controlling variable speed induction generating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190393B2 (en) * 2003-10-30 2008-12-03 大阪瓦斯株式会社 Power system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173698A (en) * 1985-01-28 1986-08-05 Kansai Electric Power Co Inc:The Controller of variable speed water wheel generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173698A (en) * 1985-01-28 1986-08-05 Kansai Electric Power Co Inc:The Controller of variable speed water wheel generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920277A (en) * 1987-08-14 1990-04-24 Hitachi, Ltd. Control system for a variable speed hydro-power plant apparatus
JPH01232173A (en) * 1988-03-10 1989-09-18 Hitachi Ltd Variable speed hydraulic turbine generator controller
JPH01244169A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Emergency stopping method for variable speed generating machine
US5561358A (en) * 1993-12-24 1996-10-01 Hitachi, Ltd. Variable speed pumping-up generator
JPH1146499A (en) * 1997-05-30 1999-02-16 Hitachi Ltd Apparatus and method for controlling variable speed induction generating device

Also Published As

Publication number Publication date
JPH0834717B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP0220492B1 (en) Control system for variable speed hydraulic turbine generator apparatus
JP2585233B2 (en) Variable speed turbine generator
KR940009966B1 (en) Control system for variable speed generator apparatus
US4920277A (en) Control system for a variable speed hydro-power plant apparatus
JP2714449B2 (en) Variable speed pump system
JPH0351910B2 (en)
JP3144451B2 (en) Variable speed pumped storage generator
JPS62282169A (en) Variable speed pumping equipment
JPS6271497A (en) Controller for variable-speed hydraulic turbine generator
JPS61173698A (en) Controller of variable speed water wheel generator
JP2551401B2 (en) Variable speed winding type induction machine controller
JPH0634626B2 (en) Control device for variable speed turbine generator
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP2753239B2 (en) Variable speed power plant
JP2771474B2 (en) Variable speed generator
JPH0698412A (en) Device for controlling internal combustion electric rolling stock
JPH0636680B2 (en) Variable speed generator
JPH01243896A (en) Frequency controller for variable-speed generator motor
JPH0576277B2 (en)
JPH01231696A (en) Ac exciting rotary electric machine controller
JPH0669319B2 (en) Variable speed pumped storage system
JPH04236199A (en) Controller for variable-speed pumped-storage power system
JPH01232173A (en) Variable speed hydraulic turbine generator controller
JPS6282000A (en) Excitation control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term