JPH06338602A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPH06338602A
JPH06338602A JP5126958A JP12695893A JPH06338602A JP H06338602 A JPH06338602 A JP H06338602A JP 5126958 A JP5126958 A JP 5126958A JP 12695893 A JP12695893 A JP 12695893A JP H06338602 A JPH06338602 A JP H06338602A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor
forming
film
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5126958A
Other languages
Japanese (ja)
Other versions
JP3651689B2 (en
Inventor
Toshiharu Watanabe
寿治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12695893A priority Critical patent/JP3651689B2/en
Publication of JPH06338602A publication Critical patent/JPH06338602A/en
Application granted granted Critical
Publication of JP3651689B2 publication Critical patent/JP3651689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable the integration degree in the next generation to be attained without depending upon the improvement in the photo-etching technology by a method wherein memory cells are three-dimensionally formed on the sidewall of a semiconductor post formed on a semiconductor substrate. CONSTITUTION:A first conductivity type semiconductor post 32 is formed on a first conductivity type semiconductor substrate 31. An element separating insulating film 25 separating the semiconductor post 32 into plural stages is formed on the semiconductor post 32. Selective gates 33-1, 33-2 are formed respectively on the topmost stage and the lowermost stage of the element separating film 25 while memory cells 37-1-39-9 are formed on respective stages between said two stages. The selective gates 33-1, 33-2 are respectively provided with polysilicon electrodes 35 on the sidewall of the semiconductor post 32 through the intermediary of another insulating film 34. Accordingly, respective memory cells of NAND type EEPROM are formed on the semiconductor post 32 extending in the perpendicular direction to the semiconductor substrate 31 so that the memory cells can be integrated with markedly high degree compared with those flatly formed on the conventional substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にNAND型EEP
ROMのセル構造の改良に関する。
BACKGROUND OF THE INVENTION The present invention is particularly applicable to NAND type EEP.
The present invention relates to improvement of a cell structure of a ROM.

【0002】[0002]

【従来の技術】従来のNAND型EEPROMのセル構
造について説明する。図21(a)〜(c)は、従来の
NAND型EEPROMのセル構造を示している。な
お、同図(a)は、当該セル構造の平面図、同図(b)
は、同図(a)のI−I´線に沿う断面図、同図(c)
は、同図(a)のII−II´線に沿う断面図である。
2. Description of the Related Art A cell structure of a conventional NAND type EEPROM will be described. 21A to 21C show the cell structure of a conventional NAND type EEPROM. Note that FIG. 7A is a plan view of the cell structure, and FIG.
Is a cross-sectional view taken along the line II ′ of FIG.
FIG. 4B is a sectional view taken along line II-II ′ of FIG.

【0003】図21(a)〜(c)において、第一導電
型の半導体基板11上には、第二導電型のウエル12が
形成されている。ウエル12上には、素子分離絶縁膜1
3が形成されている。素子領域の一部には、トンネル酸
化膜14が形成されている。トンネル酸化膜14上に
は、フロ−ティングゲ−トとして機能する第一のポリシ
リコン電極15が形成されている。第一のポリシリコン
電極15上には、絶縁膜16が形成されている。絶縁膜
16上には、ワ−ド線及びコントロ−ルゲ−トとして機
能する第二のポリシリコン電極17が形成されている。
さらに、素子領域において各々の第一のポリシリコン電
極15の間には、ソ−ス・ドレイン拡散層18が形成さ
れている。
In FIGS. 21A to 21C, a well 12 of the second conductivity type is formed on a semiconductor substrate 11 of the first conductivity type. An element isolation insulating film 1 is formed on the well 12.
3 is formed. A tunnel oxide film 14 is formed in a part of the element region. A first polysilicon electrode 15 which functions as a floating gate is formed on the tunnel oxide film 14. An insulating film 16 is formed on the first polysilicon electrode 15. A second polysilicon electrode 17 which functions as a word line and a control gate is formed on the insulating film 16.
Further, a source / drain diffusion layer 18 is formed between the first polysilicon electrodes 15 in the element region.

【0004】一個のセルは、一点破線Aで囲んだ部分か
ら構成され、複数個(例えば10個)のセルが直列接続
されている。両端にあるセル20は、選択ゲ−トとして
の機能を果たすものである。従って、当該セル20の第
一のポリシリコン電極15と第二のポリシリコン電極1
7は、図示しない配線によって短絡されている。
One cell is composed of a portion surrounded by a dashed line A, and a plurality of cells (for example, 10 cells) are connected in series. The cells 20 at both ends serve as a selection gate. Therefore, the first polysilicon electrode 15 and the second polysilicon electrode 1 of the cell 20 are
7 is short-circuited by a wiring not shown.

【0005】選択ゲ−ト(セル20)の間にある複数個
(例えば8個)のセル21は、各々が1ビット分の記憶
を蓄えることができる実際のセルである。ビット線19
は、一端側にある選択ゲ−ト(セル20)の拡散層18
に接続されている。このようなセル構造において、一般
に、ビット線19に接続するセル20側は、ドレイン側
と呼ばれる。
A plurality of cells (for example, eight cells) 21 between the selection gates (cells 20) are actual cells each capable of storing one bit of memory. Bit line 19
Is the diffusion layer 18 of the selective gate (cell 20) on one end side.
It is connected to the. In such a cell structure, the cell 20 side connected to the bit line 19 is generally called the drain side.

【0006】[0006]

【発明が解決しようとする課題】上記NAND型EEP
ROMのセル構造は、半導体基板上における単位面積当
りのセル数(ビット数)を向上させるものとして期待さ
れるものである。しかし、半導体記憶装置における集積
度の向上は止まるところを知らず、次世代における集積
度を達成するためのセル構造が要望されている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The cell structure of a ROM is expected to improve the number of cells (bit number) per unit area on a semiconductor substrate. However, there is no end to the improvement in the degree of integration in semiconductor memory devices, and there is a demand for a cell structure for achieving the degree of integration in the next generation.

【0007】本発明は、上記要望に鑑みてなされたもの
で、その目的は、写真蝕刻技術の改善にたよることな
く、次世代における集積度を達成することが可能な半導
体記憶装置及びその製造方法を提供することである。
The present invention has been made in view of the above demands, and an object thereof is a semiconductor memory device capable of achieving the next-generation degree of integration without depending on the improvement of the photo-etching technique and its manufacture. Is to provide a method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体記憶装置は、半導体基板と、前記半
導体基板上に形成される半導体柱と、前記半導体柱に複
数段を形成する素子分離絶縁膜と、前記素子分離絶縁膜
の間であって、前記複数段のうち最上段と最下段にそれ
ぞれ形成される選択ゲ−トと、前記最上段と最下段の間
の各段にそれぞれ形成されるメモリセルとを備える。
In order to achieve the above object, a semiconductor memory device of the present invention is a semiconductor substrate, a semiconductor pillar formed on the semiconductor substrate, and an element for forming a plurality of steps on the semiconductor pillar. Between the isolation insulating film and the element isolation insulating film, selection gates formed in the uppermost stage and the lowermost stage of the plurality of stages, and in each stage between the uppermost stage and the lowermost stage, respectively. Formed memory cells.

【0009】前記選択ゲ−トは、前記半導体柱の側壁に
第一の絶縁膜を介して形成される第一の導電膜を有す
る。前記メモリセルは、前記半導体柱の側壁にトンネル
絶縁膜を介して形成され、フロ−ティングゲ−トとして
機能する第二の導電膜、及び前記第二の導電膜上に第二
の絶縁膜を介して形成され、コントロ−ルゲ−トとして
機能する第三の導電膜を有する。そして、前記第一の絶
縁膜と前記第二の絶縁膜、及び前記第一の導電膜と前記
第三の導電膜は、それぞれ同一の材料から構成されてい
る。
The selection gate has a first conductive film formed on the sidewall of the semiconductor pillar with a first insulating film interposed therebetween. The memory cell is formed on a sidewall of the semiconductor pillar via a tunnel insulating film, and has a second conductive film functioning as a floating gate, and a second insulating film on the second conductive film. And a third conductive film functioning as a control gate. The first insulating film and the second insulating film, and the first conductive film and the third conductive film are made of the same material.

【0010】前記フロ−ティングゲ−トとして機能する
第二の導電膜は、各段において、前記半導体柱を取り巻
くリング状に形成されている。前記素子分離絶縁膜の間
であって、前記複数段のうち最上段と最下段の高さは、
その最上段と最下段の間の各段の高さよりも高くなるよ
うに構成されている。その結果、前記選択ゲ−トのゲ−
ト長は、前記メモリセルのゲ−ト長よりも長くなってい
る。
The second conductive film functioning as the floating gate is formed in a ring shape surrounding the semiconductor pillar in each stage. Between the element isolation insulating films, the height of the uppermost stage and the lowermost stage among the plurality of stages is
It is configured to be higher than the height of each stage between the uppermost stage and the lowermost stage. As a result, the gate of the selected gate is
The gate length is longer than the gate length of the memory cell.

【0011】前記半導体柱の側壁であって、前記複数段
を構成する前記素子分離絶縁膜の各段に隣接してリング
状に形成されるソ−ス・ドレイン拡散層と、前記半導体
基板中に形成され、前記最下段の選択ゲ−トのソ−ス・
ドレイン拡散層に接続されるソ−ス拡散層と、前記半導
体柱の最上部に形成され、前記最上段の選択ゲ−トのソ
−ス・ドレイン拡散層に接続されるドレイン拡散層とを
有する。
A source / drain diffusion layer formed in a ring shape on the side wall of the semiconductor pillar, adjacent to each step of the element isolation insulating film forming the plurality of steps, and in the semiconductor substrate. The source of the selection gate at the bottom is formed.
A source diffusion layer connected to the drain diffusion layer and a drain diffusion layer formed on the uppermost part of the semiconductor pillar and connected to the source / drain diffusion layer of the uppermost selection gate. .

【0012】前記半導体柱は、前記半導体基板上に行列
状に複数形成され、行方向の半導体柱における当該ドレ
イン拡散層に共通に接続するビット線を有する。前記半
導体柱は、前記半導体基板上に行列状に複数形成され、
前記複数段を構成する素子分離絶縁膜の各段は、列方向
の半導体柱に共通して棚状に形成される。前記選択ゲ−
トの第一の導電膜及び前記コントロ−ルゲ−トとして機
能する第三の導電膜は、それぞれ列方向の半導体柱に共
通し、かつ、各段において、それぞれ列方向に帯状に形
成されている。
A plurality of the semiconductor pillars are formed in a matrix on the semiconductor substrate and have bit lines commonly connected to the drain diffusion layers of the semiconductor pillars in the row direction. A plurality of the semiconductor pillars are formed in a matrix on the semiconductor substrate,
Each step of the element isolation insulating film forming the plurality of steps is formed in a shelf shape commonly to the semiconductor pillars in the column direction. The selection gate
The first conductive film of the gate and the third conductive film functioning as the control gate are common to the semiconductor pillars in the column direction, and are formed in strips in the column direction in each stage. .

【0013】前記選択ゲ−トの第一の導電膜及び前記コ
ントロ−ルゲ−トとして機能する第三の導電膜は、それ
ぞれ列方向の端部において階段状に形成され、その階段
状の部分にコンタクト部が設けられている。
The first conductive film of the selective gate and the third conductive film functioning as the control gate are formed stepwise at the ends in the column direction, and the stepwise portions are formed at the stepwise portions. A contact portion is provided.

【0014】本発明の半導体記憶装置の製造方法は、ま
ず、第一の工程として、半導体基板上に第一の絶縁膜を
形成し、前記第一の絶縁膜上に第二の絶縁膜を形成す
る。次に、第二の工程として、前記第二の絶縁膜上に、
少なくとも1回以上、次の (i),(ii)の工程、即ち (i)
第三の絶縁膜を形成する工程、及び(ii) 前記第三の
絶縁膜上に第四の絶縁膜を形成する工程を繰り返し実行
することにより得られる積層膜を形成する。次に、第三
の工程として、前記積層膜上に第五の絶縁膜を形成し、
前記第五の絶縁膜上に第六の絶縁膜を形成する。次に、
第四の工程として、前記第六の絶縁膜上に第七の絶縁膜
をを形成し、前記第七の絶縁膜上に第八の絶縁膜を形成
する。次に、第五の工程として、前記第八の絶縁膜の表
面から前記半導体基板まで達する行列状の複数の穴を形
成する。次に、第六の工程として、選択エピタキシャル
成長法により、各々の穴内に、半導体を成長させ、行列
状の半導体柱を形成する。次に、第七の工程として、前
記第一乃至第八の絶縁膜からなる多層膜をエッチング
し、半導体柱の各列の間であって、列方向に伸びるスト
ライプ状の溝を形成する。次に、第八の工程として、前
記第二、第四、第六及び第八の絶縁膜を選択的にエッチ
ングすることにより、残存した前記第一、第三、第五及
び第七の絶縁膜であって、列方向の半導体柱に支えられ
た複数段の棚状のものを形成する。次に、第九の工程と
して、前記複数段のうち、前記第一の絶縁膜と前記第三
の絶縁膜の間の最下段及び前記第五の絶縁膜と前記第七
の絶縁膜の間の最上段に選択ゲ−トを形成し、前記最下
段と最上段の間の各段にメモリセルを形成するものであ
る。
In the method of manufacturing a semiconductor memory device of the present invention, first, as a first step, a first insulating film is formed on a semiconductor substrate, and a second insulating film is formed on the first insulating film. To do. Next, as a second step, on the second insulating film,
At least once, the following steps (i) and (ii), that is, (i)
A laminated film obtained by repeatedly performing the step of forming the third insulating film, and (ii) the step of forming the fourth insulating film on the third insulating film is formed. Next, as a third step, a fifth insulating film is formed on the laminated film,
A sixth insulating film is formed on the fifth insulating film. next,
As a fourth step, a seventh insulating film is formed on the sixth insulating film, and an eighth insulating film is formed on the seventh insulating film. Next, as a fifth step, a plurality of holes in a matrix form from the surface of the eighth insulating film to the semiconductor substrate are formed. Next, as a sixth step, a semiconductor is grown in each hole by a selective epitaxial growth method to form a matrix of semiconductor columns. Next, as a seventh step, the multilayer film formed of the first to eighth insulating films is etched to form stripe-shaped grooves extending in the column direction between the columns of the semiconductor pillar. Next, in an eighth step, the remaining first, third, fifth and seventh insulating films are formed by selectively etching the second, fourth, sixth and eighth insulating films. In this case, a plurality of stages of shelves supported by semiconductor columns in the column direction are formed. Next, as a ninth step, among the plurality of steps, a bottom step between the first insulating film and the third insulating film and a step between the fifth insulating film and the seventh insulating film are performed. A select gate is formed on the uppermost stage, and a memory cell is formed on each stage between the lowermost stage and the uppermost stage.

【0015】前記第一の工程は、前記第二の絶縁膜の列
方向の端部を部分的にエッチングする工程を有し、前記
第二の工程は、少なくとも1回以上、前記 (i),(ii)の
工程及び (iii) 前記第四の絶縁膜の列方向の端部を部
分的にエッチングする工程を繰り返し実行するものであ
り、前記第三の工程は、前記第六の絶縁膜の列方向の端
部を部分的にエッチングする工程を有し、前記第四の工
程は、前記第八の絶縁膜の列方向の端部を部分的にエッ
チングする工程を有ている。そして、前記列方向の端部
では、前記第二、第四、第六及び第八の絶縁膜は、階段
状に形成されるものである。
The first step includes a step of partially etching an end portion of the second insulating film in the column direction, and the second step is performed at least once or more, in (i), The step (ii) and (iii) the step of partially etching the end portion in the column direction of the fourth insulating film is repeatedly performed, and the third step is to form the sixth insulating film. The method has a step of partially etching the end portion in the column direction, and the fourth step has a step of partially etching the end portion in the column direction of the eighth insulating film. Then, at the end portion in the column direction, the second, fourth, sixth and eighth insulating films are formed stepwise.

【0016】前記第五の工程と前記第六の工程の間に、
以下の工程を含んでいる。まず、等方性エッチングによ
り、各穴内の前記第一、第三、第五及び第七の絶縁膜を
所定量だけエッチングし、後退部を形成する。次に、等
方性エッチングにより、各穴内の前記第二、第四、第六
及び第八の絶縁膜を所定量だけエッチングし、前記後退
部を拡張する。次に、前記後退部を含む前記各穴の側壁
に第九の絶縁膜を形成する。次に、前記第九の絶縁膜上
に、前記後退部を埋め込み、不純物を含む第十の絶縁膜
を形成する。次に、等方性エッチングにより、前記第九
及び第十の絶縁膜を前記各穴内の後退部にのみ残存させ
る。
Between the fifth step and the sixth step,
It includes the following steps. First, the first, third, fifth and seventh insulating films in each hole are etched by a predetermined amount by isotropic etching to form a recessed portion. Next, the second, fourth, sixth and eighth insulating films in each hole are etched by a predetermined amount by isotropic etching to expand the recessed portion. Next, a ninth insulating film is formed on the sidewall of each hole including the recessed portion. Next, the recessed portion is embedded on the ninth insulating film to form a tenth insulating film containing impurities. Next, the ninth and tenth insulating films are left only in the recessed portions in the holes by isotropic etching.

【0017】また、前記第六の工程と前記第七の工程の
間に、熱処理を行い、前記第十の絶縁膜中の不純物を当
該半導体柱の側壁に拡散させ、各半導体柱の側壁にリン
グ状のソ−ス・ドレイン領域を形成する工程を含んでい
る。
In addition, heat treatment is performed between the sixth step and the seventh step to diffuse the impurities in the tenth insulating film to the sidewalls of the semiconductor pillar, and ring the sidewalls of each semiconductor pillar. Forming a source-drain region in the shape of a circle.

【0018】前記第二及び第六の絶縁膜の膜厚は、前記
第四の絶縁膜の膜厚よりも大きく設定されている。そし
て、前記第九の工程は、以下の工程を含んでいる。ま
ず、各半導体柱の側壁に第十一の絶縁膜を形成する。次
に、全面に、第一の導電膜を形成する。次に、等方性エ
ッチングにより、前記第十一の絶縁膜及び前記第一の導
電膜を所定量だけエッチングし、前記第十一の絶縁膜及
び前記第一の導電膜を前記最下段と最上段を除く各段に
のみ残存させ、前記最下段と最上段を除く各段にのみ当
該半導体柱を取り巻くリング状のフロ−ティングゲ−ト
を形成する。次に、全面に、第十二の絶縁膜を形成す
る。次に、全面に、第二の導電膜を形成する。次に、等
方性エッチングにより、前記第二の導電膜を所定量だけ
エッチングし、当該第二の導電膜を、前記複数段を構成
する素子分離絶縁膜の各段に残存させ、前記最下段と最
上段に列方向に伸びる帯状の選択ゲ−ト線を形成し、前
記最下段と最上段の間の各段に列方向に伸びる帯状のワ
−ド線を形成する。
The film thicknesses of the second and sixth insulating films are set to be larger than the film thickness of the fourth insulating film. Then, the ninth step includes the following steps. First, an eleventh insulating film is formed on the side wall of each semiconductor pillar. Next, a first conductive film is formed on the entire surface. Next, the eleventh insulating film and the first conductive film are etched by a predetermined amount by isotropic etching to remove the eleventh insulating film and the first conductive film from the lowermost layer and the uppermost conductive film. The ring-shaped floating gate surrounding the semiconductor pillar is formed only in each of the stages except the uppermost stage and the lowermost stage and the uppermost stage. Next, a twelfth insulating film is formed on the entire surface. Next, a second conductive film is formed on the entire surface. Next, the second conductive film is etched by a predetermined amount by isotropic etching, and the second conductive film is left in each stage of the element isolation insulating film forming the plurality of stages. A strip-shaped selection gate line extending in the column direction is formed on the uppermost stage, and a strip-shaped word line extending in the column direction is formed on each stage between the lowermost stage and the uppermost stage.

【0019】前記第一の工程の前に、前記半導体基板中
にソ−ス領域を形成する工程を有している。また,前記
第九の工程の後に、各半導体柱の最上部にドレイン領域
を形成する工程と、行方向の半導体柱のドレイン拡散層
に接続するビット線を形成する工程と有している。
Before the first step, there is a step of forming a source region in the semiconductor substrate. Further, after the ninth step, there are steps of forming a drain region on the top of each semiconductor pillar and forming a bit line connected to the drain diffusion layer of the semiconductor pillar in the row direction.

【0020】[0020]

【作用】上記構成によれば、半導体基板上には半導体柱
が形成されている。従って、従来、平面的に形成されて
いたメモリセルを、当該半導体柱の側壁に立体的に形成
することができる。これにより、従来に比べ、格段に、
集積度の向上(単位面積当りのセル数の増大)を図るこ
とができ、写真蝕刻技術の改善にたよることなく、次世
代におけるLSIに貢献することができる。
According to the above structure, the semiconductor pillar is formed on the semiconductor substrate. Therefore, it is possible to three-dimensionally form the memory cell, which is conventionally formed in a plane, on the side wall of the semiconductor pillar. As a result, compared to the past,
It is possible to improve the degree of integration (increase the number of cells per unit area) and contribute to the next-generation LSI without relying on the improvement of the photo-etching technique.

【0021】また、当該セル構造を提供するにあたって
は、半導体柱を利用することにより、自己整合的な工程
を達成することができるため、簡単に、上記構造を提供
できる。しかも、製造工程中、等方性エッチングが主と
して用いられるため、加工も行い易い。
In providing the cell structure, a semiconductor pillar can be used to achieve a self-aligned process, so that the above structure can be easily provided. Moreover, since isotropic etching is mainly used during the manufacturing process, processing is easy to perform.

【0022】[0022]

【実施例】以下、図面を参照しながら、本発明の半導体
記憶装置及びその製造方法について詳細に説明する。ま
ず、本発明の半導体記憶装置について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor memory device and a method of manufacturing the same according to the present invention will be described in detail below with reference to the drawings. First, the semiconductor memory device of the present invention will be described.

【0023】図1〜図3は、本発明の一実施例に係わる
NAND型EEPROMのセル構造を示すものである。
なお、図1は、当該セル構造の平面図、図2は、図1の
III−III ´線に沿う断面図、図3は、図1のIV−IV´
線に沿う断面図である。
1 to 3 show a cell structure of a NAND type EEPROM according to an embodiment of the present invention.
1 is a plan view of the cell structure, and FIG. 2 is a plan view of FIG.
A cross-sectional view taken along the line III-III ', and FIG. 3 shows IV-IV' of FIG.
It is sectional drawing which follows the line.

【0024】第一導電型の半導体基板31上には、第一
導電型の半導体柱32が形成されている。この半導体柱
32は、例えば半導体基板31上に行列状に形成され
る。また、半導体柱32の形状は、図示するように角柱
であってもよいし、又は円柱であってもよい。
First-conductivity-type semiconductor columns 32 are formed on a first-conductivity-type semiconductor substrate 31. The semiconductor pillars 32 are formed in a matrix on the semiconductor substrate 31, for example. The shape of the semiconductor pillar 32 may be a prism as shown in the figure, or may be a cylinder.

【0025】半導体柱32には、この半導体柱32を複
数段に分ける素子分離絶縁膜25が形成されている。こ
の複数段を構成する素子分離絶縁膜25の各段は、列方
向の半導体柱32に共通して棚状に形成されている。
The semiconductor pillar 32 is provided with an element isolation insulating film 25 which divides the semiconductor pillar 32 into a plurality of stages. Each step of the element isolation insulating film 25 forming the plurality of steps is formed in a shelf shape commonly to the semiconductor pillars 32 in the column direction.

【0026】半導体柱32の側壁であって、素子分離絶
縁膜25の各段には、それぞれ1個のセルが形成されて
いる。なお、一つの半導体柱32には、複数個(例えば
11個)のセルが直列接続される。
A cell is formed on each side of the semiconductor pillar 32 and on each step of the element isolation insulating film 25. In addition, a plurality of (for example, 11) cells are connected in series to one semiconductor pillar 32.

【0027】素子分離絶縁膜25の各段のうち、最上段
と最下段に形成されるセルは、選択ゲ−ト33−1,3
3−2である。選択ゲ−ト33−1,33−2は、それ
ぞれ半導体柱32の側壁に絶縁膜34を介して形成され
るポリシリコン電極35を有している。このポリシリコ
ン電極35は、例えばワ−ド線が延在する方向にある半
導体柱32の最下段又は最上段の選択ゲ−トに共通して
おり、かつ、各段において、それぞれ列方向に帯状に形
成されている。
Among the respective stages of the element isolation insulating film 25, the cells formed in the uppermost stage and the lowermost stage are selected gates 33-1 and 3-3.
3-2. Each of the selection gates 33-1 and 33-2 has a polysilicon electrode 35 formed on the side wall of the semiconductor pillar 32 with an insulating film 34 interposed therebetween. This polysilicon electrode 35 is common to, for example, the lowermost or uppermost selection gate of the semiconductor pillar 32 in the direction in which the word line extends, and in each stage, it has a strip shape in the column direction. Is formed in.

【0028】ポリシリコン電極35の列方向の端部の所
定の箇所には、コンタクト部36が形成されている。な
お、図4(a)は、選択ゲ−トのポリシリコン電極35
のみを取り出して示すものである。
A contact portion 36 is formed at a predetermined position on the end portion of the polysilicon electrode 35 in the column direction. Incidentally, FIG. 4A shows a polysilicon electrode 35 of the selective gate.
Only the one is taken out and shown.

【0029】半導体柱32の側壁において、選択ゲ−ト
33−1,33−2が形成される最下段及び最上段の間
の各段にあるセルは、各々が1ビット分の記憶を蓄える
ことができるメモリセル37−1〜37−9である。本
実施例では、メモリセル37−1〜37−9は、半導体
柱32の側壁に9個形成されているが、この個数は任意
に決めることができるものである。
On the side wall of the semiconductor pillar 32, the cells in each stage between the lowermost stage and the uppermost stage where the selective gates 33-1 and 33-2 are formed each store 1 bit of memory. Memory cells 37-1 to 37-9 capable of performing the above. In this embodiment, nine memory cells 37-1 to 37-9 are formed on the side wall of the semiconductor pillar 32, but this number can be arbitrarily determined.

【0030】メモリセル37−1〜37−9は、各々が
半導体柱32の側壁に絶縁膜(トンネル酸化膜)38を
介して形成されるポリシリコン電極39を有している。
このポリシリコン電極39の形状は、半導体柱32を取
り囲むリング状である。ポリシリコン電極39は、フロ
−ティングゲ−トとしての機能を果たすものである。
Each of the memory cells 37-1 to 37-9 has a polysilicon electrode 39 formed on the sidewall of the semiconductor pillar 32 with an insulating film (tunnel oxide film) 38 interposed therebetween.
The polysilicon electrode 39 has a ring shape surrounding the semiconductor pillar 32. The polysilicon electrode 39 functions as a floating gate.

【0031】各々のメモリセル37−1〜37−9のポ
リシリコン電極39上には、絶縁膜40を介してポリシ
リコン電極41が形成されている。このポリシリコン電
極41は、ワ−ド線及びコントロ−ルゲ−トとして機能
するものである。ポリシリコン電極41は、最下段及び
最上段の間の各段において、それが延在する方向にある
半導体柱32の各段のメモリセルに共通しており、か
つ、列方向に帯状に形成されている。
A polysilicon electrode 41 is formed on the polysilicon electrode 39 of each of the memory cells 37-1 to 37-9 with an insulating film 40 interposed therebetween. The polysilicon electrode 41 functions as a word line and a control gate. The polysilicon electrode 41 is common to the memory cells of each stage of the semiconductor pillar 32 in the extending direction in each stage between the lowermost stage and the uppermost stage, and is formed in a strip shape in the column direction. ing.

【0032】ポリシリコン電極41の列方向の端部は、
階段状に形成されており、その階段状の部分における所
定の箇所には、コンタクト部42が形成されている。な
お、図4(b)は、一つのポリシリコン電極(ワ−ド
線)41のみを取り出して示すものである。
The ends of the polysilicon electrodes 41 in the column direction are
The contact portion 42 is formed in a stepped shape, and the contact portion 42 is formed at a predetermined position in the stepped portion. Note that FIG. 4B shows only one polysilicon electrode (word line) 41 taken out.

【0033】各々のポリシリコン電極35,39の間に
は、第二導電型のソ−ス・ドレイン拡散層43が形成さ
れている。最下段の選択ゲ−ト33−2の拡散層43
は、半導体基板31中に形成された第二導電型のソ−ス
拡散層44に接続されている。半導体柱32の最上部に
は、第二導電型のドレイン拡散層45が形成されてい
る。このドレイン拡散層45は、最上段の選択ゲ−ト3
3−1の拡散層となっている。
A second conductivity type source / drain diffusion layer 43 is formed between the polysilicon electrodes 35 and 39. Diffusion layer 43 of selection gate 33-2 at the bottom
Are connected to a second conductivity type source diffusion layer 44 formed in the semiconductor substrate 31. A second conductivity type drain diffusion layer 45 is formed on the uppermost part of the semiconductor pillar 32. The drain diffusion layer 45 is the uppermost selection gate 3
It is a diffusion layer 3-1.

【0034】半導体柱32は、絶縁膜46によって完全
に覆われており、絶縁膜46の表面は平坦になってい
る。絶縁膜46には、半導体柱32の最上部にあるドレ
イン拡散層45に達するコンタクトホ−ル47が形成さ
れている。ビット線48は、絶縁膜46上に形成され、
コンタクトホ−ル47を介してドレイン拡散層45に接
続されている。また、ビット線48は、ワ−ド線である
ポリシリコン電極41に直交して配線され、かつ、行方
向の半導体柱32のドレイン拡散層45に共通して接続
されている。
The semiconductor pillar 32 is completely covered with the insulating film 46, and the surface of the insulating film 46 is flat. A contact hole 47 reaching the drain diffusion layer 45 at the uppermost part of the semiconductor pillar 32 is formed in the insulating film 46. The bit line 48 is formed on the insulating film 46,
It is connected to the drain diffusion layer 45 via a contact hole 47. The bit line 48 is wired orthogonally to the polysilicon electrode 41, which is a word line, and is commonly connected to the drain diffusion layer 45 of the semiconductor pillar 32 in the row direction.

【0035】選択ゲ−トのポリシリコン電極35及びメ
モリセルのポリシリコン電極41は、半導体基板31上
に絶縁膜49を介して積層されている。そこで、図1及
び図3に示すように、これらポリシリコン電極35,4
1は、その端部において階段状となるように構成されて
いる。従って、絶縁膜46に、各々のポリシリコン電極
35,41に達するコンタクトホ−ル50を設けること
ができ、配線材料51を各々のポリシリコン電極35,
41に接続することができる。なお、52は、フィ−ル
ド絶縁膜である。
The polysilicon electrode 35 of the selection gate and the polysilicon electrode 41 of the memory cell are laminated on the semiconductor substrate 31 with an insulating film 49 interposed therebetween. Therefore, as shown in FIGS. 1 and 3, these polysilicon electrodes 35, 4
1 is configured to have a stepped shape at its end. Therefore, the insulating film 46 can be provided with the contact holes 50 reaching the respective polysilicon electrodes 35 and 41, and the wiring material 51 can be provided to the polysilicon electrodes 35 and 41.
41 can be connected. Reference numeral 52 is a field insulating film.

【0036】上記構成によれば、NAND型EEPRO
Mの各々のメモリセルは、半導体基板に対して垂直方向
に伸びた半導体柱に形成されている。従って、従来の半
導体基板に平面的にメモリセルが形成されていた場合に
比べ、格段に高集積化(単位面積当りのセル数の向上)
を図ることができる。
According to the above configuration, the NAND type EEPROM
Each memory cell of M is formed in a semiconductor pillar extending in a direction perpendicular to the semiconductor substrate. Therefore, as compared with the case where memory cells are formed in a plane on a conventional semiconductor substrate, the degree of integration is remarkably high (the number of cells per unit area is improved).
Can be achieved.

【0037】次に、上記NAND型EEPROMの動作
について説明する。デ−タの消去時には、例えば選択ゲ
−トのポリシリコン電極35及びメモリセルのポリシリ
コン電極41にそれぞれ接地電位(0V)を印加する。
また、半導体基板31及び半導体柱32に正の高電位を
印加する。これにより、リング状のポリシリコン電極3
9の電子が絶縁膜(トンネル酸化膜)38を介して半導
体柱32へ抜け(F−Nトンネリング現象)、メモリセ
ルの閾値Vthが負になる。
Next, the operation of the NAND type EEPROM will be described. At the time of erasing data, for example, the ground potential (0 V) is applied to the polysilicon electrode 35 of the select gate and the polysilicon electrode 41 of the memory cell.
Further, a positive high potential is applied to the semiconductor substrate 31 and the semiconductor pillar 32. As a result, the ring-shaped polysilicon electrode 3
The electrons of 9 escape to the semiconductor pillar 32 through the insulating film (tunnel oxide film) 38 (F-N tunneling phenomenon), and the threshold Vth of the memory cell becomes negative.

【0038】デ−タ“1”の書込み時には、ビット線4
8には10Vを印加する。また、選択した(デ−タを書
き込む)メモリセルのポリシリコン電極41には20V
を印加し、非選択の(デ−タを書き込まない)メモリセ
ルのポリシリコン電極41には10Vを印加する。ま
た、最下端(ソ−ス側)の選択ゲ−ト33−2のポリシ
リコン電極35には接地電位(0V)を印加し、最上端
(ドレイン側)の選択ゲ−ト33−1のポリシリコン電
極35には12Vを印加する。
When writing the data "1", the bit line 4
10V is applied to 8. Further, 20V is applied to the polysilicon electrode 41 of the selected memory cell (writing data).
Is applied, and 10 V is applied to the polysilicon electrode 41 of the non-selected memory cell (where no data is written). Further, a ground potential (0 V) is applied to the polysilicon electrode 35 of the selection gate 33-2 at the bottom end (source side), and the polysilicon of the selection gate 33-1 at the top end (drain side) is applied. 12V is applied to the silicon electrode 35.

【0039】これにより、選択したメモリセルのチャネ
ルとポリシリコン電極(コントロ−ルゲ−ト)41の間
の電圧は、約13Vとなる。従って、電子は、半導体柱
32から選択したメモリセルのポリシリコン電極(フロ
−ティングゲ−ト)39へ注入され難く、メモリセルの
閾値Vthは、負のままに保たれる。
As a result, the voltage between the channel of the selected memory cell and the polysilicon electrode (control gate) 41 becomes about 13V. Therefore, it is difficult for electrons to be injected from the semiconductor pillar 32 into the polysilicon electrode (floating gate) 39 of the selected memory cell, and the threshold Vth of the memory cell is kept negative.

【0040】デ−タ“0”の書込み時には、ビット線4
8に接地電位(0V)を印加する。また、選択した(デ
−タを書き込む)メモリセルのポリシリコン電極41に
は20Vを印加し、非選択の(デ−タを書き込まない)
メモリセルのポリシリコン電極41には10Vを印加す
る。また、最下端(ソ−ス側)の選択ゲ−ト33−2の
ポリシリコン電極35には接地電位(0V)を印加し、
最上端(ドレイン側)の選択ゲ−ト33−1のポリシリ
コン電極35には12Vを印加する。
When writing data "0", the bit line 4
A ground potential (0 V) is applied to 8. In addition, 20V is applied to the polysilicon electrode 41 of the selected memory cell (writing data) and it is not selected (data is not written).
10V is applied to the polysilicon electrode 41 of the memory cell. Further, a ground potential (0 V) is applied to the polysilicon electrode 35 of the selection gate 33-2 at the bottom end (source side),
12V is applied to the polysilicon electrode 35 of the selection gate 33-1 at the uppermost end (drain side).

【0041】これにより、選択したメモリセルのチャネ
ルとポリシリコン電極(コントロ−ルゲ−ト)41の間
の電圧は、約20Vとなる。従って、電子は、半導体柱
32から選択したメモリセルのポリシリコン電極(フロ
−ティングゲ−ト)39へ注入され、メモリセルの閾値
Vthは、正(但し、5V以下)となる。
As a result, the voltage between the channel of the selected memory cell and the polysilicon electrode (control gate) 41 becomes about 20V. Therefore, the electrons are injected from the semiconductor pillar 32 into the polysilicon electrode (floating gate) 39 of the selected memory cell, and the threshold Vth of the memory cell becomes positive (however, 5 V or less).

【0042】デ−タの読出し時には、ビット線48に2
0V、ソ−ス拡散層44には接地電位(0V)、選択し
た(デ−タを読み出す)メモリセルのポリシリコン電極
(ワ−ド線)41には0Vを印加する。また、非選択の
(デ−タを読み出さない)メモリセルのポリシリコン電
極(ワ−ド線)41、並びに最下端(ソ−ス側)及び最
上端(ドレイン側)の選択ゲ−トのポリシリコン電極3
5には、それぞれ5Vを印加する。
At the time of reading data, 2 is applied to the bit line 48.
0V, ground potential (0V) is applied to the source diffusion layer 44, and 0V is applied to the polysilicon electrode (word line) 41 of the selected (reading data) memory cell. Further, the polysilicon electrode (word line) 41 of the non-selected (data is not read) memory cell, and the polysilicon of the selection gate at the lowermost end (source side) and the uppermost end (drain side). Silicon electrode 3
5V is applied to 5 respectively.

【0043】これにより、選択したメモリセルのデ−タ
が“1”の場合、その閾値は負のため、当該メモリセル
は導通状態(オン状態)となる。一方、選択したメモリ
セルのデ−タが“0”の場合、その閾値は正であるた
め、当該メモリセルは非導通状態(オフ状態)となる。
なお、選択されていないメモリセルでは、ポリシリコン
電極(ワ−ド線)41の電位は5Vであるため、メモリ
セルに記憶されているデ−タが如何なる値(“1”又は
“0”)であっても、導通状態(オン状態)となる。
As a result, when the data of the selected memory cell is "1", the threshold value of the memory cell is negative, so that the memory cell becomes conductive (ON state). On the other hand, when the data of the selected memory cell is "0", the threshold value is positive, and the memory cell is in the non-conducting state (off state).
In the unselected memory cell, the potential of the polysilicon electrode (word line) 41 is 5 V, so that the data stored in the memory cell has any value ("1" or "0"). Even in this case, it is in a conductive state (on state).

【0044】次に、本発明の半導体記憶装置の製造方法
について説明する。図5〜図20は、本発明の一実施例
に係わるNAND型EEPROMのセル構造の製造方法
を示すものである。
Next, a method of manufacturing the semiconductor memory device of the present invention will be described. 5 to 20 show a method of manufacturing a cell structure of a NAND type EEPROM according to an embodiment of the present invention.

【0045】まず、図5及び図6に示すように、第一導
電型の半導体基板51の表面領域に、フィ−ルド絶縁膜
71を形成する。なお、図6は、図5のAの部分をBの
方向から見た図である。半導体基板51の素子領域に、
NAND型EEPROMのメモリセルのソ−ス拡散層5
0を形成する。
First, as shown in FIGS. 5 and 6, a field insulating film 71 is formed in the surface region of the first conductivity type semiconductor substrate 51. Note that FIG. 6 is a view of the portion A in FIG. 5 viewed from the direction B. In the element region of the semiconductor substrate 51,
Source diffusion layer 5 of NAND type EEPROM memory cell
Form 0.

【0046】次に、第一導電型の半導体基板51上に、
膜厚が約50nmの第一の絶縁膜(例えばシリコン窒化
膜)52を形成する。第一の絶縁膜52上に、膜厚が約
600nmの第二の絶縁膜(例えばシリコン酸化膜)5
3を形成する。この後、写真蝕刻技術とエッチング技術
を用いて、例えば半導体基板51の列方向の端部(素子
分離絶縁膜71上)において第二の絶縁膜53を部分的
にエッチングする。
Next, on the semiconductor substrate 51 of the first conductivity type,
A first insulating film (for example, a silicon nitride film) 52 having a film thickness of about 50 nm is formed. A second insulating film (for example, a silicon oxide film) 5 having a thickness of about 600 nm is formed on the first insulating film 52.
3 is formed. After that, the second insulating film 53 is partially etched, for example, at the end of the semiconductor substrate 51 in the column direction (on the element isolation insulating film 71) by using the photo-etching technique and the etching technique.

【0047】次に、第二の絶縁膜53上に、次の (i)
及び (ii) 及び (iii)の工程を1回以上(本実施例では
8回)繰り返し実行することによって得られる積層膜を
形成する。
Next, the following (i) is formed on the second insulating film 53.
And the laminated film obtained by repeating the steps (ii) and (iii) once or more (eight times in this embodiment) is formed.

【0048】(i) 膜厚が約50nmの第三の絶縁膜
(例えばシリコン窒化膜)54を形成する。 (ii) 膜厚が約400nmの第四の絶縁膜(例えばシ
リコン酸化膜)55を形成する。 (iii) 第四の絶縁膜55を半導体基板の列方向の端部
(素子分離絶縁膜71上)において部分的にエッチング
する。
(I) A third insulating film (for example, a silicon nitride film) 54 having a film thickness of about 50 nm is formed. (ii) A fourth insulating film (for example, a silicon oxide film) 55 having a film thickness of about 400 nm is formed. (iii) The fourth insulating film 55 is partially etched at the column-direction end (on the element isolation insulating film 71) of the semiconductor substrate.

【0049】なお、上記 (i) 及び (ii) 及び (iii)の
工程を繰り返す回数は、NAND型EEPROMのメモ
リセルの数に相当する。また、図6に示すように、第二
及び第四の絶縁膜52,54は、半導体基板の列方向の
端部において階段状となるようにエッチングされる。
The number of times the steps (i), (ii) and (iii) are repeated corresponds to the number of memory cells of the NAND type EEPROM. Further, as shown in FIG. 6, the second and fourth insulating films 52 and 54 are etched so as to have a step shape at the end portion in the column direction of the semiconductor substrate.

【0050】また、この積層膜上に、膜厚が約50nm
の第五の絶縁膜(例えばシリコン窒化膜)56を形成す
る。第五の絶縁膜56上に、膜厚が約600nmの第六
の絶縁膜(例えばシリコン酸化膜)57を形成する。第
六の絶縁膜57を半導体基板の列方向の端部において部
分的にエッチングする。
A film thickness of about 50 nm is formed on this laminated film.
A fifth insulating film (for example, a silicon nitride film) 56 is formed. A sixth insulating film (for example, a silicon oxide film) 57 having a thickness of about 600 nm is formed on the fifth insulating film 56. The sixth insulating film 57 is partially etched at the end of the semiconductor substrate in the column direction.

【0051】また、第六の絶縁膜57上に、膜厚が約5
0nmの第七の絶縁膜(例えばシリコン窒化膜)58を
形成する。第七の絶縁膜58上に、膜厚が約200nm
の第八の絶縁膜(例えばシリコン酸化膜)59を形成す
る。
Further, a film thickness of about 5 is formed on the sixth insulating film 57.
A 0 nm seventh insulating film (for example, a silicon nitride film) 58 is formed. A film thickness of about 200 nm is formed on the seventh insulating film 58.
An eighth insulating film (for example, a silicon oxide film) 59 is formed.

【0052】このような多層膜において、将来、膜厚が
約600nmの第二及び第六の絶縁膜53,56の部分
に選択ゲ−トが形成され、膜厚が約400nmの第四の
絶縁膜55の部分にメモリセルが形成されることにな
る。なお、絶縁膜53,56の膜厚d1と絶縁膜55の
膜厚d2の関係は、d1>d2となるように設定する。
この理由は、後の工程において説明する。
In such a multilayer film, selective gates will be formed in the portions of the second and sixth insulating films 53 and 56 having a film thickness of about 600 nm in the future, and the fourth insulating film having a film thickness of about 400 nm will be formed. A memory cell will be formed in the portion of the film 55. The relationship between the film thickness d1 of the insulating films 53 and 56 and the film thickness d2 of the insulating film 55 is set so that d1> d2.
The reason for this will be described in a later step.

【0053】次に、図7に示すように、上述の多層膜
に、その表面から半導体基板51まで達する穴60を形
成する。この穴60内には、将来、半導体柱が形成され
るため、当該半導体柱を角柱状にしたい場合には図示す
るような四角形状の穴を形成し、また、当該半導体柱を
円柱状にしたい場合には円形状の穴を形成すればよい。
Next, as shown in FIG. 7, a hole 60 reaching the semiconductor substrate 51 from the surface thereof is formed in the above-mentioned multilayer film. Since semiconductor pillars will be formed in the holes 60 in the future, if the semiconductor pillars should be prismatic, a square hole as shown in the figure should be formed, and the semiconductor pillars should be cylindrical. In that case, a circular hole may be formed.

【0054】次に、図8に示すように、例えば加熱した
リン酸を用いて、第一、第三、第五及び第七の絶縁膜
(シリコン窒化膜)52,54,56,58を選択的に
エッチングし、当該絶縁膜の部分に後退部61を形成す
る。この後退部61の長さL1は、エッチング時間等を
適宜調節することにより、例えば約300nmに設定す
る。
Next, as shown in FIG. 8, the first, third, fifth and seventh insulating films (silicon nitride films) 52, 54, 56 and 58 are selected by using, for example, heated phosphoric acid. Of the insulating film to form a recessed portion 61 in the insulating film. The length L1 of the recessed portion 61 is set to, for example, about 300 nm by appropriately adjusting the etching time and the like.

【0055】次に、図9に示すように、例えば弗化アン
モニウムを用いて、第二、第四、第六及び第八の絶縁膜
(シリコン酸化膜)53,55,57,59を選択的に
50nm程度エッチングし、後退部61の幅H1を広げ
る。この後退部61の幅H1は、エッチング時間等を適
宜調節することにより、例えば約150nm(絶縁膜5
2、54、56又は58の膜厚(50nm)+エッチン
グ量(50nm)×2)に設定する。
Next, as shown in FIG. 9, the second, fourth, sixth and eighth insulating films (silicon oxide films) 53, 55, 57 and 59 are selectively formed by using, for example, ammonium fluoride. Then, the width H1 of the recessed portion 61 is widened by etching about 50 nm. The width H1 of the receding portion 61 is, for example, about 150 nm (insulating film 5) by appropriately adjusting the etching time and the like.
The film thickness (50 nm) + etching amount (50 nm) × 2) of 2, 54, 56 or 58 is set.

【0056】次に、図10に示すように、全面に、膜厚
が約50nmの第九の絶縁膜(シリコン窒化膜)62を
形成する。この第九の絶縁膜62は、穴60の内面(後
退部61を含む)に被着する。また、第九の絶縁膜62
上に、第二導電型の不純物を含む膜厚が約150nmの
第十の絶縁膜(例えばAsSG、PSGなど)63を形
成する。この第十の絶縁膜63は、穴60の内面の第九
の絶縁膜62上に被着し、後退部61を完全に埋め込
む。
Next, as shown in FIG. 10, a ninth insulating film (silicon nitride film) 62 having a film thickness of about 50 nm is formed on the entire surface. The ninth insulating film 62 is attached to the inner surface of the hole 60 (including the receding portion 61). In addition, the ninth insulating film 62
A tenth insulating film (for example, AsSG, PSG, etc.) 63 having a film thickness of about 150 nm containing an impurity of the second conductivity type is formed thereon. The tenth insulating film 63 is deposited on the ninth insulating film 62 on the inner surface of the hole 60 to completely fill the recessed portion 61.

【0057】次に、図11に示すように、等方性エッチ
ングにより、第九及び第十の絶縁膜62,63を比較的
に短い時間でエッチングする。その結果、第九及び第十
の絶縁膜62,63は、穴60内の後退部61のみに残
存する。
Next, as shown in FIG. 11, the ninth and tenth insulating films 62 and 63 are etched in a relatively short time by isotropic etching. As a result, the ninth and tenth insulating films 62 and 63 remain only in the recessed portion 61 in the hole 60.

【0058】なお、この時点において、穴60の内面近
辺における絶縁膜53,56の膜厚(選択ゲ−トの形成
予定部)d3は、約500nmであり、当該近辺におけ
る絶縁膜55の膜厚(メモリセルの形成予定部)d4
は、約300nmである。
At this point, the film thickness of the insulating films 53 and 56 near the inner surface of the hole 60 (the portion where the selective gate is to be formed) d3 is about 500 nm, and the film thickness of the insulating film 55 near that region. (Memory cell formation planned portion) d4
Is about 300 nm.

【0059】次に、図12に示すように、エピタキシャ
ル成長により、穴60内に、半導体基板51から当該穴
60の上端部まで伸びた第一導電型の半導体柱64を形
成する。また、熱処理を行い、第十の絶縁膜63内に含
まれる不純物(例えばAs、Pなど)を半導体柱64へ
拡散させ、当該半導体柱64の側壁にリング状の複数の
ソ−ス・ドレイン拡散層65を形成する。
Next, as shown in FIG. 12, a semiconductor column 64 of the first conductivity type extending from the semiconductor substrate 51 to the upper end of the hole 60 is formed in the hole 60 by epitaxial growth. Further, heat treatment is performed to diffuse impurities (eg, As, P, etc.) contained in the tenth insulating film 63 into the semiconductor pillar 64, and a plurality of ring-shaped source / drain diffusion layers are formed on the sidewalls of the semiconductor pillar 64. Form the layer 65.

【0060】次に、図13に示すように、異方性エッチ
ングにより、多層膜を、列方向にストライプ状となるよ
うにエッチングする。つまり、当該多層膜は、列方向に
存在する半導体柱64を含むように、当該列方向に延在
するようにして残存させる。
Next, as shown in FIG. 13, the multilayer film is etched by anisotropic etching so as to form stripes in the column direction. That is, the multilayer film is left so as to extend in the column direction so as to include the semiconductor pillars 64 existing in the column direction.

【0061】次に、図14及び図15に示すように、弗
化アンモニウムを用いて、当該積層膜のうち第二、第
四、第六及び第八の絶縁膜(シリコン酸化膜)53,5
5,57,59の部分を選択的にエッチング除去する。
その結果、当該積層膜のうち第一、第三、第五及び第七
の絶縁膜(シリコン窒化膜)52,54,56,58の
部分のみが残存し、これら絶縁膜は、帯状、かつ、列方
向の半導体柱64に支えられた棚状となる。
Next, as shown in FIGS. 14 and 15, using ammonium fluoride, the second, fourth, sixth and eighth insulating films (silicon oxide films) 53, 5 of the laminated film are formed.
The portions 5, 57 and 59 are selectively removed by etching.
As a result, only the first, third, fifth, and seventh insulating films (silicon nitride films) 52, 54, 56, and 58 of the laminated film remain, and these insulating films are strip-shaped and It becomes a shelf shape supported by the semiconductor columns 64 in the column direction.

【0062】なお、図15は、図14においてB方向か
ら、半導体基板51の列方向の端部、即ち積層膜の階段
部分を見た図である。次に、図16に示すように、熱酸
化法を用いて、半導体柱64の表面(側壁部を含む)で
あって露出している部分に、メモリセルのトンネル絶縁
膜としての機能を果たす第十一の絶縁膜66を約10n
m形成する。
FIG. 15 is a view of the end portion of the semiconductor substrate 51 in the column direction, that is, the stepped portion of the laminated film, viewed from the direction B in FIG. Next, as shown in FIG. 16, the exposed portion of the surface (including the side wall portion) of the semiconductor pillar 64 that functions as a tunnel insulating film of the memory cell is formed by using a thermal oxidation method. The eleventh insulating film 66 is set to about 10n.
m.

【0063】また、第一の導電膜(例えば、導電性のポ
リシリコン膜)67を約150nm形成する。その結
果、図16に示すように、半導体柱64の部分におい
て、第一の導電膜67は、第三の絶縁膜54の間(メモ
リセルの形成予定部MC)の隙間を完全に埋め込むこと
ができるが、第一及び第三の絶縁膜52,54の間、並
びに第五及び第七の絶縁膜56,58の間(選択ゲ−ト
の形成予定部SG)の隙間を完全に埋め込むことができ
ない。
A first conductive film (for example, a conductive polysilicon film) 67 is formed to a thickness of about 150 nm. As a result, as shown in FIG. 16, in the semiconductor pillar 64 portion, the first conductive film 67 can completely fill the gap between the third insulating films 54 (memory cell formation planned portion MC). However, it is possible to completely fill the gaps between the first and third insulating films 52 and 54 and between the fifth and seventh insulating films 56 and 58 (selective gate formation planned portion SG). Can not.

【0064】その理由は、選択ゲ−トの形成予定部SG
の幅d3は、約500nmであるのに対し、メモリセル
の形成予定部MCの幅d4は、約300nmであるから
である(図11参照)。但し、メモリセルの形成予定部
MCでは、半導体柱64から少し離れると、第三の絶縁
膜54の間の幅d1が約400nmとなるため(図5参
照)、第一の導電膜67は、この部分を完全に埋め込む
ことはできない。
The reason for this is that the formation portion SG of the selected gate is to be formed.
The width d3 of the memory cell is about 500 nm, while the width d4 of the portion MC of the memory cell to be formed is about 300 nm (see FIG. 11). However, in the portion MC where the memory cell is to be formed, the width d1 between the third insulating films 54 becomes about 400 nm when it is slightly separated from the semiconductor pillar 64 (see FIG. 5), so that the first conductive film 67 is This part cannot be completely embedded.

【0065】次に、図17及び図18に示すように、等
方性エッチングにより、第一の導電膜67及び第十一の
絶縁膜66をエッチングし、当該第一の導電膜67及び
第十一の絶縁膜66をメモリセルに形成予定部MCのみ
に残存させる。この残存した第一の導電膜67は、半導
体柱64をリング状に取り巻く形となり、フロ−ティン
グゲ−トとしての機能を果たすものとなる。
Next, as shown in FIGS. 17 and 18, the first conductive film 67 and the eleventh insulating film 66 are etched by isotropic etching, and the first conductive film 67 and the eleventh conductive film are etched. The one insulating film 66 is left only in the memory cell MC to be formed. The remaining first conductive film 67 surrounds the semiconductor pillar 64 in a ring shape, and functions as a floating gate.

【0066】また、全面に、ONO(SiO2 /Si3
4 /SiO2 )絶縁膜68を約20nm形成する。こ
のONO絶縁膜68は、半導体柱64の側壁(第一の導
電膜67上を含む)に被着する。さらに、全面に、第二
の導電膜(例えば、導電性のポリシリコン膜)69を約
400nm形成する。
On the entire surface, ONO (SiO 2 / Si 3
An N 4 / SiO 2 ) insulating film 68 is formed to a thickness of about 20 nm. The ONO insulating film 68 is deposited on the sidewalls of the semiconductor pillar 64 (including on the first conductive film 67). Further, a second conductive film (for example, a conductive polysilicon film) 69 is formed on the entire surface to a thickness of about 400 nm.

【0067】その結果、図17に示すように、半導体柱
64の部分において、第二の導電膜69は、第三の絶縁
膜54の間(第一の導電膜67上の広い部分)の隙間、
第一及び第三の絶縁膜52,54の間、並びに第五及び
第七の絶縁膜56,58の間(選択ゲ−トの形成予定部
SG)の隙間を完全に埋め込む。
As a result, as shown in FIG. 17, in the portion of the semiconductor pillar 64, the second conductive film 69 has a gap between the third insulating films 54 (a wide portion on the first conductive film 67). ,
The gaps between the first and third insulating films 52 and 54 and between the fifth and seventh insulating films 56 and 58 (selection gate formation planned portion SG) are completely filled.

【0068】また、図18に示すように、半導体柱64
以外の部分において、第二の導電膜69は、第三の絶縁
膜54の間の隙間、第一及び第三の絶縁膜52,54の
間の隙間、並びに第五及び第七の絶縁膜56,58の間
の隙間をそれぞれ完全に埋め込む。
Further, as shown in FIG.
In the portions other than the above, the second conductive film 69 has a gap between the third insulating films 54, a gap between the first and third insulating films 52, 54, and the fifth and seventh insulating films 56. , 58 are completely filled in.

【0069】次に、図19及び図20に示すように、等
方性エッチングにより、第二の導電膜69を所定量だけ
エッチングする。その結果、第二の導電膜69は、メモ
リセルの形成予定部MC及び選択ゲ−トの形成予定部S
Gの双方、並びに半導体柱64以外の部分(半導体基板
の列方向の端部の階段部分(図20参照)を含む)にお
ける絶縁膜52,54,56,58の隙間に残存する。
Next, as shown in FIGS. 19 and 20, the second conductive film 69 is etched by a predetermined amount by isotropic etching. As a result, the second conductive film 69 has a planned formation portion MC of the memory cell and a planned formation portion S of the selective gate.
It remains in the gaps between the insulating films 52, 54, 56, and 58 in both of G and the portion other than the semiconductor pillar 64 (including the stepped portion at the end of the semiconductor substrate in the column direction (see FIG. 20)).

【0070】この残存した第二の導電膜69は、半導体
基板51上において列方向に長い帯状となる。素子分離
絶縁膜25の最上段及び最下段に残存する第二の導電膜
69は、選択ゲ−トの選択ゲ−ト線としての機能を果た
すものとなる。最上段及び最下段の間の各段に残存する
第二の導電膜69は、メモリセルのワ−ド線及びコント
ロ−ルゲ−トとしての機能を果たすものとなる。
The remaining second conductive film 69 has a strip shape which is long in the column direction on the semiconductor substrate 51. The second conductive film 69 remaining on the uppermost stage and the lowermost stage of the element isolation insulating film 25 functions as a selection gate line of the selection gate. The second conductive film 69 remaining in each stage between the uppermost stage and the lowermost stage serves as a word line and a control gate of the memory cell.

【0071】また、半導体柱64の最上部に、最上部の
選択ゲ−トの第二の導電膜(ゲ−ト電極)69の部分ま
で達する第二導電型のドレイン拡散層70を形成する。
全面に、半導体柱64を完全に埋め込む第十二の絶縁膜
72を形成する。第十二の絶縁膜72は、その表面が平
坦になるように、十分な膜厚で形成する。
In addition, a drain diffusion layer 70 of the second conductivity type is formed on the uppermost part of the semiconductor pillar 64 so as to reach the second conductive film (gate electrode) 69 of the uppermost selection gate.
A twelfth insulating film 72 that completely fills the semiconductor pillar 64 is formed on the entire surface. The twelfth insulating film 72 is formed with a sufficient film thickness so that its surface becomes flat.

【0072】また、第十二の絶縁膜72に、ドレイン拡
散層70に達するコンタクトホ−ルを開け、ビット線を
配線し、かつ、ワ−ド線及び選択ゲ−ト線の端部(階段
部)において当該ワ−ド線及び選択ゲ−ト線に達するコ
ンタクトホ−ルを開け、配線材料73を形成すれば、図
1〜図4に示すNAND型EEPROMのセル構造を得
ることができる。
Further, a contact hole reaching the drain diffusion layer 70 is opened in the twelfth insulating film 72, a bit line is wired, and ends of the word line and the select gate line (steps) are formed. 1), the cell structure of the NAND type EEPROM shown in FIGS. 1 to 4 can be obtained by opening a contact hole reaching the word line and the select gate line and forming the wiring material 73.

【0073】[0073]

【発明の効果】以上、説明したように、本発明の半導体
記憶装置及びその製造方法によれば、次のような効果を
奏する。従来、平面的にメモリセルが形成されていたの
に対し、半導体基板上に半導体柱を形成し、この半導体
柱の側壁に、即ち立体的にメモリセルを形成している。
従って、従来に比べ、格段に、集積度の向上(単位面積
当りのセル数の増大)を図ることができ、写真蝕刻技術
の改善にたよることなく、次世代におけるLSIに貢献
することができる。
As described above, according to the semiconductor memory device and the method of manufacturing the same of the present invention, the following effects can be obtained. Conventionally, memory cells are formed in a plane, whereas semiconductor pillars are formed on a semiconductor substrate, and the memory cells are formed on the side walls of the semiconductor pillars, that is, three-dimensionally.
Therefore, it is possible to significantly improve the degree of integration (increase in the number of cells per unit area) as compared with the related art, and to contribute to the next-generation LSI without relying on the improvement of the photo-etching technique. .

【0074】また、当該セル構造を提供するにあたって
は、半導体柱を利用することにより、自己整合的な工程
を達成することができるため、簡単に、上記構造を提供
できる。しかも、製造工程中、等方性エッチングが主と
して用いられるため、加工も行い易くなる。
In providing the cell structure, the semiconductor pillar can be used to achieve a self-aligned process, so that the above structure can be easily provided. Moreover, since isotropic etching is mainly used during the manufacturing process, processing is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるNAND型EEPRO
Mのセル構造を示す平面図、
FIG. 1 is a NAND-type EEPROM according to an embodiment of the present invention.
A plan view showing the cell structure of M,

【図2】図1のIII −III ´線に沿う断面図、2 is a cross-sectional view taken along the line III-III ′ of FIG.

【図3】図1のIV−IV´線に沿う断面図、FIG. 3 is a sectional view taken along line IV-IV ′ in FIG.

【図4】図1のワ−ド線部分のみを取り出して示す図、FIG. 4 is a diagram showing only the word line portion of FIG.

【図5】本発明の一実施例であるNAND型EEPRO
Mのセル構造の製造方法を示す斜視図、
FIG. 5 is a NAND-type EEPROM which is an embodiment of the present invention.
A perspective view showing a manufacturing method of the cell structure of M,

【図6】本発明の一実施例であるNAND型EEPRO
Mのセル構造の製造方法を示す断面図、
FIG. 6 is a NAND-type EEPRO which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of M,

【図7】本発明の一実施例であるNAND型EEPRO
Mのセル構造の製造方法を示す斜視図、
FIG. 7 is a NAND-type EEPROM which is an embodiment of the present invention.
A perspective view showing a manufacturing method of the cell structure of M,

【図8】本発明の一実施例であるNAND型EEPRO
Mのセル構造の製造方法を示す断面図、
FIG. 8 is a NAND-type EEPROM that is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of M,

【図9】本発明の一実施例であるNAND型EEPRO
Mのセル構造の製造方法を示す断面図、
FIG. 9 is a NAND-type EEPRO which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of M,

【図10】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 10 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図11】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 11 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図12】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 12 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図13】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す斜視図、
FIG. 13 is a NAND-type EEPR which is an embodiment of the present invention.
A perspective view showing a method for manufacturing an OM cell structure;

【図14】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す斜視図、
FIG. 14 is a NAND-type EEPR which is an embodiment of the present invention.
A perspective view showing a method for manufacturing an OM cell structure;

【図15】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 15 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図16】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 16 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図17】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 17 is a NAND-type EEPR that is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図18】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 18 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図19】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 19 is a NAND-type EEPR which is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図20】本発明の一実施例であるNAND型EEPR
OMのセル構造の製造方法を示す断面図、
FIG. 20 is a NAND-type EEPR that is an embodiment of the present invention.
Sectional drawing which shows the manufacturing method of the cell structure of OM,

【図21】従来のNAND型EEPROMのセル構造を
示す図。
FIG. 21 is a diagram showing a cell structure of a conventional NAND type EEPROM.

【符号の説明】[Explanation of symbols]

11,31,51 …半導体基板、 12 …ウエル、 13,52,71 …フィ−ルド絶縁膜、 14.38 …トンネル絶縁膜、 15,39 …ポリシリコン電極(フロ−
ティングゲ−ト)、 16,34,40,46,49,52〜59,62,6
3,66,72…絶縁膜、 17,41 …ポリシリコン電極(コント
ロ−ルゲ−ト)、 18,43,65 …ソ−ス・ドレイン拡散層、 19 …ビット線、 25 …素子分離絶縁膜、 32,64 …半導体柱、 33−1,33−2 …選択ゲ−ト、 35 …ポリシリコン電極(選択ゲ
−ト)、 36,42 …コンタクト部、 37−1〜37−9 …メモリセル、 44,50 …ソ−ス拡散層、 45,70 …ドレイン拡散層、 47,50 …コンタクトホ−ル、 48 …ビット線、 51,73 …配線材料、 60 …穴、 61 …後退部、 67,69 …導電膜 68 …ONO絶縁膜。
11, 31, 51 ... Semiconductor substrate, 12 ... Well, 13, 52, 71 ... Field insulating film, 14.38 ... Tunnel insulating film, 15, 39 ... Polysilicon electrode (flow)
Ting gate), 16, 34, 40, 46, 49, 52 to 59, 62, 6
3, 66, 72 ... Insulating film, 17, 41 ... Polysilicon electrode (control gate), 18, 43, 65 ... Source / drain diffusion layer, 19 ... Bit line, 25 ... Element isolation insulating film, 32, 64 ... Semiconductor pillar, 33-1, 33-2 ... Selection gate, 35 ... Polysilicon electrode (selection gate), 36, 42 ... Contact part, 37-1 to 37-9 ... Memory cell, 44, 50 ... Source diffusion layer, 45, 70 ... Drain diffusion layer, 47, 50 ... Contact hole, 48 ... Bit line, 51, 73 ... Wiring material, 60 ... Hole, 61 ... Recessed portion, 67, 69 ... Conductive film 68 ... ONO insulating film.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、前記半導体基板上に形成
される半導体柱と、前記半導体柱に複数段を形成する素
子分離絶縁膜と、前記素子分離絶縁膜の間であって、前
記複数段のうち最上段と最下段にそれぞれ形成される選
択ゲ−トと、前記最上段と最下段の間の各段にそれぞれ
形成されるメモリセルとを具備することを特徴とする半
導体記憶装置。
1. A semiconductor substrate, a semiconductor pillar formed on the semiconductor substrate, an element isolation insulating film forming a plurality of steps on the semiconductor pillar, and between the element isolation insulating film, wherein the plurality of steps are provided. A semiconductor memory device, comprising: a selection gate formed in each of an uppermost stage and a lowermost stage, and a memory cell formed in each stage between the uppermost stage and the lowermost stage.
【請求項2】 請求項1に記載の半導体記憶装置におい
て、前記選択ゲ−トは、前記半導体柱の側壁に第一の絶
縁膜を介して形成される第一の導電膜を有し、前記メモ
リセルは、前記半導体柱の側壁にトンネル絶縁膜を介し
て形成され、フロ−ティングゲ−トとして機能する第二
の導電膜、及び前記第二の導電膜上に第二の絶縁膜を介
して形成され、コントロ−ルゲ−トとして機能する第三
の導電膜を有することを特徴とする半導体記憶装置。
2. The semiconductor memory device according to claim 1, wherein the selection gate has a first conductive film formed on a sidewall of the semiconductor pillar through a first insulating film, The memory cell is formed on the sidewall of the semiconductor pillar via a tunnel insulating film, and functions as a floating gate, and a second insulating film is formed on the second conductive film via a second insulating film. A semiconductor memory device having a third conductive film formed and functioning as a control gate.
【請求項3】 請求項2に記載の半導体記憶装置におい
て、前記フロ−ティングゲ−トとして機能する第二の導
電膜は、各段において、前記半導体柱を取り巻くリング
状に形成されていることを特徴とする半導体記憶装置。
3. The semiconductor memory device according to claim 2, wherein the second conductive film functioning as the floating gate is formed in a ring shape surrounding the semiconductor pillar in each stage. A characteristic semiconductor memory device.
【請求項4】 請求項1に記載の半導体記憶装置におい
て、前記素子分離絶縁膜の間であって、前記複数段のう
ち最上段と最下段の高さは、その最上段と最下段の間の
各段の高さよりも高くなるように構成され、その結果、
前記選択ゲ−トのゲ−ト長は、前記メモリセルのゲ−ト
長よりも長くなっていることを特徴とする半導体記憶装
置。
4. The semiconductor memory device according to claim 1, wherein the height between the element isolation insulating film and the uppermost stage and the lowermost stage among the plurality of stages is between the uppermost stage and the lowermost stage. Is configured to be higher than the height of each step of the
A semiconductor memory device characterized in that the gate length of the select gate is longer than the gate length of the memory cell.
【請求項5】 請求項1に記載の半導体記憶装置におい
て、前記半導体柱の側壁であって、前記複数段を構成す
る前記素子分離絶縁膜の各段に隣接してリング状に形成
されるソ−ス・ドレイン拡散層と、前記半導体基板中に
形成され、前記最下段の選択ゲ−トのソ−ス・ドレイン
拡散層に接続されるソ−ス拡散層と、前記半導体柱の最
上部に形成され、前記最上段の選択ゲ−トのソ−ス・ド
レイン拡散層に接続されるドレイン拡散層とを有するこ
とを特徴とする半導体記憶装置。
5. The semiconductor memory device according to claim 1, wherein a sidewall of the semiconductor pillar is formed in a ring shape adjacent to each step of the element isolation insulating film forming the plurality of steps. -A source / drain diffusion layer, a source diffusion layer formed in the semiconductor substrate and connected to the source / drain diffusion layer of the lowermost selection gate, and on the top of the semiconductor pillar. And a drain diffusion layer formed and connected to the source / drain diffusion layer of the uppermost selection gate.
【請求項6】 請求項5に記載の半導体記憶装置におい
て、前記半導体柱は、前記半導体基板上に行列状に複数
形成され、行方向の半導体柱における当該ドレイン拡散
層に共通に接続するビット線を有することを特徴とする
半導体記憶装置。
6. The semiconductor memory device according to claim 5, wherein a plurality of the semiconductor pillars are formed in a matrix on the semiconductor substrate and are commonly connected to the drain diffusion layers of the semiconductor pillars in the row direction. A semiconductor memory device comprising:
【請求項7】 請求項1に記載の半導体記憶装置におい
て、前記半導体柱は、前記半導体基板上に行列状に複数
形成され、前記複数段を構成する素子分離絶縁膜の各段
は、列方向の半導体柱に共通して棚状に形成され、前記
選択ゲ−トの第一の導電膜及び前記コントロ−ルゲ−ト
として機能する第三の導電膜は、それぞれ列方向の半導
体柱に共通し、かつ、各段において、それぞれ列方向に
帯状に形成されていることを特徴とする半導体記憶装
置。
7. The semiconductor memory device according to claim 1, wherein a plurality of the semiconductor pillars are formed in a matrix on the semiconductor substrate, and each step of the element isolation insulating films forming the plurality of steps is in a column direction. The first conductive film of the select gate and the third conductive film functioning as the control gate, which are formed in a shelf shape in common with the semiconductor pillars, are common to the semiconductor pillars in the column direction. The semiconductor memory device is characterized in that each stage is formed in a strip shape in the column direction.
【請求項8】 請求項7に記載の半導体記憶装置におい
て、前記選択ゲ−トの第一の導電膜及び前記コントロ−
ルゲ−トとして機能する第三の導電膜は、それぞれ列方
向の端部において階段状に形成され、その階段状の部分
にコンタクト部が設けられていることを特徴とする半導
体記憶装置。
8. The semiconductor memory device according to claim 7, wherein the first conductive film of the selection gate and the control gate are provided.
A semiconductor memory device characterized in that the third conductive film functioning as a rugate is formed stepwise at each end in the column direction, and a contact portion is provided at the stepwise portion.
【請求項9】 半導体基板上に第一の絶縁膜を形成し、
前記第一の絶縁膜上に第二の絶縁膜を形成する第一の工
程と、 前記第二の絶縁膜上に、少なくとも1回以上、以下の
(i),(ii)の工程、即ち(i) 第三の絶縁膜を形成する工
程、及び(ii) 前記第三の絶縁膜上に第四の絶縁膜を形
成する工程を繰り返し実行することにより得られる積層
膜を形成する第二の工程と、 前記積層膜上に第五の絶縁膜を形成し、前記第五の絶縁
膜上に第六の絶縁膜を形成する第三の工程と、 前記第六の絶縁膜上に第七の絶縁膜をを形成し、前記第
七の絶縁膜上に第八の絶縁膜を形成する第四の工程と、 前記第八の絶縁膜の表面から前記半導体基板まで達する
行列状の複数の穴を形成する第五の工程と、 選択エピタキシャル成長法により、各々の穴内に、半導
体を成長させ、行列状の半導体柱を形成する第六の工程
と、 前記第一乃至第八の絶縁膜からなる多層膜をエッチング
し、半導体柱の各列の間であって、列方向に伸びるスト
ライプ状の溝を形成する第七の工程と、 前記第二、第四、第六及び第八の絶縁膜を選択的にエッ
チングすることにより、残存した前記第一、第三、第五
及び第七の絶縁膜であって、列方向の半導体柱に支えら
れた複数段の棚状のものを形成する第八の工程と、 前記複数段のうち、前記第一の絶縁膜と前記第三の絶縁
膜の間の最下段及び前記第五の絶縁膜と前記第七の絶縁
膜の間の最上段に選択ゲ−トを形成し、前記最下段と最
上段の間の各段にメモリセルを形成する第九の工程とを
具備することを特徴とする半導体記憶装置の製造方法。
9. A first insulating film is formed on a semiconductor substrate,
A first step of forming a second insulating film on the first insulating film, and at least once or more on the second insulating film,
Repeating steps (i) and (ii), that is, (i) forming a third insulating film, and (ii) forming a fourth insulating film on the third insulating film. A second step of forming a laminated film obtained by, forming a fifth insulating film on the laminated film, a third step of forming a sixth insulating film on the fifth insulating film, Forming a seventh insulating film on the sixth insulating film, a fourth step of forming an eighth insulating film on the seventh insulating film, and from the surface of the eighth insulating film A fifth step of forming a plurality of matrix-shaped holes reaching the semiconductor substrate, and a sixth step of growing a semiconductor in each of the holes by a selective epitaxial growth method to form a matrix-shaped semiconductor pillar, A multilayer film consisting of the first to eighth insulating films is etched to form stripes between columns of semiconductor pillars and extending in the column direction. A seventh step of forming a groove, and the remaining first, third, fifth and seventh insulations by selectively etching the second, fourth, sixth and eighth insulation films. An eighth step of forming a film, which is a shelf-shaped product of a plurality of stages supported by semiconductor columns in a column direction, and, of the plurality of stages, of the first insulating film and the third insulating film. A select gate is formed in the lowermost stage between and the uppermost stage between the fifth insulating film and the seventh insulating film, and memory cells are formed in each stage between the lowermost stage and the uppermost stage. 9. A method of manufacturing a semiconductor memory device, comprising the steps of:
【請求項10】 請求項9に記載の半導体記憶装置の製
造方法において、 前記第一の工程は、前記第二の絶縁膜の列方向の端部を
部分的にエッチングする工程を有し、 前記第二の工程は、少なくとも1回以上、前記 (i),(i
i)の工程及び (iii)前記第四の絶縁膜の列方向の端部を
部分的にエッチングする工程を繰り返し実行するもので
あり、 前記第三の工程は、前記第六の絶縁膜の列方向の端部を
部分的にエッチングする工程を有し、 前記第四の工程は、前記第八の絶縁膜の列方向の端部を
部分的にエッチングする工程を有ており、 その結果、前記列方向の端部では、前記第二、第四、第
六及び第八の絶縁膜は、階段状に形成されることを特徴
とする半導体記憶装置の製造方法。
10. The method of manufacturing a semiconductor memory device according to claim 9, wherein the first step includes a step of partially etching an end portion of the second insulating film in a column direction, In the second step, at least once, the above (i), (i
The step i) and (iii) the step of partially etching the end portion of the fourth insulating film in the column direction are repeatedly performed, and the third step is the row of the sixth insulating film. Direction partly etching the end part, the fourth step has a step of partially etching the column direction end part of the eighth insulating film, as a result, The method of manufacturing a semiconductor memory device, wherein the second, fourth, sixth and eighth insulating films are formed in a step shape at the ends in the column direction.
【請求項11】 請求項9に記載の半導体記憶装置の製
造方法において、 前記第五の工程と前記第六の工程の間に、以下のa〜e
の工程、即ち a. 等方性エッチングにより、各穴内の前記第一、第
三、第五及び第七の絶縁膜を所定量だけエッチングし、
後退部を形成する工程と、 b. 等方性エッチングにより、各穴内の前記第二、第
四、第六及び第八の絶縁膜を所定量だけエッチングし、
前記後退部を拡張する工程と、 c. 前記後退部を含む前記各穴の側壁に第九の絶縁膜
を形成する工程と、 d. 前記第九の絶縁膜上に、前記後退部を埋め込み、
不純物を含む第十の絶縁膜を形成する工程と、 e. 等方性エッチングにより、前記第九及び第十の絶
縁膜を前記各穴内の後退部にのみ残存させる工程を具備
し、 前記第六の工程と前記第七の工程の間に、熱処理を行
い、前記第十の絶縁膜中の不純物を当該半導体柱の側壁
に拡散させ、各半導体柱の側壁にリング状のソ−ス・ド
レイン領域を形成する工程を具備することを特徴とする
半導体記憶装置の製造方法。
11. The method of manufacturing a semiconductor memory device according to claim 9, wherein the following a to e are provided between the fifth step and the sixth step.
Process of step a. By isotropic etching, the first, third, fifth and seventh insulating film in each hole is etched by a predetermined amount,
Forming a retreat, b. By isotropic etching, the second, fourth, sixth and eighth insulating film in each hole is etched by a predetermined amount,
Expanding said recess, c. Forming a ninth insulating film on the side wall of each hole including the recessed portion, and d. Embedding the recessed portion on the ninth insulating film,
Forming a tenth insulating film containing impurities; e. Comprises a step of leaving the ninth and tenth insulating films only in the recessed portion in each hole by isotropic etching, and performing heat treatment between the sixth step and the seventh step, A semiconductor memory device comprising: a step of diffusing impurities in the tenth insulating film to a sidewall of the semiconductor pillar to form a ring-shaped source / drain region on the sidewall of each semiconductor pillar. Production method.
【請求項12】 請求項9に記載の半導体記憶装置の製
造方法において、 前記第二及び第六の絶縁膜の膜厚は、前記第四の絶縁膜
の膜厚よりも大きく設定されており、 前記第九の工程は、 各半導体柱の側壁に第十一の絶縁膜を形成する工程と、 全面に、第一の導電膜を形成する工程と、 等方性エッチングにより、前記第十一の絶縁膜及び前記
第一の導電膜を所定量だけエッチングし、前記第十一の
絶縁膜及び前記第一の導電膜を前記最下段と最上段を除
く各段にのみ残存させ、前記最下段と最上段を除く各段
にのみ当該半導体柱を取り巻くリング状のフロ−ティン
グゲ−トを形成する工程と、 全面に、第十二の絶縁膜を形成する工程と、 全面に、第二の導電膜を形成する工程と、 等方性エッチングにより、前記第二の導電膜を所定量だ
けエッチングし、当該第二の導電膜を、前記複数段を構
成する素子分離絶縁膜の各段に残存させ、前記最下段と
最上段に列方向に伸びる帯状の選択ゲ−ト線を形成し、
前記最下段と最上段の間の各段に列方向に伸びる帯状の
ワ−ド線を形成する工程とを具備することを特徴とする
半導体記憶装置の製造方法。
12. The method of manufacturing a semiconductor memory device according to claim 9, wherein the film thicknesses of the second and sixth insulating films are set to be larger than the film thickness of the fourth insulating film, The ninth step is a step of forming an eleventh insulating film on a sidewall of each semiconductor pillar, a step of forming a first conductive film on the entire surface, and a step of forming the eleventh insulating film by isotropic etching. The insulating film and the first conductive film are etched by a predetermined amount, and the eleventh insulating film and the first conductive film are left only in each stage except the lowermost stage and the uppermost stage. A step of forming a ring-shaped floating gate surrounding the semiconductor pillar only in each step except the uppermost step, a step of forming a twelfth insulating film on the entire surface, and a second conductive film on the entire surface. And a isotropic etching process to form a predetermined amount of the second conductive film. And etching, the second conductive film, wherein the plurality of stages is left to each stage of the device isolation insulating film constituting said strip-like select gates extending in the column direction in the bottom and top - to form the door line,
And a step of forming strip-shaped word lines extending in the column direction on each stage between the lowermost stage and the uppermost stage.
【請求項13】 請求項9に記載の半導体記憶装置の製
造方法において、 前記第一の工程の前に、前記半導体基板中にソ−ス領域
を形成する工程を具備し、 前記第九の工程の後に、各半導体柱の最上部にドレイン
領域を形成する工程と、行方向の半導体柱のドレイン拡
散層に接続するビット線を形成する工程とを具備するこ
とを特徴とする半導体記憶装置の製造方法。
13. The method of manufacturing a semiconductor memory device according to claim 9, further comprising a step of forming a source region in the semiconductor substrate before the first step, and the ninth step. After that, a step of forming a drain region on the top of each semiconductor pillar, and a step of forming a bit line connected to the drain diffusion layer of the semiconductor pillar in the row direction are manufactured. Method.
JP12695893A 1993-05-28 1993-05-28 NAND type nonvolatile semiconductor memory device and manufacturing method thereof Expired - Lifetime JP3651689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12695893A JP3651689B2 (en) 1993-05-28 1993-05-28 NAND type nonvolatile semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12695893A JP3651689B2 (en) 1993-05-28 1993-05-28 NAND type nonvolatile semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06338602A true JPH06338602A (en) 1994-12-06
JP3651689B2 JP3651689B2 (en) 2005-05-25

Family

ID=14948112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12695893A Expired - Lifetime JP3651689B2 (en) 1993-05-28 1993-05-28 NAND type nonvolatile semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3651689B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015278A3 (en) * 2000-08-14 2002-06-13 Matrix Semiconductor Inc Multigate semiconductor device and method of fabrication
JP2003078044A (en) * 2001-06-23 2003-03-14 Fujio Masuoka Semiconductor memory and its producing method
KR100674952B1 (en) * 2005-02-05 2007-01-26 삼성전자주식회사 3-dimensional flash memory device and fabrication method thereof
US7242613B2 (en) 2004-09-07 2007-07-10 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
JP2007266143A (en) * 2006-03-27 2007-10-11 Toshiba Corp Non-volatile semiconductor memory device and manufacturing method therefor
JP2008103429A (en) * 2006-10-17 2008-05-01 Toshiba Corp Non-volatile semiconductor storage device and manufacturing method thereof
JP2008192857A (en) * 2007-02-05 2008-08-21 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method therefor
JP2008258458A (en) * 2007-04-06 2008-10-23 Toshiba Corp Semiconductor memory and production method therefor
JP2009099997A (en) * 2008-09-25 2009-05-07 Fujio Masuoka Semiconductor storage device
JP2009117843A (en) * 2007-11-08 2009-05-28 Samsung Electronics Co Ltd Vertical-type semiconductor device and method of manufacturing the same
WO2009075370A1 (en) * 2007-12-11 2009-06-18 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
JP2009224633A (en) * 2008-03-18 2009-10-01 Toshiba Corp Semiconductor storage device
JP2009224565A (en) * 2008-03-17 2009-10-01 Toshiba Corp Nonvolatile semiconductor storage
JP2009267243A (en) * 2008-04-28 2009-11-12 Toshiba Corp Non-volatile semiconductor storage device and method of manufacturing the same
JP2010147125A (en) * 2008-12-17 2010-07-01 Toshiba Corp Nonvolatile semiconductor memory device, and method of manufacturing the same
JP2010171185A (en) * 2009-01-22 2010-08-05 Toshiba Corp Nonvolatile semiconductor memory device and method for manufacturing the same
JP2010187001A (en) * 2009-02-11 2010-08-26 Samsung Electronics Co Ltd Nonvolatile memory element, and method of manufacturing the same
JP2010192589A (en) * 2009-02-17 2010-09-02 Toshiba Corp Nonvolatile semiconductor memory device and method of manufacturing the same
US7910973B2 (en) 2008-03-17 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor storage device
US20110073866A1 (en) * 2009-09-29 2011-03-31 Samsung Electronics Co., Ltd. Vertical-type semiconductor device
US8068364B2 (en) 2008-04-23 2011-11-29 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8084805B2 (en) 2008-09-30 2011-12-27 Samsung Electronics Co., Ltd. Three-dimensional microelectronic devices including repeating layer patterns of different thicknesses
US8178861B2 (en) 2008-10-15 2012-05-15 Kabushiki Kaisha Toshiba Semiconductor device
US8278695B2 (en) * 2006-09-15 2012-10-02 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8283719B2 (en) 2009-09-30 2012-10-09 Samsung Electronics Co., Ltd. Nonvolatile memory device having a fixed charge layer
US8319275B2 (en) 2009-02-25 2012-11-27 Samsung Electronics Co., Ltd. Integrated circuit memory devices having selection transistors with nonuniform threshold voltage characteristics
US8325527B2 (en) 2008-06-11 2012-12-04 Samsung Electronics Co., Ltd. Non-volatile memory devices including vertical NAND strings and methods of forming the same
US8329537B2 (en) 2009-08-24 2012-12-11 Samsung Electronics Co., Ltd. Method for fabricating rewritable three-dimensional memory device
US8338244B2 (en) 2009-03-19 2012-12-25 Samsung Electronics Co., Ltd. Methods of fabricating three-dimensional nonvolatile memory devices using expansions
JP2012256932A (en) * 2012-08-27 2012-12-27 Intellectual Properties I Kft Semiconductor storage device
US8379449B2 (en) 2008-04-23 2013-02-19 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
JP2013042179A (en) * 2012-11-15 2013-02-28 Toshiba Corp Nonvolatile semiconductor storage device
US8395206B2 (en) 2008-10-09 2013-03-12 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
CN103165619A (en) * 2011-12-19 2013-06-19 爱思开海力士有限公司 Capacitor and register of semiconductor device, memory system including the semiconductor device, and method of manufacturing the semiconductor device
TWI400792B (en) * 2008-08-12 2013-07-01 Toshiba Kk Non-volatile semiconductor storage device
US8476713B2 (en) 2008-10-09 2013-07-02 Samsung Electronics Co., Ltd. Vertical-type semiconductor device and method of manufacturing the same
US8482138B2 (en) 2010-01-22 2013-07-09 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device
US8482049B2 (en) 2009-12-16 2013-07-09 Samsung Electronics Co., Ltd. Semiconductor devices and methods for fabricating the same
US8513731B2 (en) 2008-11-11 2013-08-20 Samsung Electronics Co., Ltd. Vertical type semiconductor device
US8541832B2 (en) 2009-07-23 2013-09-24 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
US8541831B2 (en) 2008-12-03 2013-09-24 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US8582361B2 (en) 2008-04-23 2013-11-12 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8592912B2 (en) 2010-05-18 2013-11-26 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
KR20130131285A (en) * 2010-06-28 2013-12-03 마이크론 테크놀로지, 인크. Three dimensional memory and methods of forming the same
US8704288B2 (en) 2010-11-17 2014-04-22 Samsung Electronics Co., Ltd. Methods for forming etch stop layers, semiconductor devices having the same, and methods for fabricating semiconductor devices
US8742466B2 (en) 2009-12-18 2014-06-03 Samsung Electronics Co., Ltd. Three-dimensional semiconductor device including a mold structure providing gap regions and an interconnection structure including a plurality of interconnection patterns formed in the gap regions
US8748969B2 (en) 2008-12-19 2014-06-10 Samsung Electronics Co., Ltd. Non-volatile memory device including dummy electrodes and method of fabricating the same
US8786007B2 (en) 2008-12-03 2014-07-22 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory device
US8823072B2 (en) 2010-04-15 2014-09-02 Samsung Electronics Co., Ltd. Floating gate type nonvolatile memory device and related methods of manufacture and operation
US8853765B2 (en) 2000-08-14 2014-10-07 Sandisk 3D Llc Dense arrays and charge storage devices
US9070434B2 (en) 2012-03-29 2015-06-30 Kabushiki Kaisha Toshiba Semiconductor device
US9177965B2 (en) 2010-10-29 2015-11-03 Samsung Electronics Co., Ltd. Nonvolatile memory device in three-dimensional structure with a stress reducing materials on the channel
US9793292B2 (en) 2010-09-16 2017-10-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory devices
US9893080B2 (en) 2016-03-04 2018-02-13 Toshiba Memory Corporation Semiconductor device having a diverse shaped columnar portion
US9991275B2 (en) 2010-07-01 2018-06-05 Samsung Electronics Co., Ltd. Semiconductor memory device
CN108899273A (en) * 2012-03-29 2018-11-27 赛普拉斯半导体公司 ONO is integrated into the method in logic CMOS process
EP3413351A1 (en) * 2008-01-15 2018-12-12 Micron Technology, INC. Semiconductor construction
US10586802B2 (en) 2011-02-25 2020-03-10 Micron Technology, Inc. Charge storage apparatus and methods
CN111952319A (en) * 2020-08-21 2020-11-17 长江存储科技有限责任公司 3D NAND memory device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270101B1 (en) 2015-02-10 2021-06-29 삼성전자주식회사 Semiconductor device and method for fabricating the same

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171857B2 (en) 2000-08-14 2015-10-27 Sandisk 3D Llc Dense arrays and charge storage devices
US8981457B2 (en) 2000-08-14 2015-03-17 Sandisk 3D Llc Dense arrays and charge storage devices
US6580124B1 (en) 2000-08-14 2003-06-17 Matrix Semiconductor Inc. Multigate semiconductor device with vertical channel current and method of fabrication
US6677204B2 (en) 2000-08-14 2004-01-13 Matrix Semiconductor, Inc. Multigate semiconductor device with vertical channel current and method of fabrication
US9559110B2 (en) 2000-08-14 2017-01-31 Sandisk Technologies Llc Dense arrays and charge storage devices
WO2002015278A3 (en) * 2000-08-14 2002-06-13 Matrix Semiconductor Inc Multigate semiconductor device and method of fabrication
US10008511B2 (en) 2000-08-14 2018-06-26 Sandisk Technologies Llc Dense arrays and charge storage devices
US10644021B2 (en) 2000-08-14 2020-05-05 Sandisk Technologies Llc Dense arrays and charge storage devices
US8853765B2 (en) 2000-08-14 2014-10-07 Sandisk 3D Llc Dense arrays and charge storage devices
JP2003078044A (en) * 2001-06-23 2003-03-14 Fujio Masuoka Semiconductor memory and its producing method
US7242613B2 (en) 2004-09-07 2007-07-10 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
KR100674952B1 (en) * 2005-02-05 2007-01-26 삼성전자주식회사 3-dimensional flash memory device and fabrication method thereof
US7662720B2 (en) 2005-02-05 2010-02-16 Samsung Electronics Co., Ltd. 3-Dimensional flash memory device and method of fabricating the same
US7382018B2 (en) 2005-02-05 2008-06-03 Samsung Electronics Co., Ltd. 3-Dimensional flash memory device and method of fabricating the same
US10211219B2 (en) 2006-03-27 2019-02-19 Toshiba Memory Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
KR100884861B1 (en) * 2006-03-27 2009-02-23 가부시끼가이샤 도시바 Nonvolatile semiconductor memory device and manufacturing method thereof
US11362106B2 (en) 2006-03-27 2022-06-14 Kioxia Corporation Manufacturing method of a nonvolatile semiconductor memory device
US11374021B2 (en) 2006-03-27 2022-06-28 Kioxia Corporation Manufacturing method of a nonvolatile semiconductor memory device
US11903205B2 (en) 2006-03-27 2024-02-13 Kioxia Corporation Method for reading data of a first memory cell transistor of a nonvolatile semiconductor memory device
US9064735B2 (en) 2006-03-27 2015-06-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US9748260B2 (en) 2006-03-27 2017-08-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8551838B2 (en) 2006-03-27 2013-10-08 Kabushiki Kaisha Toshiba Nonvolatile semicondutor memory device and manufacturing method thereof
JP2007266143A (en) * 2006-03-27 2007-10-11 Toshiba Corp Non-volatile semiconductor memory device and manufacturing method therefor
US10916559B2 (en) 2006-03-27 2021-02-09 Kioxia Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
US11903207B2 (en) 2006-03-27 2024-02-13 Kioxia Corporation Method for writing data of a first memory cell transistor of a nonvolatile semiconductor memory device
US7936004B2 (en) 2006-03-27 2011-05-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8278695B2 (en) * 2006-09-15 2012-10-02 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
JP2008103429A (en) * 2006-10-17 2008-05-01 Toshiba Corp Non-volatile semiconductor storage device and manufacturing method thereof
JP2008192857A (en) * 2007-02-05 2008-08-21 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method therefor
US8363481B2 (en) 2007-02-05 2013-01-29 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method of making the same
EP2136398A4 (en) * 2007-04-06 2011-04-20 Toshiba Kk Semiconductor memory device and method for manufacturing the same
US9041093B2 (en) 2007-04-06 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method thereof
EP2136398A1 (en) * 2007-04-06 2009-12-23 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
US8659070B2 (en) 2007-04-06 2014-02-25 Kabushiki Kaisha Toshiba Semiconductor memory device and manufacturing method thereof
WO2008126774A1 (en) * 2007-04-06 2008-10-23 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
JP2008258458A (en) * 2007-04-06 2008-10-23 Toshiba Corp Semiconductor memory and production method therefor
JP2009117843A (en) * 2007-11-08 2009-05-28 Samsung Electronics Co Ltd Vertical-type semiconductor device and method of manufacturing the same
WO2009075370A1 (en) * 2007-12-11 2009-06-18 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
US8729624B2 (en) 2007-12-11 2014-05-20 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
JP2009146954A (en) * 2007-12-11 2009-07-02 Toshiba Corp Non-volatile semiconductor storage device
CN102037557A (en) * 2007-12-11 2011-04-27 株式会社东芝 Non-volatile semiconductor storage device and method of manufacturing the same
US11844218B2 (en) 2007-12-11 2023-12-12 Kioxia Corporation Non-volatile semiconductor storage device and method of manufacturing the same
US9985050B2 (en) 2007-12-11 2018-05-29 Toshiba Memory Corporation Non-volatile semiconductor storage device and method of manufacturing the same
US11574926B2 (en) 2007-12-11 2023-02-07 Kioxia Corporation Non-volatile semiconductor storage device and method of manufacturing the same
US9741738B2 (en) 2007-12-11 2017-08-22 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
US11393840B2 (en) 2007-12-11 2022-07-19 Kioxia Corporation Non-volatile semiconductor storage device and method of manufacturing the same
US8372720B2 (en) 2007-12-11 2013-02-12 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
US9356042B2 (en) 2007-12-11 2016-05-31 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
US9035374B2 (en) 2007-12-11 2015-05-19 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
US10163931B2 (en) 2007-12-11 2018-12-25 Toshiba Memory Corporation Non-volatile semiconductor storage device and method of manufacturing the same
US11094707B2 (en) 2008-01-15 2021-08-17 Micron Technology, Inc. NAND unit cells
US11094706B2 (en) 2008-01-15 2021-08-17 Micron Technology, Inc. NAND unit cells
US11205657B2 (en) 2008-01-15 2021-12-21 Micron Technology, Inc. Semiconductor constructions
EP3413351A1 (en) * 2008-01-15 2018-12-12 Micron Technology, INC. Semiconductor construction
JP2009224565A (en) * 2008-03-17 2009-10-01 Toshiba Corp Nonvolatile semiconductor storage
US7910973B2 (en) 2008-03-17 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor storage device
KR101065140B1 (en) * 2008-03-17 2011-09-16 가부시끼가이샤 도시바 Semiconductor storage device
JP4660567B2 (en) * 2008-03-18 2011-03-30 株式会社東芝 Semiconductor memory device
JP2009224633A (en) * 2008-03-18 2009-10-01 Toshiba Corp Semiconductor storage device
US9558833B2 (en) 2008-04-23 2017-01-31 Kabushiki Kaisha Toshiba Write controlling method for memory
US10224106B2 (en) 2008-04-23 2019-03-05 Toshiba Memory Corporation Method of controlling programming of a three dimensional stacked nonvolatile semiconductor memory
US9330761B2 (en) 2008-04-23 2016-05-03 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8068364B2 (en) 2008-04-23 2011-11-29 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8605506B2 (en) 2008-04-23 2013-12-10 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8582361B2 (en) 2008-04-23 2013-11-12 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8837218B2 (en) 2008-04-23 2014-09-16 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US9275737B2 (en) 2008-04-23 2016-03-01 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US11727993B2 (en) 2008-04-23 2023-08-15 Kioxia Corporation Three dimensional stacked nonvolatile semiconductor memory wherein first through fifth voltages are applied at different timings in a program operation
US8345479B2 (en) 2008-04-23 2013-01-01 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US8681551B2 (en) 2008-04-23 2014-03-25 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
US10720216B2 (en) 2008-04-23 2020-07-21 Toshiba Memory Corporation Memory in which the channel potential of a memory cell in a non-selected NAND cell unit is increased
US9953708B2 (en) 2008-04-23 2018-04-24 Toshiba Memory Corporation Memory performing write operation in which a string transistor channel voltage is boosted before applying a program voltage to a word line
US11430521B2 (en) 2008-04-23 2022-08-30 Kioxia Corporation Three dimensional stacked nonvolatile semiconductor memory in which the channel potential of a memory cell in a non-selected NAND cell unit is increased
US8379449B2 (en) 2008-04-23 2013-02-19 Kabushiki Kaisha Toshiba Three dimensional stacked nonvolatile semiconductor memory
JP2009267243A (en) * 2008-04-28 2009-11-12 Toshiba Corp Non-volatile semiconductor storage device and method of manufacturing the same
US8659946B2 (en) 2008-06-11 2014-02-25 Samsung Electronics Co., Ltd. Non-volatile memory devices including vertical NAND strings and methods of forming the same
US8325527B2 (en) 2008-06-11 2012-12-04 Samsung Electronics Co., Ltd. Non-volatile memory devices including vertical NAND strings and methods of forming the same
US9373633B2 (en) 2008-06-11 2016-06-21 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices including vertical NAND strings
US8971118B2 (en) 2008-06-11 2015-03-03 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices including vertical NAND strings
TWI400792B (en) * 2008-08-12 2013-07-01 Toshiba Kk Non-volatile semiconductor storage device
JP2009099997A (en) * 2008-09-25 2009-05-07 Fujio Masuoka Semiconductor storage device
US8084805B2 (en) 2008-09-30 2011-12-27 Samsung Electronics Co., Ltd. Three-dimensional microelectronic devices including repeating layer patterns of different thicknesses
US8952438B2 (en) 2008-09-30 2015-02-10 Samsung Electronics Co., Ltd. Three-dimensional microelectronic devices including horizontal and vertical patterns
US8450788B2 (en) 2008-09-30 2013-05-28 Samsung Electronics Co., Ltd. Three-dimensional microelectronic devices including horizontal and vertical patterns
US8395206B2 (en) 2008-10-09 2013-03-12 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US8476713B2 (en) 2008-10-09 2013-07-02 Samsung Electronics Co., Ltd. Vertical-type semiconductor device and method of manufacturing the same
US8652921B2 (en) 2008-10-09 2014-02-18 Samsung Electronics Co., Ltd. Semiconductor device having a damp-proof structure and method of fabricating the same
US8178861B2 (en) 2008-10-15 2012-05-15 Kabushiki Kaisha Toshiba Semiconductor device
US8513731B2 (en) 2008-11-11 2013-08-20 Samsung Electronics Co., Ltd. Vertical type semiconductor device
US10546872B2 (en) 2008-12-03 2020-01-28 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US9735170B2 (en) 2008-12-03 2017-08-15 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US9171860B2 (en) 2008-12-03 2015-10-27 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory device
US8786007B2 (en) 2008-12-03 2014-07-22 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory device
US11871571B2 (en) 2008-12-03 2024-01-09 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US8541831B2 (en) 2008-12-03 2013-09-24 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US11387249B2 (en) 2008-12-03 2022-07-12 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US9245839B2 (en) 2008-12-03 2016-01-26 Samsung Electronics Co., Ltd. Nonvolatile memory device and method for fabricating the same
US8728919B2 (en) 2008-12-17 2014-05-20 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and method of manufacturing the same
JP2010147125A (en) * 2008-12-17 2010-07-01 Toshiba Corp Nonvolatile semiconductor memory device, and method of manufacturing the same
US8748969B2 (en) 2008-12-19 2014-06-10 Samsung Electronics Co., Ltd. Non-volatile memory device including dummy electrodes and method of fabricating the same
JP2010171185A (en) * 2009-01-22 2010-08-05 Toshiba Corp Nonvolatile semiconductor memory device and method for manufacturing the same
JP2010187001A (en) * 2009-02-11 2010-08-26 Samsung Electronics Co Ltd Nonvolatile memory element, and method of manufacturing the same
JP2010192589A (en) * 2009-02-17 2010-09-02 Toshiba Corp Nonvolatile semiconductor memory device and method of manufacturing the same
US8319275B2 (en) 2009-02-25 2012-11-27 Samsung Electronics Co., Ltd. Integrated circuit memory devices having selection transistors with nonuniform threshold voltage characteristics
US8637920B2 (en) 2009-02-25 2014-01-28 Samsung Electronics Co., Ltd. Semiconductor memory devices having selection transistors with nonuniform threshold voltage characteristics
US9012977B2 (en) 2009-02-25 2015-04-21 Samsung Electronics Co., Ltd. Semiconductor memory devices having selection transistors with nonuniform threshold voltage characteristics
US9337351B2 (en) 2009-03-19 2016-05-10 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory devices including interposed floating gates
US8674414B2 (en) 2009-03-19 2014-03-18 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory devices including interposed floating gates
US9190533B2 (en) 2009-03-19 2015-11-17 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory devices including interposed floating gates
US10037888B2 (en) 2009-03-19 2018-07-31 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory devices including interposed floating gates
US8338244B2 (en) 2009-03-19 2012-12-25 Samsung Electronics Co., Ltd. Methods of fabricating three-dimensional nonvolatile memory devices using expansions
US9105736B2 (en) 2009-03-19 2015-08-11 Samsung Electronics Co., Ltd. Three-dimensional nonvolatile memory devices including interposed floating gates
US8541832B2 (en) 2009-07-23 2013-09-24 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
US9048329B2 (en) 2009-07-23 2015-06-02 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
US8329537B2 (en) 2009-08-24 2012-12-11 Samsung Electronics Co., Ltd. Method for fabricating rewritable three-dimensional memory device
US8344385B2 (en) 2009-09-29 2013-01-01 Samsung Electronics Co., Ltd. Vertical-type semiconductor device
US20110073866A1 (en) * 2009-09-29 2011-03-31 Samsung Electronics Co., Ltd. Vertical-type semiconductor device
US8283719B2 (en) 2009-09-30 2012-10-09 Samsung Electronics Co., Ltd. Nonvolatile memory device having a fixed charge layer
US8482049B2 (en) 2009-12-16 2013-07-09 Samsung Electronics Co., Ltd. Semiconductor devices and methods for fabricating the same
US8742466B2 (en) 2009-12-18 2014-06-03 Samsung Electronics Co., Ltd. Three-dimensional semiconductor device including a mold structure providing gap regions and an interconnection structure including a plurality of interconnection patterns formed in the gap regions
US9418911B2 (en) 2009-12-18 2016-08-16 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device having sidewall and interlayer molds
US9196525B2 (en) 2009-12-18 2015-11-24 Samsung Electronics Co., Ltd. Three-dimensional semiconductor device and method of fabricating the same
US8969162B2 (en) 2010-01-22 2015-03-03 Samsung Electronics Co., Ltd. Three-dimensional semiconductor device and method for fabricating the same
US8482138B2 (en) 2010-01-22 2013-07-09 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device
US8823072B2 (en) 2010-04-15 2014-09-02 Samsung Electronics Co., Ltd. Floating gate type nonvolatile memory device and related methods of manufacture and operation
US8592912B2 (en) 2010-05-18 2013-11-26 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US11700730B2 (en) 2010-06-28 2023-07-11 Micron Technology, Inc. Three dimensional memory and methods of forming the same
US9780115B2 (en) 2010-06-28 2017-10-03 Micron Technology, Inc. Three dimensional memory and methods of forming the same
US10510769B2 (en) 2010-06-28 2019-12-17 Micron Technology, Inc. Three dimensional memory and methods of forming the same
US10872903B2 (en) 2010-06-28 2020-12-22 Micron Technology, Inc. Three dimensional memory and methods of forming the same
US10090324B2 (en) 2010-06-28 2018-10-02 Micron Technology, Inc. Three dimensional memory and methods of forming the same
KR20130131285A (en) * 2010-06-28 2013-12-03 마이크론 테크놀로지, 인크. Three dimensional memory and methods of forming the same
JP2015149503A (en) * 2010-06-28 2015-08-20 マイクロン テクノロジー, インク. Three-dimensional memory and method of forming the same
US9991275B2 (en) 2010-07-01 2018-06-05 Samsung Electronics Co., Ltd. Semiconductor memory device
US9793292B2 (en) 2010-09-16 2017-10-17 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory devices
US9177965B2 (en) 2010-10-29 2015-11-03 Samsung Electronics Co., Ltd. Nonvolatile memory device in three-dimensional structure with a stress reducing materials on the channel
US9437483B2 (en) 2010-11-17 2016-09-06 Samsung Electronics Co., Ltd. Methods for forming etch stop layers, semiconductor devices having the same, and methods for fabricating semiconductor devices
US8704288B2 (en) 2010-11-17 2014-04-22 Samsung Electronics Co., Ltd. Methods for forming etch stop layers, semiconductor devices having the same, and methods for fabricating semiconductor devices
US10586802B2 (en) 2011-02-25 2020-03-10 Micron Technology, Inc. Charge storage apparatus and methods
US11581324B2 (en) 2011-02-25 2023-02-14 Micron Technology, Inc. Charge storage apparatus and methods
CN103165619A (en) * 2011-12-19 2013-06-19 爱思开海力士有限公司 Capacitor and register of semiconductor device, memory system including the semiconductor device, and method of manufacturing the semiconductor device
US9070434B2 (en) 2012-03-29 2015-06-30 Kabushiki Kaisha Toshiba Semiconductor device
CN108899273B (en) * 2012-03-29 2024-02-09 经度快闪存储解决方案有限责任公司 Method for integrating ONO into logic CMOS flow
CN108899273A (en) * 2012-03-29 2018-11-27 赛普拉斯半导体公司 ONO is integrated into the method in logic CMOS process
JP2012256932A (en) * 2012-08-27 2012-12-27 Intellectual Properties I Kft Semiconductor storage device
JP2013042179A (en) * 2012-11-15 2013-02-28 Toshiba Corp Nonvolatile semiconductor storage device
US9893080B2 (en) 2016-03-04 2018-02-13 Toshiba Memory Corporation Semiconductor device having a diverse shaped columnar portion
CN111952319A (en) * 2020-08-21 2020-11-17 长江存储科技有限责任公司 3D NAND memory device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3651689B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3651689B2 (en) NAND type nonvolatile semiconductor memory device and manufacturing method thereof
US10903220B2 (en) Integrated assemblies having anchoring structures proximate stacked memory cells, and methods of forming integrated assemblies
US6696724B2 (en) Two-transistor flash cell
JP3963664B2 (en) Semiconductor memory device and manufacturing method thereof
TWI384615B (en) Non-volatile semiconductor storage device and method of manufacturing the same
US5397726A (en) Segment-erasable flash EPROM
TWI385792B (en) Non-volatile semiconductor storage device and method of manufacturing the same
US7416941B2 (en) Four-bit finfet NVRAM memory device
US7135726B2 (en) Semiconductor memory and its production process
JP5364342B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US5323039A (en) Non-volatile semiconductor memory and method of manufacturing the same
US8138524B2 (en) Self-aligned method of forming a semiconductor memory array of floating memory cells with source side erase, and a memory array made thereby
JP4391741B2 (en) Semiconductor memory device and manufacturing method thereof
US11088167B2 (en) Transistor, three dimensional memory device including such transistor and method of fabricating such memory device
JP3459240B2 (en) Semiconductor storage device
JP2005085938A (en) Memory cell unit, and nonvolatile semiconductor device, and liquid crystal display device equipped with it
KR100297016B1 (en) Method for manufacturing fast access amg eprom
US6979859B2 (en) Flash memory cell and fabrication method
US20220068959A1 (en) Integrated Circuitry Comprising A Memory Array Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US20230290860A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US7580293B2 (en) Semiconductor memory device
US20220336278A1 (en) Memory Arrays And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
JP3933412B2 (en) Semiconductor memory device and manufacturing method thereof
US20030102504A1 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
US11121145B1 (en) Memory arrays comprising strings of memory cells and methods used in forming a memory array comprising strings of memory cells

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8