JPH06329741A - Resin, epoxy resin, its production, resin composition and cured product of said composition - Google Patents

Resin, epoxy resin, its production, resin composition and cured product of said composition

Info

Publication number
JPH06329741A
JPH06329741A JP5145370A JP14537093A JPH06329741A JP H06329741 A JPH06329741 A JP H06329741A JP 5145370 A JP5145370 A JP 5145370A JP 14537093 A JP14537093 A JP 14537093A JP H06329741 A JPH06329741 A JP H06329741A
Authority
JP
Japan
Prior art keywords
formula
resin
epoxy resin
parts
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5145370A
Other languages
Japanese (ja)
Inventor
Shigeru Mogi
繁 茂木
Yasumasa Akatsuka
泰昌 赤塚
Hiromi Morita
博美 森田
Hiroaki Ono
博昭 大野
Tomiyoshi Ishii
富好 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP5145370A priority Critical patent/JPH06329741A/en
Publication of JPH06329741A publication Critical patent/JPH06329741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a resin or an epoxy resin useful as a high-reliability sealing material excellent in heat resistance and humidity resistance by condensing through dehydration dimethylolated cumylphenol with a naphthol compound in the presence of an acid catalyst and optionally glycidyletherifying the product. CONSTITUTION:A resin of formula I useful as an epoxy resin curing agent is obtained by condensing through dehydration dimethylolated cumylphenol of formula IV with a naphthol compound or a phenolic compound having substituents other than hydrogen atoms in the presence of an acid catalyst. In formula I, X is for example a group of formula II; X1 is for example a group of formula III; n is 0-20; m is 1 or 2; and R1 is a hydrogen atom, a halogen atom, 1-4C alkyl or aryl. This resin is optionally reacted with an epihalohydrin in the presence of an alkali metal hydroxide to obtain an epoxy resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品の高信頼性封
止・封口用、接着用、プラスチックレンズ用として有用
な樹脂、エポキシ樹脂、その製造法、樹脂組成物及びそ
の硬化物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin, an epoxy resin, a method for producing the same, a resin composition and a cured product thereof which are useful for highly reliable sealing / sealing of electronic parts, bonding, and plastic lenses.

【0002】[0002]

【従来の技術】熱硬化性樹脂はその硬化物の優れた電気
特性、耐熱性、接着性、成型性等により電気・電子部品
等の分野で幅広く用いられている。
2. Description of the Related Art Thermosetting resins are widely used in the fields of electric and electronic parts due to their excellent electrical properties, heat resistance, adhesiveness, moldability and the like.

【0003】近年特に電気電子分野の発展に伴い、耐熱
性をはじめ耐湿性、密着性、低応力、透明性、屈折率の
向上等の諸特性のより一層の向上が求められており、こ
れら諸特性の向上を図るためエポキシ樹脂やエポキシ硬
化剤及びその組成物について多くの提案がなされてい
る。しかし、吸水、吸湿後の熱衝撃によるクラックの発
生、耐熱性を向上させようとした場合に樹脂溶融粘度の
上昇が認められるなど未だ充分とはいえない。
In recent years, particularly with the development of electric and electronic fields, further improvement of various characteristics such as heat resistance, moisture resistance, adhesion, low stress, transparency, and improvement of refractive index has been demanded. Many proposals have been made on epoxy resins, epoxy curing agents and compositions thereof in order to improve the properties. However, it cannot be said to be sufficient, for example, generation of cracks due to thermal shock after water absorption and moisture absorption, and increase in resin melt viscosity when trying to improve heat resistance.

【0004】[0004]

【発明が解決しようとする課題】本発明は屈折率が高い
上に加水分解性塩素量が極めて少なく、しかもその硬化
物において優れた耐熱性、耐湿性を与える高信頼性封止
・封口用として有用な樹脂、その製造法、それを含む樹
脂組成物及びその硬化物を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has a high refractive index, an extremely small amount of hydrolyzable chlorine, and a cured product thereof having excellent heat resistance and moisture resistance. The present invention provides a useful resin, a method for producing the same, a resin composition containing the same, and a cured product thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記のよう
な特性を付与向上する方法について鋭意研究の結果、上
記課題を達成できる樹脂、及び製造法を見出し本発明を
完成させたものである。 即ち本発明は、(1)、式
(1)
Means for Solving the Problems The inventors of the present invention have completed the present invention by finding out a resin and a manufacturing method that can achieve the above objects, as a result of earnest research on a method for imparting and improving the above-mentioned characteristics. is there. That is, the present invention includes (1) and formula (1)

【0006】[0006]

【化8】 [Chemical 8]

【0007】(式(1)中Xは、式(A)又は式(B)
を、
(X in the formula (1) is the formula (A) or the formula (B)
To

【0008】[0008]

【化9】 [Chemical 9]

【0009】X1 は、式(A1)又は式(B1)X 1 is the formula (A1) or the formula (B1)

【0010】[0010]

【化10】 [Chemical 10]

【0011】を示し、nは0〜20を示す。更に式
(A)、式(B)、式(A1)、式(B1)中のm、
q、はそれぞれ1または2を示し、R1 、R2 、R3
4 、はそれぞれ独立して水素原子、ハロゲン原子、炭
素数1〜4のアルキル基、またはアリール基を示すが、
qが1の場合は、R2 、R3 、R4 、が同時に水素原子
であることはない。)で表される樹脂、(2)、式
(2)
And n is 0 to 20. Furthermore, m in the formula (A), the formula (B), the formula (A1), and the formula (B1),
q and 1 respectively represent 1 or 2, R 1 , R 2 , R 3 ,
R 4's each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group,
When q is 1, R 2 , R 3 and R 4 are not hydrogen atoms at the same time. ) Resin (2), Formula (2)

【0012】[0012]

【化11】 [Chemical 11]

【0013】(式(2)中Yは、式(C)又は式(D)
を、
(Y in the formula (2) is the formula (C) or the formula (D))
To

【0014】[0014]

【化12】 [Chemical 12]

【0015】Y1 は、式(C1)又は式(D1)Y 1 is the formula (C1) or the formula (D1)

【0016】[0016]

【化13】 [Chemical 13]

【0017】を示し、nは0〜20を示す。更に式
(C)、式(D)、式(C1)、式(D1)中のm、
q、はそれぞれ1または2を示し、R1 、R2 、R3
4 、はそれぞれ独立して水素原子、ハロゲン原子、炭
素数1〜4のアルキル基、またはアリール基を示すが、
qが1の場合は、R2 、R3 、R4 、が同時に水素原子
であることはない。又、Gはグリシジル基、即ち、下記
式(G)を示す。)で表されるエポキシ樹脂、
And n is 0 to 20. Further, m in the formula (C), the formula (D), the formula (C1), and the formula (D1),
q and 1 respectively represent 1 or 2, R 1 , R 2 , R 3 ,
R 4's each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group,
When q is 1, R 2 , R 3 and R 4 are not hydrogen atoms at the same time. Further, G represents a glycidyl group, that is, the following formula (G). ) Epoxy resin represented by

【0018】[0018]

【化14】 [Chemical 14]

【0019】(3)、式(3)(3), equation (3)

【0020】[0020]

【化15】 [Chemical 15]

【0021】で表されるクミルフェノールジメチロール
化物と、ナフトール化合物または水素原子以外の置換基
を有するフェノール化合物とを酸触媒の存在下に脱水縮
合反応させ、更に必要によりアルカリ金属水酸化物の存
在下エピハロヒドリンと反応を行わせることを特徴とす
る上記式(1)で表される樹脂、又は上記式(2)で表
されるエポキシ樹脂の製造法、
The cumylphenol dimethylol compound represented by and a naphthol compound or a phenol compound having a substituent other than a hydrogen atom are dehydrated and condensed in the presence of an acid catalyst, and if necessary, an alkali metal hydroxide is added. A method for producing a resin represented by the above formula (1) or an epoxy resin represented by the above formula (2), characterized by reacting with epihalohydrin in the presence of

【0022】(4)、エポキシ樹脂、硬化剤及び必要に
より硬化促進剤を含むエポキシ樹脂組成物において、硬
化剤として上記式(1)で表される樹脂を含有するか、
及び/又は、エポキシ樹脂として上記式(2)で表され
るエポキシ樹脂を含有して成るエポキシ樹脂組成物、
(5)、上記(4)記載のエポキシ樹脂組成物の硬化
物、に関する。
An epoxy resin composition containing (4) an epoxy resin, a curing agent and, if necessary, a curing accelerator, contains the resin represented by the above formula (1) as a curing agent,
And / or an epoxy resin composition containing the epoxy resin represented by the above formula (2) as the epoxy resin,
(5) A cured product of the epoxy resin composition according to (4) above.

【0023】以下、本発明を詳細に説明する。式(1)
及び(2)において、nは平均値を示し0〜20の値を
とるが、好ましくは0〜7の値をとり、特に好ましくは
0〜4の値をとる。R1 、R2 、R3、R4 、はそれぞ
れ独立して水素原子、ハロゲン原子、炭素数1〜4のア
ルキル基、またはアリール基を示すが、ハロゲン原子と
しては臭素原子、塩素原子等が炭素数1〜4のアルキル
基としてはメチル基、エチル基、t−ブチル基等が、ア
リール基としてはフェニル基等があげられる。
The present invention will be described in detail below. Formula (1)
In (2) and (2), n represents an average value and takes a value of 0 to 20, preferably a value of 0 to 7, and particularly preferably a value of 0 to 4. R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group. Examples of the halogen atom include a bromine atom and a chlorine atom. Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group and t-butyl group, and examples of the aryl group include phenyl group.

【0024】上記式(1)で表される樹脂はクミルフェ
ノールとホルムアルデヒドとを、アルカリ金属水酸化物
の存在下、従来公知の方法で反応させることにより容易
に得られる上記式(3)で表されるクミルフェノールジ
メチロール化物と、ナフトール化合物または水素原子以
外の置換基を有するフェノール化合物とを酸触媒の存在
下に脱水縮合反応させることにより合成される。
The resin represented by the above formula (1) has the above formula (3) easily obtained by reacting cumylphenol and formaldehyde in the presence of an alkali metal hydroxide by a conventionally known method. It is synthesized by subjecting the represented cumylphenol dimethylol compound and a naphthol compound or a phenol compound having a substituent other than a hydrogen atom to a dehydration condensation reaction in the presence of an acid catalyst.

【0025】更に、上記式(1)で表される樹脂を必要
により、従来公知の方法によりグリシジルエーテル化す
ることにより、即ち、上記式(1)で表される樹脂とエ
ピハロヒドリンとをアルカリ金属水酸化物の存在下反応
させることにより上記式(2)で表されるエポキシ樹脂
を得ることが出来る。
Further, if necessary, the resin represented by the above formula (1) is glycidyl etherified by a conventionally known method, that is, the resin represented by the above formula (1) and epihalohydrin are treated with alkali metal water. By reacting in the presence of an oxide, the epoxy resin represented by the above formula (2) can be obtained.

【0026】上記、式(3)で表されるクミルフェノー
ルジメチロール化物としては、その安定性や反応の容易
さなどから2,6−ジメチロール−4−クミルフェノー
ルが好ましく用いられる。これらクミルフェノールジメ
チロール化物と反応させうる、水素原子以外の置換基を
有するフェノール化合物としては、o−クレゾール、m
−クレゾール、p−クレゾール、2,4−キシレノー
ル、2,6−キシレノール、2,3,6−トリメチルフ
ェノール、2,3,5−トリメチルフェノール、o−エ
チルフェノール、o−クロロフェノール、o−tret
−ブチルフェノール、o−tert−ブチル−4−メチ
ルフェノール、p−tret−ブチルフェノール、カテ
コール、レゾルシノール、ハイドロキノン、2,5−ジ
メチルハイドロキノン、2,6−ジメチルハイドロキノ
ン、2,4,6−トリメチルハイドロキノンなどが挙げ
られ、ナフトール化合物としては、1−ナフトール、2
−ナフトール、2−メチル1−ナフトール、1,4−ジ
ヒドロキシナフタレン、1,6−ジヒドロキシナフタレ
ン、2,7−ジヒドロキシナフタレンなどが挙げられる
が、いずれもこれら化合物に限定されるものではない。
As the cumylphenol dimethylol compound represented by the above formula (3), 2,6-dimethylol-4-cumylphenol is preferably used because of its stability and easiness of reaction. Examples of the phenol compound having a substituent other than a hydrogen atom, which can be reacted with these cumylphenol dimethylol compounds, include o-cresol and m.
-Cresol, p-cresol, 2,4-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, 2,3,5-trimethylphenol, o-ethylphenol, o-chlorophenol, o-tret
-Butylphenol, o-tert-butyl-4-methylphenol, p-tret-butylphenol, catechol, resorcinol, hydroquinone, 2,5-dimethylhydroquinone, 2,6-dimethylhydroquinone, 2,4,6-trimethylhydroquinone, etc. Examples of the naphthol compound include 1-naphthol and 2
-Naphthol, 2-methyl 1-naphthol, 1,4-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like can be mentioned, but they are not limited to these compounds.

【0027】クミルフェノールジメチロール化物と、こ
れらのフェノール化合物やナフトール化合物との脱水縮
合反応を行う場合、用いるフェノール化合物やナフトー
ル化合物の量はクミルフェノールジメチロール化物1モ
ルに対して好ましくは1.5〜16モル、特に好ましく
は2〜6モルの範囲で使用される。これらフェノール化
合物やナフトール化合物の使用量が少ないと高分子化し
たり分解してアルデヒドを生じ易く、又、使用量が多す
ぎると回収するコストが増大し不利である。
When a dehydration condensation reaction is carried out between a cumylphenol dimethylol compound and these phenol compounds or naphthol compounds, the amount of the phenol compound or naphthol compound used is preferably 1 with respect to 1 mol of the cumylphenol dimethylol compound. It is used in the range of 0.5 to 16 mol, particularly preferably 2 to 6 mol. If the amount of the phenol compound or naphthol compound used is small, the compound is easily polymerized or decomposed to generate an aldehyde, and if the amount used is too large, the cost for recovery increases, which is disadvantageous.

【0028】脱水縮合反応時に用いる酸触媒としては塩
酸、硫酸、酢酸、リン酸、シュウ酸、パラトルエンスル
ホン酸や三弗化ホウ素、塩化亜鉛等が使用できる。特に
塩酸、パラトルエンスルホン酸、シュウ酸等が好ましく
使用されるが2種以上を併用する事もできる。これら酸
触媒の使用量は特に限定されるものではないが通常クミ
ルフェノールジメチロール化物の使用量に対して0.0
01〜0.1モル倍の範囲で選定することが出来る。
又、これら酸触媒を反応系内に添加する場合は適当な溶
剤に希釈したり徐々に滴下添加することも可能である。
As the acid catalyst used in the dehydration condensation reaction, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, oxalic acid, paratoluenesulfonic acid, boron trifluoride, zinc chloride or the like can be used. Particularly, hydrochloric acid, paratoluenesulfonic acid, oxalic acid and the like are preferably used, but two or more kinds can be used in combination. The amount of these acid catalysts used is not particularly limited, but is usually 0.0 with respect to the amount of cumylphenol dimethylol compound used.
It can be selected in the range of 01 to 0.1 times.
When these acid catalysts are added to the reaction system, they can be diluted with an appropriate solvent or gradually added dropwise.

【0029】この酸触媒存在下の脱水縮合反応は、好ま
しくは20℃〜130℃の範囲で行われるが、特に好ま
しくは40〜100℃の範囲で行われ、反応時間は通常
1〜20時間の範囲で選定することが出来る。又、この
反応はメタノール、トルエン、メチルイソブチルケトン
などの適当な溶媒の存在下で行うことが好ましい。更
に、こうして得られた縮合反応液は系内が中性になるま
で水洗を繰り返し、水を分離排水後、加熱減圧下、溶媒
及び未反応物を除去することにより式(1)で表される
樹脂が得られる。
The dehydration condensation reaction in the presence of the acid catalyst is preferably carried out in the range of 20 to 130 ° C., particularly preferably in the range of 40 to 100 ° C., and the reaction time is usually 1 to 20 hours. The range can be selected. Further, this reaction is preferably carried out in the presence of a suitable solvent such as methanol, toluene, methyl isobutyl ketone and the like. Further, the condensation reaction solution thus obtained is repeatedly washed with water until the inside of the system becomes neutral, and after water is separated and drained, the solvent and unreacted materials are removed under heating and reduced pressure, thereby being represented by the formula (1). A resin is obtained.

【0030】次に本発明の式(2)で表されるエポキシ
樹脂は、式(1)で表される樹脂とエピハロヒドリンと
を反応させることにより得られる。この反応は従来公知
のノボラック型フェノール樹脂とエピハロヒドリンとか
らポリグリシジルエーテルを得る方法に準じて行うこと
が出来る。例えば、式(1)で表される樹脂と過剰のエ
ピクロルヒドリン等のエピハロヒドリンの溶解混合物に
水酸化ナトリウム、水酸化カリウムなどのアルカリ金属
水酸化物を添加し、または、添加しながら20〜120
℃の間の温度で反応させる。この際アルカリ金属水酸化
物はその水溶液を使用してもよく、その場合は該アルカ
リ金属水酸化物の水溶液を連続的に反応系内に添加する
と共に減圧下、または常圧下、連続的に水及びエピハロ
ヒドリンを留出させ、更に分液し水は除去しエピハロヒ
ドリンは反応系内に連続的に戻す方法でもよい。
Next, the epoxy resin represented by the formula (2) of the present invention can be obtained by reacting the resin represented by the formula (1) with epihalohydrin. This reaction can be carried out according to a conventionally known method for obtaining a polyglycidyl ether from a novolak type phenol resin and epihalohydrin. For example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to a dissolved mixture of a resin represented by the formula (1) and an excess of epihalohydrin such as epichlorohydrin, or 20 to 120 while being added.
React at a temperature between ° C. At this time, an aqueous solution of the alkali metal hydroxide may be used, and in that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and the water is continuously added under reduced pressure or normal pressure. Alternatively, a method in which epihalohydrin is distilled off, liquid separation is performed, water is removed, and epihalohydrin is continuously returned to the reaction system may be used.

【0031】又、樹脂とエピハロヒドリンとの溶解混合
物にテトラメチルアンモニウムクロライド、テトラメチ
ルアンモニウムブロマイド、トリメチルベンジルアンモ
ニウムクロライドなどの第四級アンモニウム塩を触媒と
して添加し50℃〜150℃で反応させて得られるハロ
ヒドリンエーテル化物にアルカリ金属水酸化物の固体ま
たは水溶液を加え、再び20〜120℃の温度で反応さ
せ脱ハロゲン化水素(閉環)させる方法でもよい。
Further, it can be obtained by adding a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride as a catalyst to a dissolved mixture of resin and epihalohydrin and reacting at 50 ° C to 150 ° C. Alternatively, a solid or aqueous solution of an alkali metal hydroxide may be added to the halohydrin etherified product, and the mixture may be reacted again at a temperature of 20 to 120 ° C. for dehydrohalogenation (ring closure).

【0032】通常これらの反応において使用されるエピ
ハロヒドリンの量は原料となる式(1)の樹脂の水酸基
1当量に対し1〜20モル、好ましくは2〜10モルで
ある。アルカリ金属水酸化物の使用量は原料となる式
(1)の樹脂の水酸基1当量に対し0.8〜1.5モ
ル、好ましくは0.9〜1.1モルである。更に、反応
を円滑に進行させるためにメタノール、エタノール、な
どのアルコール類の他、ジメチルスルホン、ジメチルス
ルホキシドなどの非プロトン性極性溶媒などを添加して
反応を行うことが好ましい。
Usually, the amount of epihalohydrin used in these reactions is 1 to 20 mol, preferably 2 to 10 mol, based on 1 equivalent of hydroxyl group of the resin of the formula (1) as a raw material. The amount of the alkali metal hydroxide used is 0.8 to 1.5 mol, preferably 0.9 to 1.1 mol, per 1 equivalent of the hydroxyl group of the resin of the formula (1) which is the raw material. Furthermore, in order to allow the reaction to proceed smoothly, it is preferable to carry out the reaction by adding an aprotic polar solvent such as dimethyl sulfone or dimethyl sulfoxide in addition to alcohols such as methanol and ethanol.

【0033】これらのエポキシ化反応の反応物を水洗
後、又は、水洗無しにそのまま加熱減圧下、150〜2
20℃、圧力15mmHg以下でエピハロヒドリンや他
の添加溶媒等を除去することにより本発明の式(2)の
エポキシ樹脂を得ることが出来る。又、更に加水分解性
ハロゲンの少ないエポキシ樹脂とするために、回収した
エポキシ樹脂を再びトルエン、メチルイソブチルケトン
等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウム
などのアルカリ金属水酸化物の水溶液を加えて2段目の
反応を行い閉環を確実なものとする事もできる。この場
合アルカリ金属水酸化物の使用量はエポキシ化に使用し
た式(1)の樹脂の水酸基1当量に対して好ましくは
0.01〜0.2モル特に好ましくは0.05〜0.1
モルである。反応温度は好ましくは50〜120℃、反
応時間は通常0.5〜2時間である。
After washing the reaction products of these epoxidation reactions with or without washing with water, the mixture is heated to 150 to 2 under reduced pressure.
The epoxy resin of the formula (2) of the present invention can be obtained by removing epihalohydrin and other added solvents at 20 ° C. and a pressure of 15 mmHg or less. Further, in order to obtain an epoxy resin having less hydrolyzable halogen, the recovered epoxy resin is dissolved again in a solvent such as toluene or methyl isobutyl ketone, and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is prepared. It is also possible to secure the ring closure by carrying out the second step reaction by adding. In this case, the amount of the alkali metal hydroxide used is preferably 0.01 to 0.2 mol, particularly preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the resin of the formula (1) used for the epoxidation.
It is a mole. The reaction temperature is preferably 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

【0034】2段目反応終了後、生成した塩を濾過、水
洗等により除去し、更に、加熱減圧下トルエン、メチル
イソブチルケトン等の溶媒を留去することにより加水分
解性ハロゲンの少ない本発明の式(2)のエポキシ樹脂
が得られる。
After the completion of the second-step reaction, the produced salt is removed by filtration, washing with water and the like, and the solvent such as toluene and methyl isobutyl ketone is distilled off under reduced pressure with heating, whereby the amount of hydrolyzable halogen of the present invention is small. An epoxy resin of formula (2) is obtained.

【0035】以下、本発明のエポキシ樹脂組成物につい
て説明する。前記(4)のエポキシ樹脂組成物におい
て、式(1)で表される樹脂(以下、本発明の樹脂とい
う)は単独で、または、他の硬化剤と併用して使用する
ことが出来る。併用する場合本発明の樹脂の全硬化剤中
に占める割合は、20重量%以上が好ましく、特に30
重量%以上が好ましい。
The epoxy resin composition of the present invention will be described below. In the epoxy resin composition of the above (4), the resin represented by the formula (1) (hereinafter referred to as the resin of the present invention) can be used alone or in combination with other curing agents. When used in combination, the proportion of the resin of the present invention in the total curing agent is preferably 20% by weight or more, and particularly 30
It is preferably at least wt%.

【0036】本発明の樹脂と併用されうる他の硬化剤と
しては、例えば、脂肪族ポリアミン、芳香族ポリアミ
ン、ポリアミドポリアミン等のポリアミン系硬化剤、無
水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタ
ル酸等の酸無水物系硬化剤、フェノールノボラック、ク
レゾールノボラック等のフェノール系硬化剤、三フッ化
ホウ素等のルイス酸またはそれらの塩類、ジシアンジア
ミド類等の硬化剤等が挙げられるが、これらに限定され
るものではない。これらは単独で用いてもよく、2種以
上併用してもよい。
Other curing agents that can be used in combination with the resin of the present invention include, for example, polyamine type curing agents such as aliphatic polyamine, aromatic polyamine and polyamide polyamine, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like. Examples thereof include acid anhydride curing agents, phenolic novolacs, phenolic curing agents such as cresol novolacs, Lewis acids such as boron trifluoride or salts thereof, and curing agents such as dicyandiamides, but are not limited thereto. is not. These may be used alone or in combination of two or more.

【0037】前記(4)のエポキシ樹脂組成物におい
て、式(2)で表されるエポキシ樹脂(以下、本発明の
エポキシ樹脂という)は単独で、または、他のエポキシ
樹脂と併用して使用することが出来る。併用する場合本
発明のエポキシ樹脂の全エポキシ樹脂中に占める割合
は、20重量%以上が好ましく、特に30重量%以上が
好ましい。
In the epoxy resin composition of the above (4), the epoxy resin represented by the formula (2) (hereinafter referred to as the epoxy resin of the present invention) is used alone or in combination with other epoxy resins. You can When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 20% by weight or more, and particularly preferably 30% by weight or more.

【0038】本発明のエポキシ樹脂と併用されうる他の
エポキシ樹脂としては、ノボラック型エポキシ樹脂、ビ
スフェノールF型エポキシ樹脂、ビスフェノールA型エ
ポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式
エポキシ樹脂、ビフェノール型エポキシ樹脂等が挙げら
れるが、耐熱性という観点からノボラック型エポキシ樹
脂の使用が有利である。ノボラック型エポキシ樹脂とし
ては、例えば、フェノールノボラック型エポキシ樹脂、
クレゾールノボラック型エポキシ樹脂、ナフトールノボ
ラック型エポキシ樹脂、臭素化フェノールノボラック型
エポキシ樹脂等が挙げられる。併用されうる他のエポキ
シ樹脂はこれらに限定されるものではなく、又、これら
は単独で用いてもよく、二種以上併用してもよい。
Other epoxy resins which can be used in combination with the epoxy resin of the present invention include novolac type epoxy resin, bisphenol F type epoxy resin, bisphenol A type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin and biphenol type epoxy resin. Examples of the epoxy resin include novolac type epoxy resin, which is advantageous from the viewpoint of heat resistance. As the novolac type epoxy resin, for example, phenol novolac type epoxy resin,
Examples thereof include cresol novolac type epoxy resin, naphthol novolac type epoxy resin, and brominated phenol novolac type epoxy resin. Other epoxy resins that can be used in combination are not limited to these, and these may be used alone or in combination of two or more kinds.

【0039】前記(4)のエポキシ樹脂組成物におい
て、硬化剤として本発明の樹脂を使用する場合、エポキ
シ樹脂としては、前記の他のエポキシ樹脂や本発明のエ
ポキシ樹脂を使用することが出来る。
In the epoxy resin composition of the above (4), when the resin of the present invention is used as the curing agent, the above-mentioned other epoxy resin or the epoxy resin of the present invention can be used as the epoxy resin.

【0040】又、前記(4)のエポキシ樹脂組成物にお
いて、エポキシ樹脂として本発明のエポキシ樹脂を使用
する場合、硬化剤としては、前記の他の硬化剤や本発明
の樹脂を使用することが出来る。
In the epoxy resin composition (4), when the epoxy resin of the present invention is used as the epoxy resin, the above-mentioned other curing agent or the resin of the present invention may be used as the curing agent. I can.

【0041】本発明のエポキシ樹脂組成物において、硬
化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対
して硬化剤の官能基が0.5〜1.5当量となる量が好
ましく特に0.6〜1.2当量となる量が好ましい。
In the epoxy resin composition of the present invention, the amount of the curing agent used is preferably such that the functional group of the curing agent is 0.5 to 1.5 equivalents relative to 1 equivalent of the epoxy groups of the epoxy resin. It is preferably an amount of 0.6 to 1.2 equivalents.

【0042】本発明のエポキシ樹脂組成物には、必要に
より硬化促進剤を使用することが出来る。硬化促進剤と
してはイミダゾール系化合物、第三アミン系化合物、ト
リフェニルホスフィン化合物等が挙げられるが、これら
に限定されるものではなく、通常のエポキシ樹脂の硬化
促進剤として使用されるものならいずれも使用すること
ができる。これらは、単独で使用してもよく、二種以上
を併用することもできる。硬化促進剤の使用量はエポキ
シ樹脂100重量部に対して0.01〜15重量部が好
ましく特に0.1〜5重量部の範囲が好ましい。
If necessary, a curing accelerator can be used in the epoxy resin composition of the present invention. Examples of the curing accelerator include imidazole compounds, tertiary amine compounds, triphenylphosphine compounds and the like, but are not limited to these, and any of them can be used as a curing accelerator for ordinary epoxy resins. Can be used. These may be used alone or in combination of two or more. The amount of the curing accelerator used is preferably 0.01 to 15 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.

【0043】本発明のエポキシ樹脂組成物には、さらに
必要に応じて公知の添加剤を添加することが出来る。添
加剤としては、例えば、シリカ、アルミナ、タルク、ガ
ラス繊維等の無機充填剤、シランカップリング剤のよう
な表面処理剤、難燃剤、離型剤、顔料等が挙げられる。
If desired, known additives can be added to the epoxy resin composition of the present invention. Examples of the additives include inorganic fillers such as silica, alumina, talc and glass fibers, surface treatment agents such as silane coupling agents, flame retardants, release agents, pigments and the like.

【0044】本発明のエポキシ樹脂組成物は、各成分を
均一に混合することにより得られ、通常130〜180
℃の温度で30〜300秒の範囲で予備硬化し、更に1
50〜220℃の範囲で2〜10時間、後硬化すること
により充分な硬化反応が進行し、本発明の硬化物が得ら
れる。又、エポキシ樹脂組成物の成分を溶剤などに均一
に分散または溶解させた後、溶剤を除去し硬化させるこ
ともできる。
The epoxy resin composition of the present invention is obtained by uniformly mixing the components, and is usually 130 to 180.
Pre-cure in the range of 30-300 seconds at a temperature of ℃, 1
By post-curing in the range of 50 to 220 ° C. for 2 to 10 hours, a sufficient curing reaction proceeds to obtain the cured product of the present invention. It is also possible to uniformly disperse or dissolve the components of the epoxy resin composition in a solvent or the like, and then remove the solvent and cure.

【0045】本発明の樹脂、本発明のエポキシ樹脂はそ
の骨格に疎水基を含むと共に軟化点、溶融粘度が低く抑
えられているためにトランスファー成型等の作業性が良
好である。また屈折率が大きいという特徴を有すること
からプラスチックレンズ等の素材としても使用できる。
更に、前記のようにして得られる本発明の樹脂、及び/
または、本発明のエポキシ樹脂を含むエポキシ樹脂組成
物の硬化物は耐熱性を損なうことなく耐湿性をも具備す
るといった性能を有する。従って、本発明の樹脂、本発
明のエポキシ樹脂は高屈折率、耐湿性等の要求される広
範な分野でエポキシ樹脂硬化剤として、あるいはエポキ
シ樹脂として用いることができる。具体的には、各種封
止・封口材料、複合材料、積層板、絶縁材料等のあらゆ
る電気・電子材料の配合成分として有用な他、成形材
料、塗料材料、光学材料等にも使用でき、これらに限定
されるものではない。
Since the resin of the present invention and the epoxy resin of the present invention contain a hydrophobic group in the skeleton and have a low softening point and a low melt viscosity, they have good workability in transfer molding and the like. Further, since it has a characteristic of having a large refractive index, it can be used as a material for plastic lenses and the like.
Furthermore, the resin of the present invention obtained as described above, and /
Alternatively, the cured product of the epoxy resin composition containing the epoxy resin of the present invention has the property of having moisture resistance without impairing heat resistance. Therefore, the resin of the present invention and the epoxy resin of the present invention can be used as an epoxy resin curing agent or as an epoxy resin in a wide range of fields where high refractive index, moisture resistance and the like are required. Specifically, it is useful as a compounding component for various electrical / electronic materials such as various sealing / sealing materials, composite materials, laminated plates, insulating materials, etc., and can also be used for molding materials, coating materials, optical materials, etc. It is not limited to.

【0046】[0046]

【実施例】以下本発明を実施例で説明する。尚、実施例
中の屈折率は樹脂、エポキシ樹脂の50重量%テトラヒ
ドロフラン溶液のアッベの屈折計による25℃における
値より計算で求めた値、軟化点とはJIS K2425
(環球法)による値、加水分解性塩素とはジオキサン
中、1N−KOH〜エタノールで30分間、還流下分解
した時に滴定により求められる塩素量ppm、水酸基当
量及びエポキシ当量はg/eqを示す。尚、本発明はこ
れら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples. In addition, the refractive index in the examples is a value obtained by calculation from a value of a resin and a 50% by weight solution of an epoxy resin in tetrahydrofuran at 25 ° C. by an Abbe refractometer, and the softening point is JIS K2425.
(Ring and ball method) Hydrolyzable chlorine is 1N-KOH to ethanol in dioxane for 30 minutes, and when decomposed under reflux, chlorine content ppm, hydroxyl group equivalent and epoxy equivalent determined by titration indicate g / eq. The present invention is not limited to these examples.

【0047】実施例1 温度計、滴下ロート、冷却管、撹拌器を取り付けたフラ
スコに水400重量部、水酸化ナトリウム(純分99%
粒状)42.6重量部を仕込み、窒素パージを施しなが
らアルカリ分を溶解させ、更に50℃で撹拌下、4−ク
ミルフェノール212重量部(1モル)を添加した。系
内は均一透明になったが、更に、50℃の温度で1時間
反応させた。次いでホルマリン(純分35重量%)18
2重量部(2.12モル)を発熱に注意しながら添加し
た。添加終了後60℃で2時間反応させ、水を300重
量部添加し更に系内の温度を30℃まで冷却した後、リ
ン酸二水素ナトリウムの20重量%水溶液20重量部、
メチルイソブチルケトン600重量部を添加した。次い
で塩酸水溶液(純分35重量%)105重量部を発熱に
注意しながら添加し中和した後、水相は廃棄した。更
に、水300重量部で2回洗浄し2,6−ジヒドロキシ
メチル−4−クミルフェノール(以下ジメチロール化物
という)を含むメチルイソブチルケトン(以下MIBK
という)溶液を得た。
Example 1 A flask equipped with a thermometer, a dropping funnel, a condenser and a stirrer was equipped with 400 parts by weight of water and sodium hydroxide (purity: 99%).
Granules) 42.6 parts by weight were charged, the alkali content was dissolved under nitrogen purging, and 212 parts by weight (1 mol) of 4-cumylphenol was added under stirring at 50 ° C. Although the inside of the system became homogeneous and transparent, the reaction was further carried out at a temperature of 50 ° C. for 1 hour. Then formalin (35% by weight pure) 18
2 parts by weight (2.12 mol) were added, paying attention to the exotherm. After completion of the addition, the mixture was reacted at 60 ° C for 2 hours, 300 parts by weight of water was added, and the temperature in the system was further cooled to 30 ° C.
600 parts by weight of methyl isobutyl ketone were added. Next, 105 parts by weight of an aqueous hydrochloric acid solution (pure content 35% by weight) was added while paying attention to heat generation and neutralization, and the aqueous phase was discarded. Furthermore, it was washed twice with 300 parts by weight of water, and methyl isobutyl ketone (hereinafter referred to as MIBK) containing 2,6-dihydroxymethyl-4-cumylphenol (hereinafter referred to as dimethylol compound).
A solution was obtained.

【0048】次いで上記ジメチロール化物を含むMIB
K溶液にo−クレゾール(純分99重量%)460重量
部(4.2モル)、パラトルエンスルホン酸2重量部を
添加し、40℃で1時間、60℃で1時間、80℃で2
時間、脱水縮合反応させた。反応終了後、反応混合物を
分液ロートに移し、水洗を繰り返し、中性に戻した。そ
の後油層からロータリーエバポレーターを使って180
℃、5mmHgの加熱、減圧下MIBK、及び未反応o
−クレゾールを除去し、室温で淡黄色、透明、固体の本
発明の樹脂(A)425重量部を得た。
Then, a MIB containing the above dimethylol compound
To the K solution, 460 parts by weight (4.2 mol) of o-cresol (purity 99% by weight) and 2 parts by weight of paratoluenesulfonic acid were added, and the mixture was added at 40 ° C. for 1 hour, 60 ° C. for 1 hour, and 80 ° C. for 2 hours.
The dehydration condensation reaction was carried out for a time. After completion of the reaction, the reaction mixture was transferred to a separating funnel and washed with water repeatedly to return to neutral. Then 180 from the oil layer using a rotary evaporator
℃, 5mmHg heating, MIBK under reduced pressure, and unreacted o
-Cresol was removed to obtain 425 parts by weight of a resin (A) of the present invention which was a pale yellow, transparent and solid at room temperature.

【0049】得られた樹脂(A)の軟化点は81.6
℃、150℃におけるICI粘度は1.4psであり、
屈折率は1.611、水酸基当量は155であった。
又、この樹脂(A)を溶媒にテトラヒドロフラン(TH
F)を用いて、次のGPC分析装置により分析したとこ
ろ図1に示される分子量分布曲線を得た。
The softening point of the obtained resin (A) is 81.6.
ICI viscosity at ℃, 150 ℃ is 1.4ps,
The refractive index was 1.611 and the hydroxyl equivalent was 155.
Further, using this resin (A) as a solvent, tetrahydrofuran (TH
When F) was used and analyzed by the following GPC analyzer, the molecular weight distribution curve shown in FIG. 1 was obtained.

【0050】 GPC装置 送液ポンプ :L−6000 (日立製作所製) カラム :KF−803(1本)+KF−802.5(2本)+KF−80 2(1本) (昭和電工製) カラム温度 :40℃ 溶媒 :テトラヒドロフラン 1ml/min 検出器 :RI SE−61 (昭和電工製) データ処理 :CR−4A (島津製作所製)GPC device Liquid feed pump: L-6000 (manufactured by Hitachi Ltd.) Column: KF-803 (1 unit) + KF-802.5 (2 units) + KF-802 (1 unit) (Showa Denko) Column temperature : 40 ° C. Solvent: Tetrahydrofuran 1 ml / min Detector: RI SE-61 (Showa Denko) Data processing: CR-4A (Shimadzu)

【0051】この分析条件で標準ポリスチレンを使用し
て得た検量線よりメインピークの組成分の分子量はベン
ゼン環4個を有する4核体のリテンションタイムに相当
し、この4核体と思われるメインピーク成分を分取し、
マススペクトル(FAB−MS)によって分析したとこ
ろM+ 453が得られた。このことと上記分子量分布曲
線から、この樹脂(A)は次式(4)で表される樹脂
(n=0.3)であることを確認した。
From the calibration curve obtained by using standard polystyrene under these analytical conditions, the molecular weight of the composition of the main peak corresponds to the retention time of the tetranuclear body having four benzene rings, which is considered to be the main tetranuclear body. Sort the peak components,
Mass spectrum (FAB-MS) analysis gave M + 453. From this fact and the above molecular weight distribution curve, it was confirmed that this resin (A) was a resin (n = 0.3) represented by the following formula (4).

【0052】[0052]

【化16】 [Chemical 16]

【0053】実施例2 o−クレゾールの代わりに2,6−キシレノールを30
5重量部(2.5モル)使用した他は実施例1と同様に
反応を行い室温で淡黄色、透明、固体の本発明の樹脂
(B)402重量部を得た。
Example 2 2,6-xylenol was used in place of o-cresol in 30%.
Reaction was carried out in the same manner as in Example 1 except that 5 parts by weight (2.5 mol) was used to obtain 402 parts by weight of the resin (B) of the present invention which was a pale yellow, transparent and solid at room temperature.

【0054】得られた樹脂(B)の軟化点は68.2
℃、150℃におけるICI粘度は0.6psであり、
屈折率は1.607、水酸基当量は162であった。
又、この樹脂(B)について実施例1と同じGPC装置
で分析を行い図2に示される分子量分布曲線を得た。ま
たメインピーク成分を分取しマススペクトル(FAB−
MS)によって分析したところM+ 481が得られた。
このことと分子量分布曲線から、この樹脂(B)は次式
(5)で表される樹脂(n=0.1)であることを確認
した。
The resin (B) thus obtained has a softening point of 68.2.
The ICI viscosity at 60 ° C and 150 ° C is 0.6 ps,
The refractive index was 1.607 and the hydroxyl equivalent was 162.
Further, this resin (B) was analyzed by the same GPC apparatus as in Example 1 to obtain the molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and a mass spectrum (FAB-
Analysis by MS) gave M + 481.
From this fact and the molecular weight distribution curve, it was confirmed that this resin (B) was a resin (n = 0.1) represented by the following formula (5).

【0055】[0055]

【化17】 [Chemical 17]

【0056】実施例3 o−クレゾールの代わりにo−tert−ブチルフェノ
ールを600重量部(4.0モル)使用し、脱水縮合反
応の最後に更に95℃で2時間反応した他は実施例1と
同様に反応を行い室温で淡黄色、透明、固体の本発明の
樹脂(C)492重量部を得た。
Example 3 The same as Example 1 except that 600 parts by weight (4.0 mol) of o-tert-butylphenol was used instead of o-cresol, and the reaction was further continued at 95 ° C. for 2 hours at the end of the dehydration condensation reaction. The same reaction was carried out to obtain 492 parts by weight of a resin (C) of the present invention which was light yellow, transparent and solid at room temperature.

【0057】得られた樹脂(C)の軟化点は85.5
℃、150℃におけるICI粘度は1.0psであり、
屈折率は1.601、水酸基当量は212であった。
又、この樹脂(C)について実施例1と同じGPC装置
で分析を行い図3に示される分子量分布曲線を得た。ま
たメインピーク成分を分取しマススペクトル(FAB−
MS)によって分析したところM+ 537が得られた。
このことと分子量分布曲線から、この樹脂(C)は次式
(6)で表される樹脂(n=0.3)であることを確認
した。
The resin (C) thus obtained has a softening point of 85.5.
ICI viscosity at ℃, 150 ℃ is 1.0 ps,
The refractive index was 1.601 and the hydroxyl equivalent was 212.
Further, this resin (C) was analyzed by the same GPC apparatus as in Example 1 to obtain the molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and a mass spectrum (FAB-
Analysis by MS) gave M + 537.
From this fact and the molecular weight distribution curve, it was confirmed that this resin (C) was a resin (n = 0.3) represented by the following formula (6).

【0058】[0058]

【化18】 [Chemical 18]

【0059】実施例4 o−クレゾールの代わりにo−フェニルフェノールを6
80重量部(4.0モル)使用し、脱水縮合反応の最後
に更に90℃で2時間反応した他は実施例1と同様に反
応を行い室温で淡黄色、透明、固体の本発明の樹脂
(D)530重量部を得た。
Example 4 Instead of o-cresol, 6 o-phenylphenol was used.
80 parts by weight (4.0 mol) was used, and the reaction was carried out in the same manner as in Example 1 except that the dehydration condensation reaction was further reacted at 90 ° C. for 2 hours at the end, and the resin of the present invention was pale yellow, transparent and solid at room temperature. (D) 530 parts by weight was obtained.

【0060】得られた樹脂(D)の軟化点は91.2
℃、150℃におけるICI粘度は2.7psであり、
屈折率は1.639、水酸基当量は197であった。
又、この樹脂(D)について実施例1と同じGPC装置
で分析を行い図4に示される分子量分布曲線を得た。ま
たメインピーク成分を分取しマススペクトル(FAB−
MS)によって分析したところM+ 577が得られた。
このことと分子量分布曲線から、この樹脂は次式(7)
で表される樹脂(n=0.3)であることを確認した。
The softening point of the obtained resin (D) is 91.2.
ICI viscosity at ℃, 150 ℃ is 2.7ps,
The refractive index was 1.639 and the hydroxyl equivalent was 197.
Further, this resin (D) was analyzed by the same GPC apparatus as in Example 1 to obtain the molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and a mass spectrum (FAB-
Analysis by MS) gave M + 577.
From this fact and the molecular weight distribution curve, this resin has the following formula (7).
It was confirmed that the resin was represented by (n = 0.3).

【0061】[0061]

【化19】 [Chemical 19]

【0062】実施例5 o−クレゾールの代わりにレゾルシノールを440重量
部(4.0モル)使用した他は実施例1と同様に反応を
行い室温で褐色、透明、固体の本発明の樹脂(E)42
3重量部を得た。
Example 5 The reaction was carried out in the same manner as in Example 1 except that 440 parts by weight (4.0 mol) of resorcinol was used instead of o-cresol, and the resin of the present invention (E ) 42
3 parts by weight were obtained.

【0063】得られた樹脂(E)の軟化点は93.3
℃、150℃におけるICI粘度は6.4psであり、
屈折率は1.631、水酸基当量は118であった。
又、この樹脂(E)について実施例1と同じGPC装置
で分析を行い図5に示される分子量分布曲線を得た。ま
たメインピーク成分を分取しマススペクトル(FAB−
MS)によって分析したところM+ 457が得られた。
このことと分子量分布曲線から、この樹脂は次式(8)
で表される樹脂(n=0.1)であることを確認した。
The softening point of the obtained resin (E) is 93.3.
ICI viscosity at ℃, 150 ℃ is 6.4 ps,
The refractive index was 1.631 and the hydroxyl equivalent was 118.
Further, this resin (E) was analyzed by the same GPC apparatus as in Example 1 to obtain the molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and a mass spectrum (FAB-
Analysis by MS) gave M + 457.
From this fact and the molecular weight distribution curve, this resin has the following formula (8).
It was confirmed that the resin was represented by (n = 0.1).

【0064】[0064]

【化20】 [Chemical 20]

【0065】実施例6 o−クレゾールの代わりに1−ナフトールを864重量
部(6.0モル)使用した他は実施例1と同様に反応を
行い室温で黄色、透明、固体の本発明の樹脂(F)52
6重量部を得た。
Example 6 The reaction of Example 1 was repeated except that 864 parts by weight (6.0 mol) of 1-naphthol was used instead of o-cresol, and the resin of the present invention was yellow, transparent and solid at room temperature. (F) 52
6 parts by weight were obtained.

【0066】得られた樹脂(F)の軟化点は95.2
℃、150℃におけるICI粘度は3.5psであり、
屈折率は1.651、水酸基当量は177であった。
又、この樹脂(F)について実施例1と同じGPC装置
で分析を行い図6に示される分子量分布曲線を得た。ま
たメインピーク成分を分取しマススペクトル(FAB−
MS)によって分析したところM+ 525が得られた。
このことと分子量分布曲線から、この樹脂は次式(9)
で表される樹脂(n=0.2)であることを確認した。
The softening point of the obtained resin (F) is 95.2.
ICI viscosity at 300C and 150C is 3.5 ps,
The refractive index was 1.651 and the hydroxyl equivalent was 177.
Further, this resin (F) was analyzed by the same GPC apparatus as in Example 1 to obtain a molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and a mass spectrum (FAB-
Analysis by MS) gave M + 525.
From this fact and the molecular weight distribution curve, this resin has the following formula (9).
It was confirmed that the resin was represented by (n = 0.2).

【0067】[0067]

【化21】 [Chemical 21]

【0068】実施例7 o−クレゾールの代わりに2−ナフトールを360重量
部(2.5モル)使用した他は実施例1と同様に反応を
行い室温で黄色、透明、固体の本発明の樹脂(G)51
3重量部を得た。
Example 7 The reaction of Example 1 was repeated except that 360 parts by weight (2.5 mol) of 2-naphthol was used in place of o-cresol, and the resin of the present invention was yellow, transparent and solid at room temperature. (G) 51
3 parts by weight were obtained.

【0069】得られた樹脂(G)の軟化点は結晶化して
測定不可能であったが、150℃におけるICI粘度は
6.0psであり、屈折率は1.654、水酸基当量は
179であった。又、この樹脂(G)について実施例1
と同じGPC装置で分析を行い図7に示される分子量分
布曲線を得た。またメインピーク成分を分取しマススペ
クトル(FAB−MS)によって分析したところM+
25が得られた。このことと分子量分布曲線から、この
樹脂は次式(10)で表される樹脂(n=0.1)であ
ることを確認した。
The softening point of the obtained resin (G) was crystallized and could not be measured, but the ICI viscosity at 150 ° C. was 6.0 ps, the refractive index was 1.654, and the hydroxyl equivalent was 179. It was Moreover, about this resin (G), Example 1
The same GPC device was used for analysis, and the molecular weight distribution curve shown in FIG. 7 was obtained. The main peak component was fractionated and analyzed by mass spectrum (FAB-MS) to give M + 5
25 was obtained. From this fact and the molecular weight distribution curve, it was confirmed that this resin was a resin (n = 0.1) represented by the following formula (10).

【0070】[0070]

【化22】 [Chemical formula 22]

【0071】実施例8 o−クレゾールの代わりに1,6−ジヒドロキシナフタ
レンを480重量部(3.0モル)使用し更に、未反応
物の回収温度を230℃とした他は実施例1と同様に反
応・操作を行い室温で褐色、透明、固体の本発明の樹脂
(H)500重量部を得た。
Example 8 The same as Example 1 except that 480 parts by weight (3.0 mol) of 1,6-dihydroxynaphthalene was used in place of o-cresol, and the recovery temperature of unreacted material was 230 ° C. The reaction and operation were carried out to obtain 500 parts by weight of a resin (H) of the present invention which was brown, transparent and solid at room temperature.

【0072】得られた樹脂(H)の軟化点は129.6
℃、150℃におけるICI粘度は40ps以上であ
り、屈折率は1.649、水酸基当量は124であっ
た。又、この樹脂(H)について実施例1と同じGPC
装置で分析を行い図8に示される分子量分布曲線を得
た。またメインピーク成分を分取しマススペクトル(F
AB−MS)によって分析したところM+ 557が得ら
れた。このことと分子量分布曲線から、この樹脂は次式
(11)で表される樹脂(n=0.7)であることを確
認した。
The softening point of the obtained resin (H) is 129.6.
The ICI viscosity at 40 ° C. and 150 ° C. was 40 ps or more, the refractive index was 1.649, and the hydroxyl equivalent was 124. The same GPC as in Example 1 was applied to this resin (H).
The analysis was carried out by the apparatus to obtain the molecular weight distribution curve shown in FIG. In addition, the main peak component is collected and the mass spectrum (F
It was analyzed by (AB-MS) to give M + 557. From this fact and the molecular weight distribution curve, it was confirmed that this resin was a resin (n = 0.7) represented by the following formula (11).

【0073】[0073]

【化23】 [Chemical formula 23]

【0074】実施例9 実施例1で得られた樹脂(A)155重量部にエピクロ
ルヒドリン555重量部(6モル)、DMSOを280
重量部加え溶解後、50℃に加熱しフレーク状水酸化ナ
トリウム(純分99%)42重量部(1.04モル)を
100分間かけて添加し、その後さらに60℃で2時
間、70℃で1時間反応させた。反応終了後、水洗を繰
り返し、水層は分離除去し、油層から加熱減圧下、過剰
のエピクロルヒドリンを留去し、残留物に500重量部
のメチルイソブチルケトンを加え溶解した。
Example 9 155 parts by weight of the resin (A) obtained in Example 1 was added with 555 parts by weight of epichlorohydrin (6 mol) and 280 parts of DMSO.
After adding 50 parts by weight and dissolving, the mixture was heated to 50 ° C., 42 parts by weight (1.04 mol) of flaky sodium hydroxide (purity 99%) was added over 100 minutes, and then at 60 ° C. for 2 hours and at 70 ° C. The reaction was carried out for 1 hour. After completion of the reaction, washing with water was repeated, the aqueous layer was separated and removed, and excess epichlorohydrin was distilled off from the oil layer under heating and reduced pressure, and 500 parts by weight of methyl isobutyl ketone was added and dissolved in the residue.

【0075】更に、このメチルイソブチルケトンの溶液
を70℃に加熱し30重量%の水酸化ナトリウム水溶液
10重量部を添加し1時間反応させた後、水洗を繰り返
しpHを中性とした。更に水層は分離除去し、油層から
加熱減圧下メチルイソブチルケトンを留去し、淡黄色、
透明、固体の本発明のエポキシ樹脂(I)203重量部
を得た。
Further, this methyl isobutyl ketone solution was heated to 70 ° C., 10 parts by weight of a 30% by weight sodium hydroxide aqueous solution was added, and the mixture was reacted for 1 hour, and then washed with water repeatedly to make the pH neutral. Further, the aqueous layer was separated and removed, and methyl isobutyl ketone was distilled off from the oil layer under heating and reduced pressure to give a pale yellow,
203 parts by weight of a transparent and solid epoxy resin (I) of the present invention was obtained.

【0076】得られたエポキシ樹脂(I)の軟化点は5
3.7℃、150℃におけるICI粘度は0.6psで
あり、屈折率は1.589、エポキシ当量は221、加
水分解性塩素は360ppmであった。この樹脂(I)
について液体クロマトグラフィー(GPC、分析条件は
実施例1と同じ)で分析を行い図9に示される分子量分
布曲線を得た。又、メインピーク成分を分取しマススペ
クトル(FAB−MS)により分析したところM+ 62
1が得られた。このことと分子量分布曲線からこのエポ
キシ樹脂は次式(12)で表されるエポキシ樹脂(n=
0.5)であることを確認した。
The softening point of the obtained epoxy resin (I) is 5
The ICI viscosity at 3.7 ° C. and 150 ° C. was 0.6 ps, the refractive index was 1.589, the epoxy equivalent was 221 and the hydrolyzable chlorine was 360 ppm. This resin (I)
Was analyzed by liquid chromatography (GPC, analysis conditions are the same as in Example 1) to obtain a molecular weight distribution curve shown in FIG. The main peak component was fractionated and analyzed by mass spectrum (FAB-MS) to find that M + 62
1 was obtained. From this fact and the molecular weight distribution curve, this epoxy resin is represented by the following formula (12) (n =
It was confirmed to be 0.5).

【0077】[0077]

【化24】 [Chemical formula 24]

【0078】実施例10 樹脂(B)160重量部を使用した他は実施例9と同様
に反応・操作を行い淡黄色、透明、固体の本発明のエポ
キシ樹脂(J)208重量部を得た。得られたエポキシ
樹脂(J)の軟化点は45.8℃、150℃におけるI
CI粘度は0.9psであり、屈折率は1.575、エ
ポキシ当量は235、加水分解性塩素は350ppmで
あった。この樹脂(J)について液体クロマトグラフィ
ー(GPC、分析条件は実施例1と同じ)で分析を行い
図10に示される分子量分布曲線を得た。又、メインピ
ーク成分を分取しマススペクトル(FAB−MS)によ
り分析したところM+ 649が得られた。このことと分
子量分布曲線からこのエポキシ樹脂は次式(13)で表
されるエポキシ樹脂(n=0.2)であることを確認し
た。
Example 10 The same reaction and operation as in Example 9 were carried out except that 160 parts by weight of the resin (B) was used to obtain 208 parts by weight of a pale yellow, transparent, solid epoxy resin (J) of the present invention. . The obtained epoxy resin (J) has a softening point of I at 45.8 ° C and 150 ° C.
The CI viscosity was 0.9 ps, the refractive index was 1.575, the epoxy equivalent was 235, and the hydrolyzable chlorine was 350 ppm. This resin (J) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 10 was obtained. Further, the main peak component was collected and analyzed by mass spectrum (FAB-MS) to obtain M + 649. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.2) represented by the following formula (13).

【0079】[0079]

【化25】 [Chemical 25]

【0080】実施例11 樹脂(C)214重量部を使用した他は実施例9と同様
に反応・操作を行い淡黄色、透明、固体の本発明のエポ
キシ樹脂(K)255重量部を得た。得られたエポキシ
樹脂(K)の軟化点は67.3℃、150℃におけるI
CI粘度は1.2psであり、屈折率は1.573、エ
ポキシ当量は285、加水分解性塩素は345ppmで
あった。この樹脂(K)について液体クロマトグラフィ
ー(GPC、分析条件は実施例1と同じ)で分析を行い
図11に示される分子量分布曲線を得た。又、メインピ
ーク成分を分取しマススペクトル(FAB−MS)によ
り分析したところM+ 705が得られた。このことと分
子量分布曲線からこのエポキシ樹脂は次式(14)で表
されるエポキシ樹脂(n=0.3)であることを確認し
た。
Example 11 The same reaction and operation as in Example 9 were carried out except that 214 parts by weight of the resin (C) was used to obtain 255 parts by weight of a pale yellow, transparent and solid epoxy resin (K) of the present invention. . The obtained epoxy resin (K) has a softening point of I at 67.3 ° C and 150 ° C.
The CI viscosity was 1.2 ps, the refractive index was 1.573, the epoxy equivalent was 285, and the hydrolyzable chlorine was 345 ppm. This resin (K) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 11 was obtained. When the main peak component was collected and analyzed by mass spectrum (FAB-MS), M + 705 was obtained. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.3) represented by the following formula (14).

【0081】[0081]

【化26】 [Chemical formula 26]

【0082】実施例12 樹脂(D)197重量部を使用した他は実施例9と同様
に反応・操作を行い淡黄色、透明、固体の本発明のエポ
キシ樹脂(L)239重量部を得た。得られたエポキシ
樹脂(L)の軟化点は69.8℃、150℃におけるI
CI粘度は1.7psであり、屈折率は1.609、エ
ポキシ当量は270、加水分解性塩素は380ppmで
あった。この樹脂(L)について液体クロマトグラフィ
ー(GPC、分析条件は実施例1と同じ)で分析を行い
図12に示される分子量分布曲線を得た。又、メインピ
ーク成分を分取しマススペクトル(FAB−MS)によ
り分析したところM+ 745が得られた。このことと分
子量分布曲線からこのエポキシ樹脂は次式(15)で表
されるエポキシ樹脂(n=0.4)であることを確認し
た。
Example 12 The same reaction and operation as in Example 9 except that 197 parts by weight of the resin (D) were used to obtain 239 parts by weight of a pale yellow, transparent, solid epoxy resin (L) of the present invention. . The obtained epoxy resin (L) has a softening point of I at 69.8 ° C and 150 ° C.
The CI viscosity was 1.7 ps, the refractive index was 1.609, the epoxy equivalent was 270, and the hydrolyzable chlorine was 380 ppm. This resin (L) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 12 was obtained. The main peak component was collected and analyzed by mass spectrum (FAB-MS) to obtain M + 745. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.4) represented by the following formula (15).

【0083】[0083]

【化27】 [Chemical 27]

【0084】実施例13 樹脂(E)108重量部を使用した他は実施例9と同様
に反応・操作を行い淡黄色、透明、固体の本発明のエポ
キシ樹脂(M)156重量部を得た。得られたエポキシ
樹脂(M)の軟化点は61.3℃、150℃におけるI
CI粘度は3.0psであり、屈折率は1.583、エ
ポキシ当量は183、加水分解性塩素は390ppmで
あった。この樹脂(M)について液体クロマトグラフィ
ー(GPC、分析条件は実施例1と同じ)で分析を行い
図13に示される分子量分布曲線を得た。又、メインピ
ーク成分を分取しマススペクトル(FAB−MS)によ
り分析したところM+ 737が得られた。このことと分
子量分布曲線からこのエポキシ樹脂は次式(16)で表
されるエポキシ樹脂(n=0.9)であることを確認し
た。
Example 13 The same reaction and operation as in Example 9 was carried out except that 108 parts by weight of the resin (E) was used to obtain 156 parts by weight of a pale yellow, transparent, solid epoxy resin (M) of the present invention. . The resulting epoxy resin (M) has a softening point of I at 61.3 ° C and 150 ° C.
The CI viscosity was 3.0 ps, the refractive index was 1.583, the epoxy equivalent was 183, and the hydrolyzable chlorine was 390 ppm. This resin (M) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 13 was obtained. The main peak component was fractionated and analyzed by mass spectrum (FAB-MS) to obtain M + 737. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.9) represented by the following formula (16).

【0085】[0085]

【化28】 [Chemical 28]

【0086】実施例14 樹脂(F)172重量部を使用した他は実施例9と同様
に反応・操作を行い淡黄色、透明、固体の本発明のエポ
キシ樹脂(N)222重量部を得た。得られたエポキシ
樹脂(N)の軟化点は74.8℃、150℃におけるI
CI粘度は1.6psであり、屈折率は1.627、エ
ポキシ当量は257、加水分解性塩素は320ppmで
あった。この樹脂(N)について液体クロマトグラフィ
ー(GPC、分析条件は実施例1と同じ)で分析を行い
図14に示される分子量分布曲線を得た。又、ピーク成
分を分取しマススペクトル(FAB−MS)により分析
したところM+ 693が得られた。このことと分子量分
布曲線からこのエポキシ樹脂は次式(17)で表される
エポキシ樹脂(n=0.2)であることを確認した。
Example 14 The same reaction and operation as in Example 9 were carried out except that 172 parts by weight of the resin (F) was used to obtain 222 parts by weight of a pale yellow, transparent, solid epoxy resin (N) of the present invention. . The softening points of the obtained epoxy resin (N) are 74.8 ° C. and I at 150 ° C.
The CI viscosity was 1.6 ps, the refractive index was 1.627, the epoxy equivalent was 257, and the hydrolyzable chlorine was 320 ppm. This resin (N) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 14 was obtained. Moreover, when the peak component was fractionated and analyzed by mass spectrum (FAB-MS), M + 693 was obtained. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.2) represented by the following formula (17).

【0087】[0087]

【化29】
[Chemical 29]

【0088】実施例15 樹脂(G)174重量部を使用した他は実施例9と同様
に反応・操作を行い黄色、透明、固体の本発明のエポキ
シ樹脂(O)218重量部を得た。得られたエポキシ樹
脂(O)の軟化点は73.0℃、150℃におけるIC
I粘度は2.0psであり、屈折率は1.629、エポ
キシ当量は266、加水分解性塩素は330ppmであ
った。この樹脂(O)について液体クロマトグラフィー
(GPC、分析条件は実施例1と同じ)で分析を行い図
15に示される分子量分布曲線を得た。又、メインピー
ク成分を分取しマススペクトル(FAB−MS)により
分析したところM+ 693が得られた。このことと分子
量分布曲線からこのエポキシ樹脂は次式(18)で表さ
れるエポキシ樹脂(n=0.3)であることを確認し
た。
Example 15 The same reaction and operation as in Example 9 were carried out except that 174 parts by weight of the resin (G) was used to obtain 218 parts by weight of a yellow, transparent and solid epoxy resin (O) of the present invention. The obtained epoxy resin (O) has a softening point of 73.0 ° C. and IC at 150 ° C.
The I viscosity was 2.0 ps, the refractive index was 1.629, the epoxy equivalent was 266, and the hydrolyzable chlorine was 330 ppm. This resin (O) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 15 was obtained. The main peak component was collected and analyzed by mass spectrum (FAB-MS), and M + 693 was obtained. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 0.3) represented by the following formula (18).

【0089】[0089]

【化30】 [Chemical 30]

【0090】実施例16 樹脂(H)117重量部を使用した他は実施例9と同様
に反応・操作を行い褐色、透明、固体の本発明のエポキ
シ樹脂(P)165重量部を得た。得られたエポキシ樹
脂(P)の軟化点は85.3℃、150℃におけるIC
I粘度は9.4psであり、屈折率は1.630、エポ
キシ当量は187、加水分解性塩素は390ppmであ
った。この樹脂(P)について液体クロマトグラフィー
(GPC、分析条件は実施例1と同じ)で分析を行い図
16に示される分子量分布曲線を得た。又、メインピー
ク成分を分取しマススペクトル(FAB−MS)により
分析したところM+ 837が得られた。このことと分子
量分布曲線からこのエポキシ樹脂は次式(19)で表さ
れるエポキシ樹脂(n=1.2)であることを確認し
た。
Example 16 The same reaction and operation as in Example 9 were carried out except that 117 parts by weight of the resin (H) was used to obtain 165 parts by weight of a brown, transparent and solid epoxy resin (P) of the present invention. The resulting epoxy resin (P) has a softening point of 85.3 ° C and IC at 150 ° C.
The I viscosity was 9.4 ps, the refractive index was 1.630, the epoxy equivalent was 187, and the hydrolyzable chlorine was 390 ppm. This resin (P) was analyzed by liquid chromatography (GPC, analysis conditions being the same as in Example 1), and the molecular weight distribution curve shown in FIG. 16 was obtained. The main peak component was collected and analyzed by mass spectrum (FAB-MS), and M + 837 was obtained. From this fact and the molecular weight distribution curve, it was confirmed that this epoxy resin was an epoxy resin (n = 1.2) represented by the following formula (19).

【0091】[0091]

【化31】 [Chemical 31]

【0092】試験例 上記実施例1〜8で得られた樹脂(A)、(B)、
(C)、(D)、(E)、(F)、(G)、(H)をそ
れぞれ使用し、又、比較例1としてビスフェノールA型
樹脂(樹脂(X)、水酸基当量116、屈折率1.60
7、融点156℃)を使用し、これら硬化剤100重量
部に対してエポキシ樹脂(o−クレゾールノボラック型
エポキシ樹脂、EOCN−1020(日本化薬(株)
製)、エポキシ当量200、加水分解性塩素380pp
m、150℃におけるICI粘度3.2ps)及び硬化
促進剤(トリフェニルホスフィン)を表1に示す使用量
で配合し、トランスファー成形により樹脂成形体を調製
し160℃×2時間+180℃×8時間の硬化条件によ
り硬化させた。この様にして得られた硬化物のガラス転
移温度、吸水率を測定した結果を表1に示す。
Test Example Resins (A), (B) obtained in Examples 1 to 8 above,
(C), (D), (E), (F), (G), and (H) are used respectively, and as Comparative Example 1, a bisphenol A type resin (resin (X), hydroxyl group equivalent 116, refractive index 1.60
7, melting point 156 [deg.] C., and an epoxy resin (o-cresol novolac type epoxy resin, EOCN-1020 (Nippon Kayaku Co., Ltd.) for 100 parts by weight of these curing agents
Made), epoxy equivalent 200, hydrolyzable chlorine 380pp
m, an ICI viscosity at 150 ° C. of 3.2 ps) and a curing accelerator (triphenylphosphine) were used in amounts shown in Table 1, and a resin molded body was prepared by transfer molding to obtain 160 ° C. × 2 hours + 180 ° C. × 8 hours. It was cured under the following curing conditions. The results of measuring the glass transition temperature and water absorption of the cured product thus obtained are shown in Table 1.

【0093】更に、上記実施例9〜16で得られたエポ
キシ樹脂(I)、(J)、(K)、(L)、(M)、
(N)、(O)、(P)を使用し、又、比較例2として
ビスフェノールA型エポキシ樹脂(エポキシ樹脂
(Y)、エポキシ当量189、加水分解性塩素560p
pm、屈折率1.574、150℃におけるICI粘度
0.1ps以下)を使用し、これらエポキシ樹脂150
重量部に対して硬化剤(フェノールノボラック型樹脂、
PN−80(日本化薬(株)製)、水酸基当量106g
/mol、150℃におけるICI粘度1.5ps)及
び硬化促進剤(トリフェニルホスフィン)を表2に示す
使用量で配合し、トランスファー成形により樹脂成形体
を調製し160℃×2時間+180℃×8時間の硬化条
件により硬化させた。この様にして得られた硬化物のガ
ラス転移温度、吸水率を測定した結果を表2に示す。
Further, the epoxy resins (I), (J), (K), (L), (M), obtained in Examples 9 to 16 above,
(N), (O) and (P) are used, and as a comparative example 2, a bisphenol A type epoxy resin (epoxy resin (Y), epoxy equivalent 189, hydrolyzable chlorine 560p is used.
pm, refractive index 1.574, ICI viscosity at 150 ° C. is 0.1 ps or less), and these epoxy resins 150
Hardening agent (phenol novolac type resin,
PN-80 (Nippon Kayaku Co., Ltd.), hydroxyl equivalent 106g
/ Mol, ICI viscosity of 1.5 ps at 150 ° C.) and a curing accelerator (triphenylphosphine) in the amounts used shown in Table 2, and a resin molded product is prepared by transfer molding to obtain 160 ° C. × 2 hours + 180 ° C. × 8. It was cured according to the curing condition of time. Table 2 shows the results of measuring the glass transition temperature and water absorption of the thus obtained cured product.

【0094】[0094]

【表1】 表1(1) 樹脂(硬化剤) (A) (B) (C) (D) (E) エポキシ樹脂 wt部 129 123 94 102 169 硬化促進剤 wt部 1.3 1.2 1.0 1.0 1.7 ガラス転移温度 *1℃ 130 133 136 127 156 吸水率 *2 wt% 1.1 1.1 0.9 0.9 1.6Table 1 (1) Resin (Curing agent) (A) (B) (C) (D) (E) Epoxy resin wt part 129 123 123 94 102 169 Curing accelerator wt part 1.3 1.2 1.2 0.0 1.0 1.7 Glass transition temperature * 1 ° C 130 133 136 127 156 Water absorption rate * 2 wt% 1.1 1.1 1.1 0.9 0.9 1.6

【0095】[0095]

【表2】 表1(2) 樹脂(硬化剤) (F) (G) (H) (X) エポキシ樹脂 wt部 113 112 161 173 硬化促進剤 wt部 1.1 1.1 1.6 1.7 ガラス転移温度 *1℃ 141 136 156 124 吸水率 *2 wt % 0.9 0.9 1.5 1.3 *1 TMA 昇温速度2℃/minによる値 *2 試験片 直径 × 厚さ 50mm × 3mm
の円盤の煮沸水中24時間後の重量増加量による吸水率
Table 2 (1) Resin (hardening agent) (F) (G) (H) (X) Epoxy resin wt part 113 112 112 161 173 Curing accelerator wt part 1.1 1.1 1.1 1.6 1. 7 Glass transition temperature * 1 ° C 141 136 156 124 124 Water absorption rate * 2 wt% 0.9 0.9 0.9 1.5 1.3 * 1 TMA Value at temperature rising rate 2 ° C / min * 2 Specimen diameter x thickness 50 mm × 3 mm
Absorption by the Increase in Weight of Boiled Disc after 24 Hours in Boiling Water

【0096】[0096]

【表3】 表2(1) エポキシ樹脂 (I) (J) (K) (L) (M) 硬化剤 wt部 68 69 56 59 89 硬化促進剤 wt部 1.5 1.5 1.5 1.5 1.5 ガラス転移温度 *1℃ 131 131 134 125 151 吸水率 *2 wt% 1.2 1.2 1.0 1.0 1.8[Table 3] Table 2 (1) Epoxy resin (I) (J) (K) (L) (M) Curing agent wt part 68 69 56 56 59 89 Curing accelerator wt part 1.5 1.5 1.5 1.5 1 .5 1.5 Glass transition temperature * 1 ° C 131 131 134 134 125 151 Water absorption rate * 2 wt% 1.2 1.2 1.0 1.0 1.0 1.8

【0097】[0097]

【表4】 表2(2) エポキシ樹脂 (N) (O) (P) (Y) 硬化剤 wt部 62 60 85 84 硬化促進剤 wt部 1.5 1.5 1.5 1.5 ガラス転移温度 *1℃ 143 139 160 125 吸水率 *2 wt% 0.9 1.0 1.7 1.4 *1 表1に同じ *2 表1に同じTable 4 (2) Epoxy resin (N) (O) (P) (Y) Curing agent wt part 62 60 85 85 84 Curing accelerator wt part 1.5 1.5 1.5 1.5 1.5 Glass transition Temperature * 1 ° C 143 139 160 125 Water absorption * 2 wt% 0.9 1.0 1.7 1.4 * 1 Same as Table 1 * 2 Same as Table 1

【0098】[0098]

【発明の効果】本発明の樹脂、エポキシ樹脂は共に屈折
率が高く加水分解性塩素等が少なく高純度である、又、
本発明の樹脂またはエポキシ樹脂を原料として用いた樹
脂組成物の硬化物は優れた耐熱性、及び耐湿性を得るこ
とができることから電子部品の封止用、積層用材料、成
型材料等に用いることが出来る。又、本発明の製造法に
よればこれらの樹脂、及びそのグリシジルエーテル化物
であるエポキシ樹脂を高収率で、しかも容易に得ること
が出来る。
The resin of the present invention and the epoxy resin both have a high refractive index, a small amount of hydrolyzable chlorine and the like, and a high purity.
Since the cured product of the resin composition using the resin or epoxy resin of the present invention as a raw material can obtain excellent heat resistance and moisture resistance, it is used for sealing electronic components, laminating materials, molding materials, etc. Can be done. Further, according to the production method of the present invention, these resins and the epoxy resin which is a glycidyl ether thereof can be easily obtained in high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた樹脂(A)の分子量分布曲
FIG. 1 is a molecular weight distribution curve of the resin (A) obtained in Example 1.

【図2】実施例2で得られた樹脂(B)の分子量分布曲
FIG. 2 is a molecular weight distribution curve of the resin (B) obtained in Example 2.

【図3】実施例3で得られた樹脂(C)の分子量分布曲
FIG. 3 is a molecular weight distribution curve of the resin (C) obtained in Example 3.

【図4】実施例4で得られた樹脂(D)の分子量分布曲
FIG. 4 is a molecular weight distribution curve of the resin (D) obtained in Example 4.

【図5】実施例5で得られた樹脂(E)の分子量分布曲
FIG. 5: Molecular weight distribution curve of resin (E) obtained in Example 5

【図6】実施例6で得られた樹脂(F)の分子量分布曲
FIG. 6 is a molecular weight distribution curve of the resin (F) obtained in Example 6.

【図7】実施例7で得られた樹脂(G)の分子量分布曲
FIG. 7: Molecular weight distribution curve of resin (G) obtained in Example 7

【図8】実施例8で得られた樹脂(H)の分子量分布曲
FIG. 8: Molecular weight distribution curve of resin (H) obtained in Example 8

【図9】実施例9で得られたエポキシ樹脂(I)の分子
量分布曲線
9 is a molecular weight distribution curve of the epoxy resin (I) obtained in Example 9. FIG.

【図10】実施例10で得られたエポキシ樹脂(J)の
分子量分布曲線
10 is a molecular weight distribution curve of the epoxy resin (J) obtained in Example 10. FIG.

【図11】実施例11で得られたエポキシ樹脂(K)の
分子量分布曲線
11 is a molecular weight distribution curve of the epoxy resin (K) obtained in Example 11.

【図12】実施例12で得られたエポキシ樹脂(L)の
分子量分布曲線
FIG. 12: Molecular weight distribution curve of the epoxy resin (L) obtained in Example 12

【図13】実施例13で得られたエポキシ樹脂(M)の
分子量分布曲線
13 is a molecular weight distribution curve of the epoxy resin (M) obtained in Example 13.

【図14】実施例14で得られたエポキシ樹脂(N)の
分子量分布曲線
FIG. 14 is a molecular weight distribution curve of the epoxy resin (N) obtained in Example 14.

【図15】実施例15で得られたエポキシ樹脂(O)の
分子量分布曲線
15 is a molecular weight distribution curve of the epoxy resin (O) obtained in Example 15. FIG.

【図16】実施例16で得られたエポキシ樹脂(P)の
分子量分布曲線
16 is a molecular weight distribution curve of the epoxy resin (P) obtained in Example 16.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】式(1) 【化1】 (式(1)中Xは、式(A)又は式(B)を、 【化2】 1 は、式(A1)又は式(B1) 【化3】 を示し、nは0〜20を示す。更に式(A)、式
(B)、式(A1)、式(B1)中のm、q、はそれぞ
れ1または2を示し、R1 、R2 、R3 、R4 、はそれ
ぞれ独立して水素原子、ハロゲン原子、炭素数1〜4の
アルキル基、またはアリール基を示すが、qが1の場合
はR2 、R3 、R4 、が同時に水素原子であることはな
い。)で表される樹脂。
1. A formula (1): (In the formula (1), X represents the formula (A) or the formula (B): X 1 is the formula (A1) or the formula (B1) Is shown and n shows 0-20. Further, in the formula (A), the formula (B), the formula (A1) and the formula (B1), m and q respectively represent 1 or 2, and R 1 , R 2 , R 3 and R 4 are independent of each other. Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group. However, when q is 1, R 2 , R 3 and R 4 are not hydrogen atoms at the same time. ) Resin represented by.
【請求項2】式(2) 【化4】 (式(2)中Yは、式(C)又は式(D)を、 【化5】 1 は、式(C1)又は式(D1) 【化6】 を示し、nは0〜20を示す。更に式(C)、式
(D)、式(C1)、式(D1)中のm、q、はそれぞ
れ1または2を示し、R1 、R2 、R3 、R4 、はそれ
ぞれ独立して水素原子、ハロゲン原子、炭素数1〜4の
アルキル基、またはアリール基を示すが、qが1の場合
はR2 、R3 、R4 、が同時に水素原子であることはな
い。又、Gはグリシジル基を示す。)で表されるエポキ
シ樹脂。
2. Formula (2): (In the formula (2), Y represents the formula (C) or the formula (D): Y 1 is the formula (C1) or the formula (D1) Is shown and n shows 0-20. Further, in the formula (C), the formula (D), the formula (C1), and the formula (D1), m and q each represent 1 or 2, and R 1 , R 2 , R 3 , and R 4 are independent of each other. Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group. However, when q is 1, R 2 , R 3 and R 4 are not hydrogen atoms at the same time. G represents a glycidyl group. ) Epoxy resin represented by.
【請求項3】式(3) 【化7】 で表されるクミルフェノールジメチロール化物と、ナフ
トール化合物、または水素原子以外の置換基を有するフ
ェノール化合物とを酸触媒の存在下に脱水縮合反応さ
せ、更に必要によりアルカリ金属水酸化物の存在下エピ
ハロヒドリンと反応を行わせることを特徴とする請求項
1記載の式(1)で表される樹脂、又は請求項2記載の
式(2)で表されるエポキシ樹脂の製造法。
3. Formula (3): In the presence of an acid catalyst, a dehydration condensation reaction of a cumylphenol dimethylol compound represented by and a naphthol compound or a phenol compound having a substituent other than a hydrogen atom is carried out, and, if necessary, in the presence of an alkali metal hydroxide. A method for producing the resin represented by the formula (1) according to claim 1 or the epoxy resin represented by the formula (2) according to claim 2, which comprises reacting with epihalohydrin.
【請求項4】エポキシ樹脂、硬化剤及び必要により硬化
促進剤を含むエポキシ樹脂組成物において、硬化剤とし
て請求項1の樹脂を含有するか、及び/又は、エポキシ
樹脂として請求項2記載のエポキシ樹脂を含有して成
る、エポキシ樹脂組成物。
4. An epoxy resin composition comprising an epoxy resin, a curing agent and optionally a curing accelerator, which contains the resin of claim 1 as a curing agent and / or an epoxy resin of claim 2. An epoxy resin composition comprising a resin.
【請求項5】請求項4記載のエポキシ樹脂組成物の硬化
物。
5. A cured product of the epoxy resin composition according to claim 4.
JP5145370A 1993-05-26 1993-05-26 Resin, epoxy resin, its production, resin composition and cured product of said composition Pending JPH06329741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5145370A JPH06329741A (en) 1993-05-26 1993-05-26 Resin, epoxy resin, its production, resin composition and cured product of said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5145370A JPH06329741A (en) 1993-05-26 1993-05-26 Resin, epoxy resin, its production, resin composition and cured product of said composition

Publications (1)

Publication Number Publication Date
JPH06329741A true JPH06329741A (en) 1994-11-29

Family

ID=15383656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5145370A Pending JPH06329741A (en) 1993-05-26 1993-05-26 Resin, epoxy resin, its production, resin composition and cured product of said composition

Country Status (1)

Country Link
JP (1) JPH06329741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921643A1 (en) * 1988-06-30 1990-01-11 Asahi Optical Co Ltd Photographic camera having automatic focusing
JP2009030022A (en) * 2007-07-04 2009-02-12 Dic Corp Naphthalene polymer for high refractive index material and its manufacturing process
JP2014062188A (en) * 2012-09-21 2014-04-10 Dic Corp Phenylphenol-naphthol resin, curable resin composition, cured product thereof and printed wiring board
JP2014108992A (en) * 2012-12-03 2014-06-12 Dic Corp Cyanic acid ester resin, curable resin composition, its cured product, prepreg, circuit board, semiconductor encapsulation material and build-up film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136388A (en) * 1980-03-28 1981-10-24 Mitsui Toatsu Chem Inc Developer for pressure-sensitive copying paper
JPS56137988A (en) * 1980-03-31 1981-10-28 Mitsui Toatsu Chem Inc Color-developing agent for pressure-sensitive copying paper
JPS6383035A (en) * 1986-09-29 1988-04-13 Mitsui Petrochem Ind Ltd Production of trinuclear substituted phenol and composition containing glycidyl ether derivative of trinuclear substituted phenol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136388A (en) * 1980-03-28 1981-10-24 Mitsui Toatsu Chem Inc Developer for pressure-sensitive copying paper
JPS56137988A (en) * 1980-03-31 1981-10-28 Mitsui Toatsu Chem Inc Color-developing agent for pressure-sensitive copying paper
JPS6383035A (en) * 1986-09-29 1988-04-13 Mitsui Petrochem Ind Ltd Production of trinuclear substituted phenol and composition containing glycidyl ether derivative of trinuclear substituted phenol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921643A1 (en) * 1988-06-30 1990-01-11 Asahi Optical Co Ltd Photographic camera having automatic focusing
DE3921643C2 (en) * 1988-06-30 2001-02-15 Asahi Optical Co Ltd Electronically controlled camera with electronic calculation of recording parameters
JP2009030022A (en) * 2007-07-04 2009-02-12 Dic Corp Naphthalene polymer for high refractive index material and its manufacturing process
JP2014062188A (en) * 2012-09-21 2014-04-10 Dic Corp Phenylphenol-naphthol resin, curable resin composition, cured product thereof and printed wiring board
JP2014108992A (en) * 2012-12-03 2014-06-12 Dic Corp Cyanic acid ester resin, curable resin composition, its cured product, prepreg, circuit board, semiconductor encapsulation material and build-up film

Similar Documents

Publication Publication Date Title
KR100611733B1 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP4100791B2 (en) Production method of naphthol resin
WO1990015832A1 (en) Phenolic novolac resin, product of curing thereof, and method of production thereof
JP3132610B2 (en) Naphthalene ring-containing resin, resin composition and cured product thereof
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JP2887213B2 (en) New compounds, resins, resin compositions and cured products
EP0458417B1 (en) Adducts of phenolic compounds and cyclic terpenes and derivatives of said adducts
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP2887214B2 (en) Naphthol compound, its production method, epoxy compound, composition and cured product
JPH09268219A (en) Novolak type resin, epoxy resin, epoxy resin composition and its cured material
JP3075496B2 (en) Polyphenol resin, polyphenol epoxy resin and production method thereof
JP3939000B2 (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JPH09268218A (en) Production of epoxy resin, epoxy resin composition and irs cured material
JP2000072838A (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JP2848545B2 (en) Epoxy resin, resin composition and cured product thereof
JP2823056B2 (en) Epoxy resin composition and cured product thereof
JPH0710971A (en) Resin, epoxy resin, its production, resin composition and cured product thereof
JP2981759B2 (en) Epoxy compound and epoxy resin composition
JP3192471B2 (en) Epoxy resin, resin composition and cured product
JP3141960B2 (en) New epoxy resin, resin composition and cured product
JPH04366117A (en) New resin, production thereof, resin composition, and cured article
JP2005350523A (en) Naphthol resin, method for producing the same, epoxy resin, epoxy resin composition, and cured product of the same
JP3938592B2 (en) Phenolic compounds