JP3636409B2 - Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof - Google Patents

Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof Download PDF

Info

Publication number
JP3636409B2
JP3636409B2 JP30354496A JP30354496A JP3636409B2 JP 3636409 B2 JP3636409 B2 JP 3636409B2 JP 30354496 A JP30354496 A JP 30354496A JP 30354496 A JP30354496 A JP 30354496A JP 3636409 B2 JP3636409 B2 JP 3636409B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
epoxy
phenolic
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30354496A
Other languages
Japanese (ja)
Other versions
JPH10130364A (en
Inventor
健一 窪木
泰昌 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP30354496A priority Critical patent/JP3636409B2/en
Publication of JPH10130364A publication Critical patent/JPH10130364A/en
Application granted granted Critical
Publication of JP3636409B2 publication Critical patent/JP3636409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は高信頼性半導体封止用を始めとする電気・電子部品絶縁材料用、及び積層板(プリント配線板)やCFRP(炭素繊維強化プラスチック)を始めとする各種複合材料用、接着剤、塗料等に有用なフェノール類樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物に関する。
【0002】
【従来の技術】
エポキシ樹脂は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
【0003】
【発明が解決しようとする課題】
しかし、近年電気・電子分野においてはその発展に伴い、高純度化をはじめ耐熱性、耐湿性、密着性、高靭性、フィラー高充填のための低粘度性等の諸特性の一層の向上が求められている。その一方では作業性の向上のために常温で固形であることが望まれている。また、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料であることと同時に、作業性の向上のためにやはり低粘度の樹脂が求められている。これらの要求に対しエポキシ樹脂組成物について多くの提案がなされてはいるが、未だ充分とはいえない。
【0004】
【課題を解決するための手段】
本発明者らは前記のような特性を持つエポキシ樹脂について鋭意研究の結果、本発明を完成した。
即ち、本発明は、
(1)式(1)
【0005】
【化6】

Figure 0003636409
【0006】
(式中、複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。hは1〜9の整数を、またjは1〜2の整数をそれぞれ表す。m、nはそれぞれ平均値を表し、0より大きい実数であり、且つm+nが10以下である。また、基
【0007】
【化7】
Figure 0003636409
【0008】
と基
【0009】
【化8】
Figure 0003636409
【0010】
とは任意の順で配列している。)
で表されるフェノール類樹脂、
(2)上記(1)記載のフェノール類樹脂のフェノール性水酸基をグリシジル化することにより得られるエポキシ樹脂、
(3)(a)フェノール類、(b)式(2)
【0011】
【化9】
Figure 0003636409
【0012】
(式中Xはハロゲン原子、メトキシ基または水酸基を示す。複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。)で表される化合物及び(c)式(3)
【0013】
【化10】
Figure 0003636409
【0014】
(式中Xはハロゲン原子、メトキシ基または水酸基を示す。複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。)で表される化合物とを重縮合させ得られるフェノール類樹脂の製造方法において、(b)成分と(c)成分の配合比がモル比で(b)/(c)=0.1以上、4以下であることを特徴とする上記(1)記載のフェノール類樹脂の製造方法、
(4)上記(3)記載の製造方法により得られるフェノール類樹脂のフェノール性水酸基をグリシジル化することにより得られるエポキシ樹脂、
(5)上記(1)または(3)記載のフェノール類樹脂を含有するエポキシ樹脂組成物、
(6)上記(2)または(4)記載のエポキシ樹脂を含有するエポキシ樹脂組成物、
(7)上記(1)または(3)記載のフェノール類樹脂と、上記(2)または(4)記載のエポキシ樹脂を含有するエポキシ樹脂組成物、
(8)半導体封止用に調製された上記(5)、(6)及び(7)のいずれか1項に記載のエポキシ樹脂組成物、
(9)上記(5)、(6)、(7)及び(8)のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物
に関する。
【0015】
【発明の実施の形態】
本発明のフェノール類樹脂は、例えば(a)フェノール類、(b)前記式(2)の化合物、(c)前記式(3)の化合物とを、必要により酸性触媒の存在下において加熱して重縮合することにより得られる。
【0016】
(a)成分として用いうるフェノール類の具体例としては、フェノール、クレゾール、エチルフェノール、tert−ブチルフェノール、2,5−ジメチルフェノール、2−tertブチル−5−メチルフェノール等のアルキルフェノール、グアヤコール、グエトール、アリルフェノール、ハイドロキノン、レゾルシン、カテコール、ナフトール、ジヒドロキシナフタレン等が挙げられるがこれらに限定されることはなく、これらは単独でも二種以上併用しても良い。
フェノール類の使用量は、成分(b)+成分(c)1モルに対し、通常1〜20モル、好ましくは1.5〜15モルである。
また、前記式(2)で表される成分(b)及び前記式(3)で表される成分(c)の配合比は、(b)/(c)で通常0.05〜10、好ましくは0.1〜4である。
【0017】
酸触媒としては例えば塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、p−トルエンスルホン酸等が挙げられる。これらは単独でも二種以上併用しても良い。触媒の使用量は成分(a)+成分(b)+成分(c)の全重量に対し、通常0.01〜10重量%、好ましくは0.05〜5重量%である。
【0018】
反応温度は100〜250℃、反応時間は1〜20時間であり、反応中に生々するアルコールや水、ハロゲン化水素は適宜系外にトラップする。また、未半応のフェノール類は、反応終了後に酸性触媒を失活あるいは除去してから、加熱真空下で留去するか、水蒸気蒸留などで留去する。
【0019】
本発明のエポキシ樹脂は前記の方法で得られたフェノール類樹脂を原料としてエピハロヒドリンと反応させることにより得られる。
このエポキシ化反応に使用されるエピハロヒドリン類の用いうる具体例としては、エピクロルヒドリン、β−メチルエピクロルヒドリン、エピブロムヒドリン、β−メチルエピブロムヒドリン、エピヨードヒドリン、β−エチルエピクロルヒドリン等が挙げられるが、工業的に入手し易く安価なエピクロルヒドリンが好ましい。このエポキシ化反応は従来公知の方法に準じて行うことが出来る。
【0020】
エポキシ化反応は、例えば上記のフェノール類樹脂とエピハロヒドリン類の混合物に水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括添加または徐々に添加しながら20〜120℃で0.5〜10時間反応させる。この際アルカリ金属水酸化物は水溶液を使用してもよく、その場合は該アルカリ金属水酸化物を連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去し、エピハロヒドリン類は反応混合物中に連続的に戻す方法でもよい。
【0021】
上記の方法においてエピハロヒドリン類の使用量はフェノール類樹脂の水酸基1当量に対して通常0.5〜10モル、好ましくは1.0〜5.0モルである。アルカリ金属水酸化物の使用量はフェノール混合物中の水酸基1当量に対し通常0.5〜1.5モル、好ましくは0.7〜1.2モルである。ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒を添加することにより下記に定義する加水分解性ハロゲン濃度の低いエポキシ樹脂が得られ、このエポキシ樹脂は電子材料封止用の用途に適する。非プロトン性極性溶媒の使用量はエピハロヒドリン類の重量に対し5〜200重量%、好ましくは10〜100重量%である。上記の溶媒以外にもメタノール、エタノール等のアルコール類、1,4−ジオキサン等の環状及び鎖状エーテル類を添加することによっても反応が進み易くなり、加水分解性ハロゲン濃度も非プロトン性極性溶媒を使用した場合よりは高いが、これら溶媒を使用しないときよりは低くなる。またトルエン、キシレン等も使用することができる。ここで加水分解性ハロゲン濃度とは、例えば該エポキシ樹脂をジオキサンと1N−KOH/エタノール溶液に入れ、数十分間還流した後、硝酸銀溶液で滴定することにより測定することができる。
【0022】
またフェノール類樹脂と過剰のエピハロヒドリン類の混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの第四級アンモニウム塩を触媒として使用し、50℃〜150℃で1〜10時間反応させ、得られるフェノール類樹脂のハロヒドリンエーテルに水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体または水溶液を加え、20〜120℃で1〜10時間反応させてハロヒドリンエーテルを閉環させて本発明のエポキシ樹脂を得ることもできる。この場合の第四級アンモニウム塩の使用量はフェノール類樹脂の水酸基1当量に対して通常0.001〜0.2モル、好ましくは0.05〜0.1モルである。アルカリ金属水酸化物の使用量は、フェノール類樹脂の水酸基1当量に対し通常0.8〜1.5モル、好ましくは0.9〜1.1モルである。
【0023】
通常、これらの反応生成物は水洗後、または水洗無しに加熱減圧下過剰のエピハロヒドリン類や、その他使用した溶媒等を除去した後、トルエン、メチルイソブチルケトン、メチルエチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行うことにより加水分解性ハロゲン濃度の低いエポキシ樹脂を得ることが出来る。この場合アルカリ金属水酸化物の使用量はフェノール類樹脂の水酸基1当量に対して通常0.01〜0.2モル、好ましくは0.05〜0.1モルである。反応温度は通常50〜120℃の間で行われ、反応時間は通常0.5〜2時間である。反応終了後副生した塩をろ過、水洗などにより除去し、さらに加熱減圧下トルエン、メチルイソブチルケトン等の溶媒を留去することにより加水分解性ハロゲン濃度が低い本発明のエポキシ樹脂を得ることができる。
【0024】
以下、本発明のエポキシ樹脂組成物について説明する。前記(5)、(8)記載のエポキシ樹脂組成物において本発明のフェノール類樹脂はエポキシ樹脂の硬化剤として作用し、この場合本発明のフェノール類樹脂を単独でまたは他の硬化剤と併用することが出来る。併用する場合、本発明のフェノール類樹脂の全硬化剤中に占める割合は20重量%以上が好ましく、特に30重量%以上が好ましい。
【0025】
本発明のフェノール類樹脂と併用されうる他の硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類、フェノール(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類及びこれらの変性物、イミダゾ−ル、BF3 −アミン錯体、グアニジン誘導体などが挙げられる。
【0026】
前記(6)、(8)記載のエポキシ樹脂組成物において本発明のエポキシ樹脂は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
【0027】
本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としてはビスフェノール類、フェノール(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、ビフェノール類、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0028】
前記(7)、(8)のエポキシ樹脂組成物において、硬化剤として本発明のフェノール類樹脂を用いる場合、エポキシ樹脂としては前記で他のエポキシ樹脂として例示したエポキシ樹脂や本発明のエポキシ樹脂を用いることが出来る。
【0029】
また前記(7)、(8)のエポキシ樹脂組成物において、エポキシ樹脂として本発明のエポキシ樹脂を用いる場合、硬化剤としては前記で他の硬化剤として例示した硬化剤や本発明のフェノール類樹脂を用いることが出来る。
【0030】
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して通常0.5〜1.5当量、好ましくは、0.6〜1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
【0031】
また本発明のエポキシ樹脂組成物には、必要により硬化促進剤を含有せしめても差し支えない。用いうる硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズなどの金属化合物などが挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.01〜15重量部が必要に応じ用いられる。
さらに、本発明のエポキシ樹脂組成物には、必要に応じてシリカ、アルミナ、タルク等の充填材やシランカップリング剤、離型剤、顔料等の種々の配合剤を添加することができる。
【0032】
本発明のエポキシ樹脂組成物は、上記各成分を所定の割合で均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明のエポキシ樹脂と硬化剤、必要により硬化促進剤及び充填材やその他配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して本発明のエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を、溶融注型法あるいはトランスファ−成型法やインジェクション成型法、圧縮成型法などによって成形し、必要であれば、さらに50〜200℃で加熱することにより本発明の硬化物を得ることができる。
【0033】
また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して本発明の硬化物を得ることもできる。
【0034】
その際溶剤は本発明のエポキシ樹脂組成物と溶剤の合計重量に対し溶剤の占める割合が、通常10〜70重量%、好ましくは15〜65重量%となる量使用する。
【0035】
【実施例】
以下本発明を実施例により更に詳細に説明する。尚、本発明はこれら実施例に限定されるものではない。また、エポキシ当量、ICI粘度、軟化点は以下の条件で測定した。
▲1▼エポキシ当量
JIS K−7236に準じた方法で測定した。。
▲2▼ICI粘度
150℃におけるコーンプレート法における溶融粘度
測定機械:コーンプレート(ICI)高温粘度計(RESEARCH EQUIPMENT(LONDON)LTD. 製)
コーンNo.:3(測定範囲0〜20ポイズ)
試料量:0.15±0.01
▲3▼軟化点
JIS K−7234に準じた方法で測定
【0036】
実施例1
コンデンサー、撹拌装置を備えたフラスコに、フェノール940重量部、下記式(4)
【0037】
【化11】
Figure 0003636409
【0038】
で表される化合物169重量部、下記式(5)
【0039】
【化12】
Figure 0003636409
【0040】
で表される化合物49重量部、p−トルエンスルフォン酸12重量部を仕込、130〜160℃に保ちながら5時間反応を行った。この際、生成するメタノールは随時系外へ除去した。
反応終了後、炭酸ナトリウムで中和し、未反応のフェノールを加熱減圧下で留去し、メチルイソブチルケトン400重量部に溶解し、水洗を繰り返して塩類を除去した。次いで加熱減圧下に於て未反応のフェノールとメチルイソブチルケトンを留去して本発明のフェノール類樹脂(P1)380重量部を得た。得られたフェノール類樹脂(P1)の軟化点は61℃、ICI粘度は0.8ポイズ、水酸基当量は194g/eqであった。
【0041】
実施例2
実施例1においてフェノールを188重量部に変えた以外は同様の操作を行い本発明のフェノール類樹脂(P2)244重量部を得た。得られたフェノール類樹脂(2)の軟化点は78℃、ICI粘度は3.3ポイズ、水酸基当量は207g/eqであった。
【0042】
実施例3
実施例1において式(4)の化合物を121重量部に、式(5)の化合物を82重量部に変えた以外は同様の操作を行い本発明のフェノール類樹脂(P3)252重量部を得た。得られたフェノール類樹脂(P3)の軟化点は58℃、ICI粘度は0.7ポイズ、水酸基当量は186g/eqであった。
【0043】
実施例4
実施例2において式(4)の化合物を121重量部に、式(5)の化合物を82重量部に変えた以外は同様の操作を行い本発明のフェノール類樹脂(P4)231を得た。得られたフェノール類樹脂(P4)の軟化点は76℃、ICI粘度は3.4ポイズ、水酸基当量は198g/eqであった。
【0044】
実施例5
実施例1において式(4)の化合物を73重量部に、式(5)の化合物を115重量部に変えた以外は同様の操作を行い本発明のフェノール類樹脂(P5)238重量部を得た。得られたフェノール類樹脂(P5)の軟化点は54℃、ICI粘度は0.5ポイズ、水酸基当量は177g/eqであった。
【0045】
実施例6
実施例2において式(4)の化合物を73重量部に、式(5)の化合物を115重量部に変えた以外は同様の操作を行い本発明のフェノール類樹脂(P5)217重量部を得た。得られたフェノール類樹脂(P6)の軟化点は75℃、ICI粘度は3.5ポイズ、水酸基当量は189g/eqであった。
【0046】
実施例7
フェノール類樹脂(P1)200重量部、エピクロルヒドリン(ECH、以下同様)800重量部、ジメチルスルホキシド(DMSO、以下同様)100重量部を反応容器に仕込、加熱、撹拌、溶解後、温度を45℃に保持しながら、反応系内を45Torrに保って、40%水酸化ナトリウム水溶液103重量部を4時間かけて連続的に滴下した。この際共沸により留出してくるECHと水を冷却、分液した後、有機層であるECHだけを反応系内に戻しながら反応を行った。水酸化ナトリウム水溶液滴下完了後、45℃で2時間、70℃で1時間更に反応を行った。ついで水洗を繰り返し、副成塩とジメチルスルホキシドを除去した後、油層から加熱減圧下において過剰のエピクロルヒドリンを留去し、残留物に600重量部のメチルイソブチルケトンを添加し溶解した。
このメチルイソブチルケトンの溶液を70℃に加熱し30%水酸化ナトリウム水溶液10重量部を添加し、1時間反応させた後、反応液の水洗を洗浄液が中性となるまで繰り返した。ついで油層から加熱減圧下においてメチルイソブチルケトンを留去することにより本発明のエポキシ樹脂(E1)242重量部を得た。得られたエポキシ樹脂(E1)のエポキシ当量は288g/eq、軟化点53℃、ICI粘度0.7ポイズであった。
【0047】
実施例8
実施例7においてフェノール類樹脂(P1)をフェノール類樹脂(P2)200重量部に、40%水酸化ナトリウム水溶液を97重量部をに変えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E2)235重量部を得た。得られたエポキシ樹脂(E2)のエポキシ当量は316g/eq、軟化点68℃、ICI粘度3.0ポイズであった。
【0048】
実施例9
実施例7においてフェノール類樹脂(P1)をフェノール類樹脂(P3)200重量部に、40%水酸化ナトリウム水溶液を108重量部をに変えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E3)221重量部を得た。得られたエポキシ樹脂(E3)のエポキシ当量は281g/eq、軟化点51℃、ICI粘度0.6ポイズであった。
【0049】
実施例10
実施例7においてフェノール類樹脂(P1)をフェノール類樹脂(P4)200重量部に、40%水酸化ナトリウム水溶液を101重量部をに変えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E4)230重量部を得た。得られたエポキシ樹脂(E4)のエポキシ当量は310g/eq、軟化点67℃、ICI粘度2.9ポイズであった。
【0050】
実施例11
実施例7においてフェノール類樹脂(P1)をフェノール類樹脂(P5)200重量部に、40%水酸化ナトリウム水溶液を113重量部をに変えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E5)235重量部を得た。得られたエポキシ樹脂(E5)のエポキシ当量は273g/eq、軟化点50℃、ICI粘度0.5ポイズであった。
【0051】
実施例12
実施例7においてフェノール類樹脂(P1)をフェノール類樹脂(P6)200重量部に、40%水酸化ナトリウム水溶液を106重量部をに変えた以外は実施例1と同様の操作を行った。その結果、本発明のエポキシ樹脂(E6)233重量部を得た。得られたエポキシ樹脂(E6)のエポキシ当量は301g/eq、軟化点68℃、ICI粘度2.8ポイズであった。
【0052】
実施例13〜21
実施例で得られたエポキシ樹脂(E1)〜(E6)またはo−クレゾールノボラックエポキシ樹脂(日本化薬(株)製 EOCN−1020 軟化点65℃
150℃に於けるICI粘度 2.9ポイズ)を使用し、これらエポキシ樹脂のエポキシ基1当量に対して硬化剤としてフェノールノボラック樹脂(日本化薬(株)製、PN−80、150℃におけるICI粘度1.5ポイズ、軟化点86℃、水酸基当量106g/eq、以下PN)または本発明のフェノール類樹脂を1水酸基当量配合し、更に硬化促進剤(トリフェニルフォスフィン)をエポキシ樹脂100重量部当り1重量部配合し、トランスファー成型により樹脂成形体を調製し、160℃で2時間、更に180℃で8時間で硬化させた。
【0053】
このようにして得られた硬化物の物性を測定した結果を表1及び2に示す。尚、硬化物の物性は、下記の方法で測定した。
Figure 0003636409
・アイゾット衝撃試験:JIS K7710に準拠して行った。
・吸水率:直径5cm×厚み4mmの円盤状の試験片を100℃の水中で24時間煮沸した後の重量増加率(%)
【0054】
【表1】
Figure 0003636409
【0055】
【表2】
Figure 0003636409
【0056】
【発明の効果】
本発明のフェノール類樹脂、エポキシ樹脂は共に、従来知られている、化合物(b)とフェノール類の重縮合物及びそのエポキシ化物よりも、低粘度であり、且つ、化合物(c)とフェノール類の重縮合物及びそのエポキシ化物よりも、その硬化物に於て低吸水性、高靭性を発現することが出来るため、電気・電子部品料用、積層板(プリント配線板)やCFRP(炭素繊維強化プラスチック)を始めとする各種複合材料、接着剤、塗料等使用する場合に有用である。特に半導体封止材料に使用した場合、極めて優れた耐パッケージクラック性の材料が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is used for insulating materials for electrical and electronic parts including those for highly reliable semiconductor sealing, and for various composite materials including laminated boards (printed wiring boards) and CFRP (carbon fiber reinforced plastics), adhesives, The present invention relates to a phenolic resin, an epoxy resin, an epoxy resin composition, and a cured product thereof useful for paints and the like.
[0002]
[Prior art]
Epoxy resins are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. Yes.
[0003]
[Problems to be solved by the invention]
However, in recent years, with the development in the electric and electronic fields, further improvement in various properties such as high purity, heat resistance, moisture resistance, adhesion, high toughness, and low viscosity for high filler filling is required. It has been. On the other hand, in order to improve workability, it is desired to be solid at room temperature. Further, as a structural material, a low-viscosity resin is also required for improving workability as well as being a lightweight and excellent mechanical property material for aerospace materials and leisure / sports equipment applications. Many proposals for epoxy resin compositions have been made to meet these requirements, but they are still not sufficient.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have completed the present invention as a result of intensive studies on the epoxy resin having the above-mentioned characteristics.
That is, the present invention
(1) Formula (1)
[0005]
[Chemical 6]
Figure 0003636409
[0006]
(In the formula, a plurality of R's independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group. H represents an integer of 1 to 9, and j represents an integer of 1 to 2, respectively. M and n each represent an average value, are real numbers greater than 0, and m + n is 10 or less.
[Chemical 7]
Figure 0003636409
[0008]
And the base
[Chemical 8]
Figure 0003636409
[0010]
Are arranged in any order. )
Phenolic resins represented by
(2) An epoxy resin obtained by glycidylating the phenolic hydroxyl group of the phenolic resin described in (1) above,
(3) (a) Phenols, (b) Formula (2)
[0011]
[Chemical 9]
Figure 0003636409
[0012]
(Wherein X represents a halogen atom, a methoxy group or a hydroxyl group. A plurality of R's independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) and ( c) Formula (3)
[0013]
[Chemical Formula 10]
Figure 0003636409
[0014]
(Wherein X represents a halogen atom, a methoxy group or a hydroxyl group. A plurality of R's independently represent a hydrogen atom, a halogen atom, a C 1-8 alkyl group or an aryl group). In the method for producing a phenolic resin obtained by polycondensation, the mixing ratio of the component (b) and the component (c) is (b) / (c) = 0.1 or more and 4 or less in terms of molar ratio. A method for producing a phenolic resin as described in (1) above,
(4) An epoxy resin obtained by glycidylating a phenolic hydroxyl group of a phenolic resin obtained by the production method described in (3) above,
(5) An epoxy resin composition containing the phenolic resin according to (1) or (3) above,
(6) An epoxy resin composition containing the epoxy resin according to (2) or (4) above,
(7) An epoxy resin composition comprising the phenolic resin described in (1) or (3) above and the epoxy resin described in (2) or (4) above,
(8) The epoxy resin composition according to any one of (5), (6), and (7) prepared for semiconductor encapsulation,
(9) The present invention relates to a cured product obtained by curing the epoxy resin composition according to any one of (5), (6), (7) and (8).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
For example, the phenolic resin of the present invention is obtained by heating (a) a phenol, (b) the compound of the above formula (2), and (c) the compound of the above formula (3) in the presence of an acidic catalyst, if necessary. Obtained by polycondensation.
[0016]
Specific examples of phenols that can be used as component (a) include phenol, cresol, ethylphenol, tert-butylphenol, alkylphenols such as 2,5-dimethylphenol and 2-tertbutyl-5-methylphenol, guaiacol, guetol, Examples include, but are not limited to, allylphenol, hydroquinone, resorcin, catechol, naphthol, and dihydroxynaphthalene. These may be used alone or in combination of two or more.
The usage-amount of phenols is 1-20 mol normally with respect to 1 mol of component (b) + component (c), Preferably it is 1.5-15 mol.
The compounding ratio of the component (b) represented by the formula (2) and the component (c) represented by the formula (3) is usually 0.05 to 10, preferably (b) / (c). Is 0.1-4.
[0017]
Examples of the acid catalyst include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, p-toluenesulfonic acid and the like. These may be used alone or in combination of two or more. The usage-amount of a catalyst is 0.01-10 weight% normally with respect to the total weight of a component (a) + component (b) + component (c), Preferably it is 0.05-5 weight%.
[0018]
The reaction temperature is 100 to 250 ° C., the reaction time is 1 to 20 hours, and alcohol, water, and hydrogen halide generated during the reaction are appropriately trapped outside the system. Further, unsatisfied phenols are distilled off under heating vacuum or steam distillation after the acidic catalyst is deactivated or removed after the reaction is completed.
[0019]
The epoxy resin of the present invention can be obtained by reacting the phenolic resin obtained by the above method with epihalohydrin as a raw material.
Specific examples of the epihalohydrins that can be used in the epoxidation reaction include epichlorohydrin, β-methylepichlorohydrin, epibromohydrin, β-methylepibromhydrin, epiiodohydrin, β-ethylepichlorohydrin, and the like. However, industrially available and inexpensive epichlorohydrin is preferable. This epoxidation reaction can be performed according to a conventionally known method.
[0020]
The epoxidation reaction is carried out, for example, by adding a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide to a mixture of the above phenolic resin and epihalohydrin at once or gradually at 20 to 120 ° C. Let react for 10 hours. In this case, the alkali metal hydroxide may be used in the form of an aqueous solution. In this case, the alkali metal hydroxide is continuously added and water and epihalohydrins are continuously added under reduced pressure or normal pressure from the reaction mixture. The water may be removed by further distilling off the water, and the epihalohydrins may be continuously returned to the reaction mixture.
[0021]
In said method, the usage-amount of epihalohydrins is 0.5-10 mol normally with respect to 1 equivalent of hydroxyl groups of phenol resin, Preferably it is 1.0-5.0 mol. The usage-amount of an alkali metal hydroxide is 0.5-1.5 mol normally with respect to 1 equivalent of hydroxyl groups in a phenol mixture, Preferably it is 0.7-1.2 mol. By adding an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, an epoxy resin having a low hydrolyzable halogen concentration defined below is obtained. Epoxy resins are suitable for electronic material sealing applications. The amount of the aprotic polar solvent used is 5 to 200% by weight, preferably 10 to 100% by weight, based on the weight of the epihalohydrins. In addition to the above solvents, addition of alcohols such as methanol and ethanol, and cyclic and chain ethers such as 1,4-dioxane also facilitate the reaction, and the hydrolyzable halogen concentration is also an aprotic polar solvent. However, it is lower than when these solvents are not used. In addition, toluene, xylene and the like can also be used. Here, the hydrolyzable halogen concentration can be measured, for example, by placing the epoxy resin in a dioxane and 1N-KOH / ethanol solution, refluxing for several tens of minutes, and titrating with a silver nitrate solution.
[0022]
Moreover, quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, and trimethylbenzylammonium chloride are used as a catalyst in a mixture of phenolic resin and excess epihalohydrin, and the reaction is carried out at 50 to 150 ° C for 1 to 10 hours. And adding a solid or aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide to the halohydrin ether of the resulting phenolic resin and reacting at 20 to 120 ° C. for 1 to 10 hours to react with the halohydrin ether Can be closed to obtain the epoxy resin of the present invention. The amount of the quaternary ammonium salt used in this case is usually 0.001 to 0.2 mol, preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the phenolic resin. The usage-amount of an alkali metal hydroxide is 0.8-1.5 mol normally with respect to 1 equivalent of hydroxyl groups of phenol resin, Preferably it is 0.9-1.1 mol.
[0023]
Usually, these reaction products are dissolved in a solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, etc. after removal of excess epihalohydrins and other used solvents under water or reduced pressure without washing with water. An epoxy resin having a low hydrolyzable halogen concentration can be obtained by adding an aqueous solution of an alkali metal hydroxide such as sodium or potassium hydroxide and reacting again. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.2 mol, preferably 0.05 to 0.1 mol, relative to 1 equivalent of the hydroxyl group of the phenolic resin. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours. It is possible to obtain the epoxy resin of the present invention having a low hydrolyzable halogen concentration by removing the salt formed as a by-product after completion of the reaction by filtration, washing with water and the like, and further distilling off a solvent such as toluene and methyl isobutyl ketone under heating and reduced pressure. it can.
[0024]
Hereinafter, the epoxy resin composition of the present invention will be described. In the epoxy resin composition according to the above (5) and (8), the phenolic resin of the present invention acts as a curing agent for the epoxy resin. In this case, the phenolic resin of the present invention is used alone or in combination with other curing agents. I can do it. When used in combination, the proportion of the phenolic resin of the present invention in the total curing agent is preferably 20% by weight or more, particularly preferably 30% by weight or more.
[0025]
Examples of other curing agents that can be used in combination with the phenolic resin of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, a polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols, phenol (phenol, alkyl-substituted phenol) , Naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes, polycondensates of phenols and various diene compounds , Polycondensates of phenols with aromatic dimethylol, biphenols and modified products thereof, imidazo - Le, BF 3 - amine complex, guanidine derivatives.
[0026]
In the epoxy resin composition according to the above (6) and (8), the epoxy resin of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
[0027]
Specific examples of other epoxy resins that can be used in combination with the epoxy resin of the present invention include polycondensation of bisphenols, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes. Products, polymers of phenols and various diene compounds, polycondensates of phenols and aromatic dimethylol, glycidyl ether epoxy resins, alicyclic epoxy resins, glycidyl amines based on glycidylation of biphenols, alcohols, etc. An epoxy resin, a glycidyl ester epoxy resin and the like can be mentioned, but the epoxy resin is not limited to these as long as it is a commonly used epoxy resin. These may be used alone or in combination of two or more.
[0028]
In the epoxy resin composition of the above (7) and (8), when the phenolic resin of the present invention is used as a curing agent, the epoxy resin exemplified above as the other epoxy resin or the epoxy resin of the present invention is used as the epoxy resin. Can be used.
[0029]
Moreover, in the epoxy resin composition of said (7) and (8), when using the epoxy resin of this invention as an epoxy resin, as a hardening | curing agent, the hardening | curing agent illustrated above as another hardening | curing agent, or the phenol resin of this invention Can be used.
[0030]
The usage-amount of a hardening | curing agent in the epoxy resin composition of this invention is 0.5-1.5 equivalent normally with respect to 1 equivalent of epoxy groups of an epoxy resin, Preferably, it is 0.6-1.2 equivalent. When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
[0031]
Moreover, the epoxy resin composition of the present invention may contain a curing accelerator if necessary. Specific examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole, and tertiary amines such as 2- (dimethylaminomethyl) phenol. Phosphines such as triphenylphosphine, and metal compounds such as tin octylate. If necessary, the curing accelerator is used in an amount of 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin.
Furthermore, various compounding agents, such as fillers, such as a silica, an alumina, and a talc, a silane coupling agent, a mold release agent, and a pigment, can be added to the epoxy resin composition of this invention as needed.
[0032]
The epoxy resin composition of the present invention can be obtained by uniformly mixing the above components at a predetermined ratio. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, the epoxy resin of the present invention and a curing agent, and if necessary, a curing accelerator and a filler and other compounding agents are thoroughly mixed using an extruder, kneader, roll, etc. as necessary until uniform. The epoxy resin composition of the present invention is obtained, and the epoxy resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method or the like, and if necessary, further 50 to 200 ° C. The cured product of the present invention can be obtained by heating with.
[0033]
In addition, the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and is applied to a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. The cured product of the present invention can also be obtained by hot press molding a prepreg obtained by impregnation and heat drying.
[0034]
At that time, the solvent is used in such an amount that the ratio of the solvent to the total weight of the epoxy resin composition of the present invention and the solvent is usually 10 to 70% by weight, preferably 15 to 65% by weight.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples. The epoxy equivalent, ICI viscosity, and softening point were measured under the following conditions.
(1) Epoxy equivalent Measured by a method according to JIS K-7236. .
(2) Melt viscosity measuring machine in cone plate method at ICI viscosity of 150 ° C: cone plate (ICI) high temperature viscometer (manufactured by RESEARCH EQUIPMENT (LONDON) LTD.)
Corn No. : 3 (measurement range 0-20 poise)
Sample amount: 0.15 ± 0.01
(3) Softening point Measured by a method according to JIS K-7234
Example 1
In a flask equipped with a condenser and a stirrer, 940 parts by weight of phenol, the following formula (4)
[0037]
Embedded image
Figure 0003636409
[0038]
169 parts by weight of a compound represented by the following formula (5)
[0039]
Embedded image
Figure 0003636409
[0040]
Embedded image and 12 parts by weight of p-toluenesulfonic acid were charged and reacted for 5 hours while maintaining at 130 to 160 ° C. At this time, the produced methanol was removed from the system as needed.
After completion of the reaction, the reaction mixture was neutralized with sodium carbonate, unreacted phenol was distilled off under heating and reduced pressure, dissolved in 400 parts by weight of methyl isobutyl ketone, and washed with water to remove salts. Subsequently, unreacted phenol and methyl isobutyl ketone were distilled off under reduced pressure by heating to obtain 380 parts by weight of the phenolic resin (P1) of the present invention. The obtained phenolic resin (P1) had a softening point of 61 ° C., an ICI viscosity of 0.8 poise, and a hydroxyl group equivalent of 194 g / eq.
[0041]
Example 2
The same operation was performed except that phenol was changed to 188 parts by weight in Example 1, and 244 parts by weight of the phenolic resin (P2) of the present invention was obtained. The obtained phenolic resin (2) had a softening point of 78 ° C., an ICI viscosity of 3.3 poise, and a hydroxyl group equivalent of 207 g / eq.
[0042]
Example 3
The same operation as in Example 1 was carried out except that the compound of the formula (4) was changed to 121 parts by weight and the compound of the formula (5) was changed to 82 parts by weight to obtain 252 parts by weight of the phenolic resin (P3) of the present invention. It was. The obtained phenolic resin (P3) had a softening point of 58 ° C., an ICI viscosity of 0.7 poise, and a hydroxyl group equivalent of 186 g / eq.
[0043]
Example 4
The same procedure was performed as in Example 2 except that the compound of formula (4) was changed to 121 parts by weight and the compound of formula (5) was changed to 82 parts by weight to obtain the phenolic resin (P4) 231 of the present invention. The obtained phenolic resin (P4) had a softening point of 76 ° C., an ICI viscosity of 3.4 poise, and a hydroxyl group equivalent of 198 g / eq.
[0044]
Example 5
The same operation as in Example 1 was carried out except that the compound of the formula (4) was changed to 73 parts by weight and the compound of the formula (5) was changed to 115 parts by weight to obtain 238 parts by weight of the phenolic resin (P5) of the present invention. It was. The obtained phenolic resin (P5) had a softening point of 54 ° C., an ICI viscosity of 0.5 poise, and a hydroxyl group equivalent of 177 g / eq.
[0045]
Example 6
The same operation as in Example 2 was carried out except that the compound of formula (4) was changed to 73 parts by weight and the compound of formula (5) was changed to 115 parts by weight to obtain 217 parts by weight of the phenolic resin (P5) of the present invention. It was. The obtained phenolic resin (P6) had a softening point of 75 ° C., an ICI viscosity of 3.5 poise, and a hydroxyl group equivalent of 189 g / eq.
[0046]
Example 7
Charge 200 parts by weight of phenolic resin (P1), 800 parts by weight of epichlorohydrin (ECH, the same applies below) and 100 parts by weight of dimethyl sulfoxide (DMSO, the same applies below) to the reaction vessel, heat, stir and dissolve. While maintaining the reaction system at 45 Torr, 103 parts by weight of 40% aqueous sodium hydroxide solution was continuously added dropwise over 4 hours. At this time, ECH and water distilled off by azeotropic distillation were cooled and separated, and then the reaction was carried out while returning only the organic layer ECH into the reaction system. After completion of the dropwise addition of the aqueous sodium hydroxide solution, the reaction was further carried out at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Subsequently, washing with water was repeated to remove by-product salts and dimethyl sulfoxide, and then excess epichlorohydrin was distilled off from the oil layer under heating and reduced pressure, and 600 parts by weight of methyl isobutyl ketone was added to the residue and dissolved.
This methyl isobutyl ketone solution was heated to 70 ° C., 10 parts by weight of a 30% aqueous sodium hydroxide solution was added and reacted for 1 hour, and then the reaction solution was washed with water until the washing solution became neutral. Subsequently, 242 parts by weight of the epoxy resin (E1) of the present invention was obtained by distilling off methyl isobutyl ketone from the oil layer under heating and reduced pressure. The epoxy equivalent of the obtained epoxy resin (E1) was 288 g / eq, the softening point was 53 ° C., and the ICI viscosity was 0.7 poise.
[0047]
Example 8
The same operation as in Example 1 was carried out except that in Example 7, the phenolic resin (P1) was changed to 200 parts by weight of the phenolic resin (P2) and the 40% aqueous sodium hydroxide solution was changed to 97 parts by weight. As a result, 235 parts by weight of the epoxy resin (E2) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E2) was 316 g / eq, the softening point was 68 ° C., and the ICI viscosity was 3.0 poise.
[0048]
Example 9
The same operation as in Example 1 was carried out except that in Example 7, the phenolic resin (P1) was changed to 200 parts by weight of the phenolic resin (P3) and the 40% sodium hydroxide aqueous solution was changed to 108 parts by weight. As a result, 221 parts by weight of the epoxy resin (E3) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E3) was 281 g / eq, the softening point was 51 ° C., and the ICI viscosity was 0.6 poise.
[0049]
Example 10
The same operation as in Example 1 was carried out except that in Example 7, the phenolic resin (P1) was changed to 200 parts by weight of the phenolic resin (P4) and the 40% sodium hydroxide aqueous solution was changed to 101 parts by weight. As a result, 230 parts by weight of the epoxy resin (E4) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E4) was 310 g / eq, the softening point was 67 ° C., and the ICI viscosity was 2.9 poise.
[0050]
Example 11
The same operation as in Example 1 was carried out except that in Example 7, the phenolic resin (P1) was changed to 200 parts by weight of the phenolic resin (P5) and the 40% aqueous sodium hydroxide solution was changed to 113 parts by weight. As a result, 235 parts by weight of the epoxy resin (E5) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E5) was 273 g / eq, the softening point was 50 ° C., and the ICI viscosity was 0.5 poise.
[0051]
Example 12
The same operation as in Example 1 was carried out except that in Example 7, the phenolic resin (P1) was changed to 200 parts by weight of the phenolic resin (P6) and the aqueous 40% sodium hydroxide solution was changed to 106 parts by weight. As a result, 233 parts by weight of the epoxy resin (E6) of the present invention was obtained. The epoxy equivalent of the obtained epoxy resin (E6) was 301 g / eq, the softening point was 68 ° C., and the ICI viscosity was 2.8 poise.
[0052]
Examples 13-21
Epoxy resins (E1) to (E6) obtained in the examples or o-cresol novolac epoxy resin (EOCN-1020 manufactured by Nippon Kayaku Co., Ltd.) Softening point 65 ° C
ICI viscosity at 150 ° C., 2.9 poise), phenol novolak resin (Nippon Kayaku Co., Ltd., PN-80, ICI at 150 ° C.) as a curing agent for 1 equivalent of epoxy group of these epoxy resins Viscosity 1.5 poise, softening point 86 ° C., hydroxyl equivalent 106 g / eq, hereinafter referred to as PN) or one hydroxyl equivalent of the phenolic resin of the present invention, and further a curing accelerator (triphenylphosphine) 100 parts by weight of epoxy resin A resin molded body was prepared by transfer molding, and cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.
[0053]
The results of measuring the physical properties of the cured product thus obtained are shown in Tables 1 and 2. In addition, the physical property of hardened | cured material was measured with the following method.
Figure 0003636409
-Izod impact test: conducted according to JIS K7710.
-Water absorption: Rate of weight increase (%) after boiling a disk-shaped test piece having a diameter of 5 cm and a thickness of 4 mm in water at 100 ° C for 24 hours
[0054]
[Table 1]
Figure 0003636409
[0055]
[Table 2]
Figure 0003636409
[0056]
【The invention's effect】
Both the phenolic resin and the epoxy resin of the present invention have a lower viscosity than the conventionally known polycondensates of the compound (b) and phenols and epoxidized products thereof, and the compound (c) and the phenols. Can exhibit lower water absorption and higher toughness in its cured product than the polycondensates and epoxidized products thereof, for electrical and electronic component materials, laminated boards (printed wiring boards) and CFRP (carbon fiber) This is useful when using various composite materials such as reinforced plastics, adhesives and paints. In particular, when used as a semiconductor sealing material, an extremely excellent package crack resistance material can be obtained.

Claims (9)

式(1)
Figure 0003636409
(式中、複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。hは1〜9の整数を、またjは1〜2の整数をそれぞれ表す。m、nはそれぞれ平均値を表し、0より大きい実数であり、且つm+nが10以下である。また、基
Figure 0003636409
と基
Figure 0003636409
とは任意の順で配列している。)
で表されるフェノール類樹脂。
Formula (1)
Figure 0003636409
(In the formula, a plurality of R's independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group. H represents an integer of 1 to 9, and j represents an integer of 1 to 2, respectively. M and n each represent an average value, are real numbers greater than 0, and m + n is 10 or less.
Figure 0003636409
And base
Figure 0003636409
Are arranged in any order. )
A phenolic resin represented by
請求項1記載のフェノール類樹脂のフェノール性水酸基をグリシジル化することにより得られるエポキシ樹脂。The epoxy resin obtained by glycidylating the phenolic hydroxyl group of the phenol resin of Claim 1. (a)フェノール類、(b)式(2)
Figure 0003636409
(式中Xはハロゲン原子、メトキシ基または水酸基を示す。複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。)で表される化合物及び(c)式(3)
Figure 0003636409
(式中Xはハロゲン原子、メトキシ基または水酸基を示す。複数存在するRは独立して水素原子、ハロゲン原子、炭素数1〜8アルキル基またはアリール基を示す。)で表される化合物とを重縮合させ得られるフェノール類樹脂の製造方法において、(b)成分と(c)成分の配合比がモル比で(b)/(c)=0.1以上、4以下であることを特徴とする請求項1記載のフェノール類樹脂の製造方法。
(A) phenols, (b) formula (2)
Figure 0003636409
(Wherein X represents a halogen atom, a methoxy group or a hydroxyl group. A plurality of R's independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) and ( c) Formula (3)
Figure 0003636409
(Wherein X represents a halogen atom, a methoxy group or a hydroxyl group. A plurality of R's independently represent a hydrogen atom, a halogen atom, a C 1-8 alkyl group or an aryl group). In the method for producing a phenolic resin obtained by polycondensation, the mixing ratio of the component (b) and the component (c) is (b) / (c) = 0.1 or more and 4 or less in terms of molar ratio. The method for producing a phenolic resin according to claim 1.
請求項3記載の製造方法により得られるフェノール類樹脂のフェノール性水酸基をグリシジル化することにより得られるエポキシ樹脂。The epoxy resin obtained by glycidylating the phenolic hydroxyl group of the phenol resin obtained by the manufacturing method of Claim 3. 請求項1または3記載のフェノール類樹脂を含有するエポキシ樹脂組成物。An epoxy resin composition containing the phenolic resin according to claim 1 or 3. 請求項2または4記載のエポキシ樹脂を含有するエポキシ樹脂組成物。The epoxy resin composition containing the epoxy resin of Claim 2 or 4. 請求項1または3記載のフェノール類樹脂と、請求項2または4記載のエポキシ樹脂を含有するエポキシ樹脂組成物。An epoxy resin composition comprising the phenolic resin according to claim 1 or 3 and the epoxy resin according to claim 2 or 4. 半導体封止用に調製された請求項5、6及び7のいずれか1項に記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 5, which is prepared for semiconductor encapsulation. 請求項5、6、7及び8のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物。Hardened | cured material formed by hardening | curing the epoxy resin composition of any one of Claim 5, 6, 7, and 8.
JP30354496A 1996-10-30 1996-10-30 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof Expired - Fee Related JP3636409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30354496A JP3636409B2 (en) 1996-10-30 1996-10-30 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30354496A JP3636409B2 (en) 1996-10-30 1996-10-30 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof

Publications (2)

Publication Number Publication Date
JPH10130364A JPH10130364A (en) 1998-05-19
JP3636409B2 true JP3636409B2 (en) 2005-04-06

Family

ID=17922286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30354496A Expired - Fee Related JP3636409B2 (en) 1996-10-30 1996-10-30 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof

Country Status (1)

Country Link
JP (1) JP3636409B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101285422B1 (en) * 2005-08-31 2013-07-12 우베 고산 가부시키가이샤 Low softening point phenol novolac resin, method for producing same, and epoxy resin cured product using same
JP5012003B2 (en) * 2006-12-26 2012-08-29 宇部興産株式会社 Low melt viscosity phenol novolac resin, its production method and its use
JP5228328B2 (en) * 2007-02-01 2013-07-03 宇部興産株式会社 Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
CN103988127B (en) * 2011-12-09 2019-04-19 旭化成株式会社 Photosensitive polymer combination, the manufacturing method of cured relief pattern, semiconductor device and display body device

Also Published As

Publication number Publication date
JPH10130364A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
US6784228B2 (en) Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
US7456247B2 (en) Phenolic resin formed from a difunctional phenol and a divinyl ether
GB2316407A (en) Epoxy resins and compositions containing them
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
TWI648317B (en) Phenolic resin, phenol resin mixture, epoxy resin, epoxy resin composition and hardened materials
JP2001055425A (en) Resorcinol novolak resin, epoxy resin composition and its cured material
JP4529234B2 (en) Epoxy resin composition and cured product thereof
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3998163B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4628621B2 (en) Method for producing phenol aralkyl resin
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH11147929A (en) Epoxy resin, production of epoxy resin, epoxy resin composition, and cured product of the composition
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
JP4605420B2 (en) Epoxy resin composition and cured product thereof
JP4026733B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP3141960B2 (en) New epoxy resin, resin composition and cured product
JPH0920819A (en) Modified phenol novlak resin, epoxy resin, epoxy resin composition and its cured product
JP4158137B2 (en) Epoxy resin composition and cured product thereof.
JP5254036B2 (en) Phenol resin, epoxy resin, curable resin composition, cured product thereof, and method for producing phenol resin
JPH11181049A (en) Modified epoxy resin, epoxy resin composition and its hardened product
JPH11140163A (en) Epoxy resin, epoxy resin production, epoxy resin composition, and cured article prepared therefrom

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees