JPH06300550A - Layer thickness measurement method for layer structure material using ultrasonic wave - Google Patents

Layer thickness measurement method for layer structure material using ultrasonic wave

Info

Publication number
JPH06300550A
JPH06300550A JP5091603A JP9160393A JPH06300550A JP H06300550 A JPH06300550 A JP H06300550A JP 5091603 A JP5091603 A JP 5091603A JP 9160393 A JP9160393 A JP 9160393A JP H06300550 A JPH06300550 A JP H06300550A
Authority
JP
Japan
Prior art keywords
layer thickness
wave
layer
probe
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5091603A
Other languages
Japanese (ja)
Inventor
Takakazu Kobayashi
敬和 小林
Kenji Udagawa
建志 宇田川
Kazuo Hayashi
一雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5091603A priority Critical patent/JPH06300550A/en
Publication of JPH06300550A publication Critical patent/JPH06300550A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a layer thickness measurement method using an ultrasonic wave for performing the non-destructive measurement of the layer thickness of a material having a layer structure, and inspecting and evaluating the layer thickness. CONSTITUTION:Probes 4 and 5 having a two-probe system to transmit and receive an ultrasonic wave via an ultrasonic wave angle beam method are used, and the probe 5 for receiving the wave is made to linearly scan along the direction of the probe 4 for transmitting the wave. Then, interface echo from a specimen 7 and the rear scattered wave thereof are processed via a gate to concurrently measure a mixture signal of the rear scattered wave and the interface echo. Data obtainable therefrom is sent to a computer 6 and subjected to a fast Fourier transform process, thereby being resolved into a frequency spectrum. Also, a component along a scan axis direction is added to the spectrum for three-dimensional indication and a comparison is made between the specimen 7 and a material with known layer thickness in terms of three-dimensional form, thereby finding the layer thickness of the specimen 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は層構造を有する材料の層
厚さを非破壊で計測し、その検査、評価を行うための超
音波を用いた層厚さ測定方法にかかわる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layer thickness measuring method using ultrasonic waves for nondestructively measuring the layer thickness of a material having a layer structure, and inspecting and evaluating the layer thickness.

【0002】[0002]

【従来技術】近年、各種材料の靭性、アレスト性、耐摩
耗性、耐食性向上のため、使用目的に応じて異なる材料
を組み合わせ、弾性係数を1次元的に分布させた傾斜機
能材料、また同一材料においてその粒径のみが表面と内
部で異なる材料、他に異なる材料を組み合せ2層、3層
あるいはそれ以上の層構造を持つ高機能材料等が研究、
開発されている。これに対応して非破壊的層厚さ測定が
要求されている。
2. Description of the Related Art In recent years, in order to improve the toughness, arrestability, wear resistance and corrosion resistance of various materials, different materials are combined according to the purpose of use, and functionally graded materials in which the elastic coefficients are one-dimensionally distributed or the same material. , Research on high-performance materials that have a two-layer, three-layer or more layer structure by combining materials that differ only in their particle size on the surface and inside, and by combining different materials.
Being developed. Correspondingly, non-destructive layer thickness measurement is required.

【0003】上記高機能材料では、層厚さは材料の性能
に多大の影響を与え、層厚さがあまり薄いと、これらの
性能は発揮することができない。その為に層厚さはある
一定以上が必要とされる。又、ユーザの要求に対する信
頼性の立場からも層厚さは板内で一定でないと困る。そ
のため、その層厚さ管理は非常に重要である。
In the above high-performance materials, the layer thickness has a great influence on the performance of the material, and if the layer thickness is too thin, these performances cannot be exhibited. Therefore, the layer thickness is required to be above a certain level. Also, from the standpoint of reliability with respect to user requirements, it is inconvenient if the layer thickness is not constant within the plate. Therefore, the layer thickness control is very important.

【0004】非破壊による層厚さ測定方法として、従来
超音波による縦波を用いた垂直探傷法が公知の技術とし
て知られている。例えば、日本学術振興会製鋼第19委
員会編超音波探傷法(1974版)でのクラッド鋼の記
載が挙げられる。この方法は、超音波の被検体表面から
の反射波と界面からとの時間差を測定し、あらかじめ計
っておいた試験片の音速とその時間差を比較することに
より、それを距離に換算するものである。
As a non-destructive method for measuring the layer thickness, a vertical flaw detection method using a longitudinal wave by ultrasonic waves has been conventionally known as a known technique. For example, the description of the clad steel by the ultrasonic flaw detection method (1974 edition) edited by Japan Society for the Promotion of Science, Steelmaking 19th Committee can be mentioned. This method measures the time difference between the ultrasonic wave reflected from the surface of the subject and the interface, and compares it with the speed of sound of the test piece that was measured in advance and converts it into a distance. is there.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では層界
面からの反射エコーが確実に得られることが必要である
が、上記高機能材料では層間での音響インピーダンスの
差が小さいような場合が多く、界面からの反射エコーが
ノイズに埋もれてしまい界面エコーを検出できない、或
は界面エコーとノイズを誤認することが起こり得ること
になり、正確な層厚さ測定が困難となるという問題点が
挙げられる。
In the above-mentioned prior art, it is necessary to surely obtain the reflection echo from the layer interface, but in the above-mentioned high-performance material, the difference in acoustic impedance between the layers is often small. , The echo reflected from the interface is buried in the noise and the interface echo cannot be detected, or the interface echo and the noise may be erroneously recognized, which makes accurate layer thickness measurement difficult. To be

【0006】本発明の目的は、以前はノイズと同様に無
用なものとして扱われていた後方散乱波を用い、上記材
料のように層構造の音響インピーダンスの差が小さく界
面エコーが得られない時も、SN比よく層厚さを測定す
る方法を提供することにある。
An object of the present invention is to use backscattered waves, which were previously treated as useless like noise, and when the difference in the acoustic impedance of the layer structure is small and the interface echo cannot be obtained as in the above materials. Another object is to provide a method for measuring the layer thickness with a good S / N ratio.

【0007】[0007]

【課題を解決するための手段】前記問題の解決は、超音
波による斜角法において送信、受信用2探触子を用い
て、その受信用探触子を送信用探触子方向に直線状にス
キャンさせ、被検体からの界面エコーと後方散乱波とに
ゲートをかけ、それらの波を同時に測定し、それにより
得られたデータをコンピュータに取込み高速フーリエ変
換することで周波数スペクトラムに分解し、スキャン軸
方向(仮にX軸方向と呼ぶ)の成分を加えて3次元表示
して、その被検体の3次元形状と、あらかじめ層厚さの
分かったものとの3次元形状を比較することで、被検体
の層厚さを求める方法により達成される。
To solve the above-mentioned problems, in the oblique angle method using ultrasonic waves, two transmitting and receiving probes are used, and the receiving probe is linearly arranged in the direction of the transmitting probe. Scan, and gate the interface echo and backscattered wave from the subject, measure those waves at the same time, take the data obtained by it into a computer and decompose it into a frequency spectrum by fast Fourier transform, By adding a component in the scan axis direction (tentatively referred to as the X-axis direction) and displaying it three-dimensionally, by comparing the three-dimensional shape of the subject and the one whose layer thickness is known in advance, This is achieved by the method of determining the layer thickness of the subject.

【0008】[0008]

【作用】本発明は、超音波による層厚さ測定において、
被検体表面からの反射波と界面からとの時間差を測定す
るのではなく、以前はノイズと同様に無用なものとして
扱われていた後方散乱波と、界面エコーが混ぜ合わさっ
た信号を、周波数分解して用いる事を特徴する。
The present invention, in measuring the layer thickness by ultrasonic waves,
Instead of measuring the time difference between the reflected wave from the surface of the subject and the interface, the backscattered wave, which was previously treated as useless like noise, and the signal mixed with the interface echo were subjected to frequency decomposition. It is characterized by being used.

【0009】この後方散乱波と界面エコーを同時に取り
込むことで、従来測定が困難であった界面からの反射エ
コーの小さな場合、或はそのエコーが小さすぎて、ノイ
ズと識別できない場合でも、後方散乱波と界面エコーが
混ぜ合わさった信号の周波数スペクトラムの強度分布の
形状を測定することで、SN比よく層厚さを測定するこ
とが可能となる。
By incorporating the backscattered wave and the interface echo at the same time, the backscattering can be performed even when the reflection echo from the interface, which has been difficult to measure in the past, is small, or when the echo is too small to be distinguished from noise. By measuring the shape of the intensity distribution of the frequency spectrum of the signal in which the wave and the interface echo are mixed, it is possible to measure the layer thickness with a good S / N ratio.

【0010】何故なら、後方散乱波と界面エコーが混ぜ
合わさった信号の周波数スペクトラムの強度分布の形状
が、超音波の減衰の粘性係数依存性、被検体の各層での
音響インピーダンス変化による超音波の反射率、透過率
の変化への影響、散乱波の減衰の結晶粒の大きさへの依
存性によって、層厚さの違いにより異なるためである。
This is because the shape of the intensity distribution of the frequency spectrum of the signal in which the backscattered wave and the interface echo are mixed is dependent on the viscosity coefficient of the attenuation of the ultrasonic waves, and the ultrasonic impedance due to the change in the acoustic impedance in each layer of the subject. This is because the difference in the layer thickness depends on the influence on the change of the reflectance and the transmittance and the dependence of the attenuation of the scattered wave on the size of the crystal grain.

【0011】以上より、周波数スペクトラムは、層厚さ
の違いにより影響をうけ、被検体特有の粘性係数、音響
インピーダンス、粒度などの特性をその形状に反映して
いるため、あらかじめ層厚さの分かっている参照体の周
波数スペクトラム形状と、被検体との形状を比較し、も
っとも似た形状を求めることで、ノイズ、界面エコー、
後方散乱波の別に格別の注意を払うことなく、層厚さを
測定することを可能にする。
From the above, the frequency spectrum is affected by the difference in layer thickness, and the characteristics such as the viscosity coefficient, acoustic impedance, and particle size peculiar to the subject are reflected in its shape, so that the layer thickness is known in advance. By comparing the frequency spectrum shape of the reference object and the shape of the object and finding the most similar shape, noise, interface echo,
It makes it possible to measure the layer thickness without any particular attention to the backscattered waves.

【0012】またここで、後方散乱波を用いる場合、そ
の可干渉性、散乱性のために多数の測定点での測定結果
をアベレージングする必要が有ったが、本方法では斜角
探傷法を用い、受信探触子のみをスキャンさせること
で、測定点1箇所の情報を広がりを持つ散乱波の影響を
考慮したかたちで得ることで、複雑なアベレージングを
することなく、より高精度に層厚さ測定を可能にする。
更に水浸法斜角探傷縦波を用いることで、散乱強度を稼
ぎ、高再現性、高安定性を得ることができる。
When the backscattered wave is used, it is necessary to average the measurement results at a large number of measurement points because of its coherence and scattering property. However, in this method, the oblique flaw detection method is used. By scanning only the receiving probe by using, the information at one measurement point can be obtained in a manner that takes into account the effect of scattered waves that have spread, so that it can be performed more accurately without complicated averaging. Enables layer thickness measurement.
Further, by using the water immersion method oblique-angle flaw detection longitudinal wave, it is possible to gain scattering intensity and obtain high reproducibility and high stability.

【0013】また、上記機構により測定したデータから
層厚さを測定するための解析において、コンピュータを
用いることで、それらのデータを周波数スペクトラムに
分解することを可能とする。また、この周波数スペクト
ラムの強度分布は、被測定層の下部層の結晶粒度を反映
しているため、それら周波数スペクトラムを測定するこ
とで、受信利得を稼ぐために使用すべき周波数の最適化
をも可能にする。
Further, by using a computer in the analysis for measuring the layer thickness from the data measured by the above-mentioned mechanism, it becomes possible to decompose those data into a frequency spectrum. Also, since the intensity distribution of this frequency spectrum reflects the crystal grain size of the lower layer of the layer to be measured, it is possible to optimize the frequency that should be used to obtain the reception gain by measuring those frequency spectra. to enable.

【0014】又、データは3次元的な形状を持つものと
して視覚的に捕らえることができる。これにより、層厚
さ測定において被検体と被参照データを3次元的な広が
りをもった形状として、視覚的にもわかり易く、容易に
高精度に比較するこを可能とし、界面エコーの得られに
くい被検体に対しても容易に高精度に層厚さ測定を可能
にする。
Further, the data can be visually recognized as having a three-dimensional shape. As a result, in the layer thickness measurement, the object and the referenced data are formed into a shape having a three-dimensional spread, which is visually easy to understand, enables easy and highly accurate comparison, and makes it difficult to obtain an interface echo. This makes it possible to easily and highly accurately measure the layer thickness of a subject.

【0015】[0015]

【実施例】以下、本発明の詳細を実施例に基づいて説明
する。本実施例では、被参照用試験片として表層、下層
とも同材質でできた、表層厚さがそれぞれ1. 4mm、
1.5mm……2.2mm、2.3mmで、下層厚さが
40mm、表層部での結晶粒度は約10μm、下層部1
00μmの結晶粒度のみが表層と下層で異なった10片
の鋼板を用いる。被検体は表層厚さ1.4mmから2.
3mmまでとし、下層厚さが40mm、表層部での結晶
粒度は約10μm、下層部100μmの被参照試験片と
同種の鋼板を測定対象とする。また、探触子としては、
中心周波数50MHzの広帯域のものを用いる。
EXAMPLES The details of the present invention will be described below based on examples. In this example, the reference test piece was made of the same material for both the surface layer and the lower layer, and the surface layer thickness was 1.4 mm,
1.5 mm ... 2.2 mm, 2.3 mm, lower layer thickness is 40 mm, crystal grain size in the surface layer is about 10 μm, lower layer 1
Ten pieces of steel plates having different grain sizes of 00 μm in the surface layer and the lower layer are used. The subject has a surface layer thickness of 1.4 mm to 2.
Up to 3 mm, the lower layer thickness is 40 mm, the grain size in the surface layer portion is about 10 μm, and the steel plate of the same kind as the referenced test piece of the lower layer portion 100 μm is the measurement target. Also, as a probe,
A wide band with a center frequency of 50 MHz is used.

【0016】図1において、パルス発生器1により発生
されたパルスは送信用プローブ4により超音波に変換さ
れる。超音波の波長はこのとき界面エコーを得たい層
(第2層12)の粒径程度とすることで界面エコーを得
易くしてある。また、送受信プローブ4、5と被検体7
との接触条件を一定にするために、ここでは水浸法を用
い、水槽9に被検体7を沈める。送信用プローブ4から
出た超音波は水中を経路10の様に進む。被検体7に達
した超音波は、第1層11の表面からのエコー、界面か
らのエコー、後方散乱波、底面からのエコーを返し、受
信用プローブ5により受信される。この信号は、パルス
発生器1からケーブル3を通じて同期をとられて、オシ
ロスコープ2により測定される。この時、受信プローブ
5はX軸方向に1mmピッチで30mmスキャンさせ
る。ここで得られた受信信号は、コンピュータ6に送ら
れる。
In FIG. 1, the pulse generated by the pulse generator 1 is converted into ultrasonic waves by the transmitting probe 4. At this time, the wavelength of the ultrasonic waves is set to be about the particle size of the layer (second layer 12) for which the interface echo is desired to be obtained, so that the interface echo can be easily obtained. In addition, the transmission / reception probes 4 and 5 and the subject 7
In order to keep the contact condition with the constant, the water immersion method is used here, and the subject 7 is submerged in the water tank 9. The ultrasonic waves emitted from the transmitting probe 4 travel through the water like a path 10. The ultrasonic waves that have reached the subject 7 return echoes from the surface of the first layer 11, echoes from the interface, backscattered waves, and echoes from the bottom surface, and are received by the receiving probe 5. This signal is synchronized from the pulse generator 1 through the cable 3 and measured by the oscilloscope 2. At this time, the receiving probe 5 scans 30 mm in the X-axis direction at a pitch of 1 mm. The received signal obtained here is sent to the computer 6.

【0017】以下、図2のフローチャートに従い、詳細
を図3から図7を用いて説明して行く。まず、層厚さ測
定の被参照データを得るために、予め層厚さの分かった
ものについての測定を行う。
The details will be described below with reference to the flowchart of FIG. 2 with reference to FIGS. 3 to 7. First, in order to obtain referenced data for layer thickness measurement, measurement is performed on a layer thickness of which is known in advance.

【0018】図3において、X軸はスキャン方向を表
し、波型の各実線は図1の測定装置を用いた、それぞれ
あるX位置でのコンピュータによるデータの取得例であ
る。ここで、必要なデータの部分の選択するために、表
面エコー13の後方から底面エコー14の前方までのデ
ータにゲート15をかける。得られたデータの周波数ス
ペクトラムを得るために、高速フーリエ変換を、各X位
置でゲート15をかけられたデータに対して行う。これ
により、図4の様なスキャン位置、周波数、超音波強度
を座標軸とする3次元グラフを得る。
In FIG. 3, the X-axis represents the scanning direction, and each wavy solid line is an example of data acquisition by a computer at a certain X position using the measuring apparatus of FIG. Here, the gate 15 is applied to data from the rear of the surface echo 13 to the front of the bottom echo 14 in order to select a necessary data portion. To obtain the frequency spectrum of the obtained data, a fast Fourier transform is performed on the gated data at each X position. As a result, a three-dimensional graph having coordinate axes of the scan position, frequency, and ultrasonic intensity as shown in FIG. 4 is obtained.

【0019】これを、あらかじめ層厚さの分かってい
る、層厚さの異なった10個の被参照試験片に対して行
った。その10種の各試験片の各々に対して図4のグラ
フが得られた。このグラフの体積、形状をX位置0mmか
ら30mm、周波数範囲10MHzから90MHzの範囲
で各10試験片に対して測定し、コンピュータにそれぞ
れ記憶させる。これが、被参照データとなる。
This was carried out on 10 reference test pieces having different layer thicknesses whose layer thicknesses were previously known. The graph of FIG. 4 was obtained for each of the 10 test pieces. The volume and shape of this graph are measured for each of 10 test pieces in an X position of 0 mm to 30 mm and a frequency range of 10 MHz to 90 MHz and stored in a computer. This becomes the referenced data.

【0020】ここで、層厚さを体積の関数で表すこと
で、被検体の体積を測定し、前記関数に代入すること
で、その層厚さを得ることができる。
Here, by expressing the layer thickness as a function of volume, the layer thickness can be obtained by measuring the volume of the subject and substituting it into the function.

【0021】また、上記方法以外に図6で示すように、
重なり合っている部分の体積を比較することで形状比較
を可能にする。図7に示すように、共通部分体積、層厚
さの相関関係グラフを作成し、共通部分体積の多いもの
をその被検体の層厚さとする。
In addition to the above method, as shown in FIG.
Shape comparison is made possible by comparing the volumes of the overlapping portions. As shown in FIG. 7, a correlation graph of the common partial volume and the layer thickness is created, and the one having a large common partial volume is set as the layer thickness of the subject.

【0022】上記2方法を、比較、検討することでより
正確な層厚さが得られる。
A more accurate layer thickness can be obtained by comparing and examining the above two methods.

【0023】[0023]

【発明の効果】本発明は、今まででは困難であった各層
で音響特性の近似した層状構造を持つ材料の層厚さ測定
を、超音波の界面エコーと後方散乱波を利用し、容易に
かつ高精度で測定することを可能にする。
INDUSTRIAL APPLICABILITY The present invention makes it easy to measure the layer thickness of a material having a layered structure with similar acoustic characteristics in each layer, which has been difficult until now, by utilizing an ultrasonic interface echo and a backscattered wave. It also enables highly accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する測定装置の一例を示す
装置概略図である。
FIG. 1 is a device schematic view showing an example of a measuring device for carrying out the method of the present invention.

【図2】実施例での操作、解析手順を示したフローチャ
ートである。
FIG. 2 is a flowchart showing an operation and analysis procedure in the embodiment.

【図3】受信探触子により受信される超音波およびゲー
トの表示例を示す線図である。
FIG. 3 is a diagram showing a display example of ultrasonic waves and a gate received by a reception probe.

【図4】データの周波数スペクトラムの表示例を示す線
図である。
FIG. 4 is a diagram showing a display example of a frequency spectrum of data.

【図5】3次元形状体積と層厚さの相関関係測定例を示
す線図である。
FIG. 5 is a diagram showing an example of measurement of correlation between three-dimensional shape volume and layer thickness.

【図6】共通部分体積の概念図である。FIG. 6 is a conceptual diagram of a common partial volume.

【図7】共通部分体積と層厚さの相関関係測定例を示す
線図である。
FIG. 7 is a diagram showing an example of measuring a correlation between a common partial volume and a layer thickness.

【符号の説明】[Explanation of symbols]

1 超音波発生器 2 オシロスコープ 3 同期信号 4 送信用プローブ 5 受信用プローブ 6 コンピュータ 7 被検体 8 水 9 水槽 10 超音波の経路 11 第1層 12 第2層 13 表面エコー 14 底面エコー 15 ゲート 1 Ultrasonic Generator 2 Oscilloscope 3 Sync Signal 4 Transmitting Probe 5 Receiving Probe 6 Computer 7 Subject 8 Water 9 Water Tank 10 Ultrasonic Path 11 1st Layer 12 2nd Layer 13 Surface Echo 14 Bottom Echo 15 Gate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音波斜角2探触子法を用い、その受信
用探触子を送信用探触子方向に直線状にスキャンさせ、
被検体の各位置で得られる受信信号にゲートをかけて界
面エコーと後方散乱波とを同時に取り込んだ後、その信
号をスペクトラム分解し、探触子間距離と周波数の関数
として該スペクトラム強度を3次元表示し、採用すべき
周波数範囲と、探触子間距離を設定し、前記3次元表示
された信号強度の体積、形状を求め、これらのデータ
を、被検体と同材質で層厚さが既知で異なる数個のサン
プルに関して、同様の方法であらかじめ得られたデータ
と比較して層状材料の層厚さ求めることを特徴とする層
状材料の超音波による層厚さ測定法。
1. An ultrasonic oblique angle two-probe method is used to scan the receiving probe linearly in the transmitting probe direction,
The received signal obtained at each position of the subject is gated to simultaneously capture the interfacial echo and the backscattered wave, and then the signal is spectrally decomposed to determine the spectrum intensity as a function of the distance between the probes and the frequency. The three-dimensional display is performed, the frequency range to be adopted and the distance between the probes are set, and the volume and shape of the three-dimensionally displayed signal strength are obtained. A method for ultrasonically measuring the layer thickness of a layered material, which comprises comparing the data obtained in advance by the same method with respect to several known and different samples.
JP5091603A 1993-04-19 1993-04-19 Layer thickness measurement method for layer structure material using ultrasonic wave Withdrawn JPH06300550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091603A JPH06300550A (en) 1993-04-19 1993-04-19 Layer thickness measurement method for layer structure material using ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091603A JPH06300550A (en) 1993-04-19 1993-04-19 Layer thickness measurement method for layer structure material using ultrasonic wave

Publications (1)

Publication Number Publication Date
JPH06300550A true JPH06300550A (en) 1994-10-28

Family

ID=14031142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091603A Withdrawn JPH06300550A (en) 1993-04-19 1993-04-19 Layer thickness measurement method for layer structure material using ultrasonic wave

Country Status (1)

Country Link
JP (1) JPH06300550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
CN113188489A (en) * 2021-04-29 2021-07-30 深圳市麒博精工科技有限公司 Ultrasonic reflectance spectrum method for detecting thickness consistency of thin flat plate material
CN113358072A (en) * 2021-06-03 2021-09-07 河南科技大学 Ultrasonic measurement equipment and method for number of layers of plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
CN113188489A (en) * 2021-04-29 2021-07-30 深圳市麒博精工科技有限公司 Ultrasonic reflectance spectrum method for detecting thickness consistency of thin flat plate material
CN113358072A (en) * 2021-06-03 2021-09-07 河南科技大学 Ultrasonic measurement equipment and method for number of layers of plate
CN113358072B (en) * 2021-06-03 2024-02-06 河南科技大学 Ultrasonic measuring equipment and method for number of layers of plates

Similar Documents

Publication Publication Date Title
US6359446B1 (en) Apparatus and method for nondestructive testing of dielectric materials
US8826740B2 (en) Methods and apparatus for porosity measurement and defect detection
US7876423B1 (en) Simultaneous noncontact precision imaging of microstructural and thickness variation in dielectric materials using terahertz energy
US5886250A (en) Pitch-catch only ultrasonic fluid densitometer
US6494098B1 (en) Method of ultrasonic on-line texture characterization
US7933027B1 (en) Processing waveform-based NDE
US4299128A (en) Ultrasonic satellite-pulse technique for characterizing defects of arbitrary shape
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
US4574637A (en) Method for measuring surface and near surface properties of materials
WO1987002462A1 (en) Ultrasonic method of measuring dimensions of flaw in solid material
CN106596725A (en) Method for ultrasonic distinguishing of R-region defect of composite material structure
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
CN107290429A (en) Ultrasound measurement system and detection method for detecting deep structure crack
Piwakowski et al. Generation of Rayleigh waves into mortar and concrete samples
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
EP1017996B1 (en) Nondestructive testing of dielectric materials
JPH06300550A (en) Layer thickness measurement method for layer structure material using ultrasonic wave
Kachanov et al. Using “focusing to a point” algorithm for reference-free measurement of the speed of ultrasound in tomography of concrete engineering structures
RU2714868C1 (en) Method of detecting pitting corrosion
JPH07248317A (en) Ultrasonic flaw detecting method
Kachanov et al. Using antenna arrays for reference-free measurement of speed of ultrasound and thickness of concrete articles
Biagi et al. Ultrasonic high resolution images for defect detection in ceramic materials
JP3388316B2 (en) Ultrasonic inspection method
Brennan et al. Non‐Destructive Evaluation (NDE) of Ceramic Armor: Testing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704