JP2004150875A - Method and system for imaging internal flaw using ultrasonic waves - Google Patents

Method and system for imaging internal flaw using ultrasonic waves Download PDF

Info

Publication number
JP2004150875A
JP2004150875A JP2002314291A JP2002314291A JP2004150875A JP 2004150875 A JP2004150875 A JP 2004150875A JP 2002314291 A JP2002314291 A JP 2002314291A JP 2002314291 A JP2002314291 A JP 2002314291A JP 2004150875 A JP2004150875 A JP 2004150875A
Authority
JP
Japan
Prior art keywords
subject
defect
ultrasonic
echo
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002314291A
Other languages
Japanese (ja)
Other versions
JP4196643B2 (en
Inventor
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002314291A priority Critical patent/JP4196643B2/en
Publication of JP2004150875A publication Critical patent/JP2004150875A/en
Application granted granted Critical
Publication of JP4196643B2 publication Critical patent/JP4196643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve resolution in the case of imaging internal flaws, using a method of C-scan immersion ultrasound flaw detection. <P>SOLUTION: In this method, beam path values of echoes indicative of flaws are measured, while scanning an ultrasonic probe 10 for transmitting / receiving focused beams, and a flaw image is composited from the beam path values, measured at a large number of points. The directivity of the ultrasonic beam is also incorporated, when the compositing of the flaw images is carried out. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非破壊検査法の一種である超音波探傷法に関し、金属、樹脂などからなる板、管、円柱などの各種の形状の被検体中に存在しうる内部欠陥の像を高分解能に表示する超音波による内部欠陥の映像化方法、及び、装置に関する。
【0002】
【従来の技術】
金属、樹脂などからなる板、管、円柱などの各種形状の製品の内部欠陥を非破壊で検出し、更に内部欠陥の性状を詳しく調べることは、製造業にとって非常に重要な技術課題である。
【0003】
その目的は、製品の内部品質を詳細に検査して、有害な内部欠陥を有する製品の需要家への納入を防止すること、内部欠陥の性状から製造技術の問題点を調べ、内部欠陥が発生しない製造技術を確立することにある。内部欠陥として代表的なものとして、異物質の含有、ボイド、内部割れがある。例えば、鉄鋼製品の場合、異物質の含有とは、アルミニウムやカルシウムの酸化物である場合が多く、これらは非金属介在物と称されている。
【0004】
このような非破壊検査法と広く総称して呼ばれる検査法の中でも、製品内部の検査には超音波探傷法が適している。前述の通り、検査の対象は異物質の含有、ボイド、内部割れであるが、これらの内部欠陥の検出を行うことを探傷と称している。
【0005】
超音波探傷法で利用される超音波は縦波と横波に大別される。縦波は空気や水を伝わる音波と同様に物体や媒体を伝わる粗密振動(粗密波とも呼ばれる)である。被検体の表面に対し垂直に超音波を伝播させて探傷を行う場合(垂直探傷と称する)に用いられるのは、この縦波である場合が多い。
【0006】
横波はせん断ひずみの伝播であり、溶接部などの斜角探傷に用いられることが多い。
【0007】
一般に超音波の被検体への送信は、圧電振動子に電気パルスを印加して高周波のパルス振動を発生させ、この振動を適当な接触媒質(水や油など)を介して被検体に導くことにより行われる。超音波の受信は送信と逆の過程で行われ、圧電振動子が受けた振動によって生起された電圧あるいは電流を適当な電気機器で観測する。圧電振動子を内蔵し、受けた電気パルスにより超音波を発振するセンサを超音波送信子、圧電振動子を内蔵し、受けた振動を電気信号に変換するセンサを超音波受信子と称するが、構造に特別な違いはなく、圧電振動子を内蔵したセンサは、超音波の送信にも受信にも使えるのが一般的である。また、前記センサは超音波の送信および受信を兼用する場合が多く、このときこのセンサは超音波送受信子と称される。また、超音波送信子、超音波受信子、超音波送受信子という名称は、センサの機能からつけられた名称であるが、探査を行う道具という意味で超音波プローブや超音波探触子の名称も多く用いられる。
【0008】
圧電振動子による超音波送受信子を用いた超音波探傷法は、油などを介して超音波送受信子を被検体に当てがい超音波の送受信を行う直接接触法と水などの媒体を介在させて被検体に超音波を送受信する液浸法(媒体が水の場合は水浸法)とに大別される。液浸法には、
(1)超音波送受信子と被検体とが接触しない。
(2)超音波の被検体への入射強度を一定に維持することが容易である。
(3)音響レンズや球面振動子を用いて超音波ビームを集束させることにより、高い空間分解能で測定が可能である。
などの利点があり、高い空間分解能で被検体内部を詳細に評価する場合には好んで、液浸法が用いられる。
【0009】
従来技術として図9に示した水浸法(液浸法の一形態)を例にとり、超音波探傷の原理を以下に簡単に説明する。図9は検査する被検体を水に浸け、超音波プローブ111から、水を介して被検体110に超音波を送信し、該被検体110の表面および内部からの反射波(エコー)を、水を介して超音波プローブ111により受信して欠陥の検出を行う水浸探傷方法の一般的な構成を示している。この場合、超音波プローブ111は超音波の送信および受信を兼用している。超音波送受信子が発した超音波を被検体に当てると、その表面で超音波は反射して再度媒体を通り超音波送受信子へもどる(以下、この被検体表面からの反射波を、表面エコーと称する)。一方、これと同時に、超音波が入射した被検体表面に超音波振動が起こり、その振動が被検体内に伝播する。被検体内に何らの欠陥もなければ、伝播した超音波振動は、その被検体の反対側の表面(例えば板の表面に超音波を当てたのであれば板の裏面。以下、板以外の形状のものも総称するため、底面と称する。)まで伝わったのち、該底面で反射して被検体内を逆向きに伝播し、被検体の表面に向かって戻り、再度媒体を通り超音波送受信子へもどる(以下、この反射波を、底面エコーと称する)。
【0010】
被検体内に何らかの欠陥があった場合は、被検体に入射した超音波は該欠陥で反射し、被検体の表面に向けて戻り、媒体を通り抜けて超音波送受信子へもどる(以下、欠陥エコーと称する)。欠陥エコーが超音波送受信子へもどるタイミングは、伝播路程の長さ(以下、ビーム路程と称する)の差に応じて底面エコーよりも早くなる。この欠陥エコーを検出することが超音波探傷の基本原理である。
【0011】
このとき、超音波送受信子として音響レンズや球面振動子を用いて超音波ビームを一点に集束させることが可能なものを用い、超音波ビームが集束する細い部分を用いて測定を行うことにより、高分解能化を図ることが可能である。
【0012】
集束ビームを送受信する超音波送受信子を被検体に対し2次元走査し、被検体の内部欠陥を高分解能に映像化する方法にCスキャン超音波探傷法(非特許文献1を参照)があり、高分解能が必要な内部欠陥検出にはこの探傷法が多用されている。
【0013】
【非特許文献1】
(社)日本非破壊検査協会編集、「超音波探傷試験II」、(社)日本非破壊検査協会(2000)、p.151〜152
【0014】
一般にCスキャン探傷法では、図9に示すようにゲート回路114により欠陥エコーを抽出し、ピークディテクタ115で欠陥エコーの振幅を検出する構成を有し、得られるCスコープは欠陥エコーの振幅の2次元マップである。このように従来のCスキャン探傷法は欠陥エコーの振幅情報を利用している点に特徴がある。
【0015】
以下、従来のCスキャン探傷方法の問題点を図10を用いて説明する。
【0016】
第1の問題点:図10に示す集束ビームの被検体内部での形成状況の通り、集束ビームは焦点以外ではビーム径が大きく、焦点以外では分解能が低下し、被検体の様々な深さ(図10のz方向)に存在する内部欠陥を均一な分解能で映像化することが難しい。
【0017】
第2の問題点:極厚材の内部欠陥の映像化において、被検体の深い位置の欠陥像の分解能を改善するためには、集束ビームの焦点を被検体の深い位置に合わせる必要がある。超音波の波長をλとしたとき、直径Dの平板である超音波振動子の近距離音場限界距離Xは下式(1)で表される。
【0018】
=D/(4・λ) (1)
【0019】
近距離音場限界距離とは、自然焦点のことであり、振動子の個々の要素点から放射された超音波の位相がほぼ揃い、干渉を起こさなくなる距離である(レンズ等で集束を行わなくても位相が合ってしまう距離である)。従って、集束ビームの焦点は近距離音場限界距離Xよりも探触子に近い位置に設定しないと、十分な集束効果が得られない。実用的には集束ビームの焦点距離FはX/2よりも短くする必要があるといわれている。
【0020】
上記より、被検体の深い位置に集束ビームの焦点を設定するためには、Xを大きくする必要があり、そのためには超音波振動子の直径を大きくする必要があることがわかる。ただし、超音波振動子を電気的に駆動して超音波パルスを発信させるには超音波振動子の電気抵抗が低くなりすぎないようにする必要があり、超音波振動子の直径には限界が存在する。故に、極厚材の深い位置に集束ビームの焦点を設定することは技術的に難しく、例えば周波数2MHzを用いて鋼の被検体の内部欠陥の映像化を行うには深さ80mm程度が限界である。従ってこれより深い位置の内部欠陥は分解能の良い映像化が難しい。
【0021】
上記したCスキャン探傷方法のほかに高分解能な映像化を目的とした技術に開口合成法がある。図11に示す振動子アレイを被検体110の表面に接触させて欠陥映像化を行う場合を例に開口合成の原理を説明する。振動子アレイの各々の振動子から超音波を送信して欠陥エコーを検出し、超音波の送信からエコー受信までの時間から欠陥エコーの被検体110中でのビーム路程を測定する。個々の振動子120p(p=1,2,‥‥)から送信され受信される超音波は空間的に拡がりをもっているので、振動子120pで検出したエコーのビーム路程がWp(p=1,2,‥‥)であるとすると、半径Wpの中空の球Sp(p=1,2,‥‥)のうち、振動子120pが送受信する超音波の指向角範囲のどこかに反射源が存在する。全ての振動子を用いてエコーを検出し、中空の球Spの交点を求めると、この交点が欠陥像となる。図11は振動子120、120、12010、12013、12015が検出したエコーのビーム路程から欠陥像を合成する様子を示している。
【0022】
更に振動子アレイ120を紙面に垂直な方向に走査すれば(走査ストロークをLsとする。)、3次元の欠陥像を得ることができる。この方法は振動子アレイの全長をLとしたとき、L×Lsの大きさの大きい振動子の各点から超音波を送信してエコーを受信して欠陥像を得ることに相当するので、この方法では、電気インピーダンスのマッチングによる振動子径の制約なく、大きな振動子による欠陥映像化と同等の高い分解能が得られる特長がある。この技術の先行文献として、特許文献1や特許文献2などがあげられる。
【0023】
【特許文献1】
特開平7−49398号公報
【特許文献2】
特開平10−142201号公報
【0024】
【発明が解決しようとする課題】
しかし、この方法では特許文献1にも示されている通り、広い範囲にわたって欠陥エコーを検出するために、超音波送受信子には広い指向角が必要とされ、超音波ビームを狭い領域に集束させて測定を行うCスキャン探傷法とは相容れない技術とされてきた。
【0025】
よって、集束ビームを用いた超音波による内部欠陥の映像化において、下記の事項は極めて重要な課題になっていた。
【0026】
(1)内部欠陥の存在する深さによらず、均一な分解能で映像化を行う。
【0027】
(2)板厚が大きく、集束ビームの焦点が届かない深さであっても、高い分解能で映像化を行う。
【0028】
なお、上記(2)は(1)において焦点以遠にある内部欠陥の映像化を行う場合と等価なため、つまるところ、課題は(1)に集約される。
【0029】
本発明はこのような実情に鑑み、なされたもので、内部欠陥の存在する深さによらず、均一な分解能で映像化できるようにすることを課題とする。
【0030】
【課題を解決するための手段】
本発明は、水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥の映像化する超音波による内部欠陥の映像化方法において、点集束型超音波プローブから超音波集束ビームを被検体に向け送信して、該被検体の内部欠陥からの反射波(エコー)を受信し、各測定点において、欠陥エコーのビーム路程を記録し、内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、重複して選び出された回数に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示することにより、前記課題を解決したものである。
【0031】
本発明は、又、水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化装置において、点集束型超音波プローブと、該点集束型超音波プローブから送信された超音波集束ビームの被検体の内部欠陥からの反射波(エコー)を受信する手段と、各測定点において、欠陥エコーのビーム路程を記録する手段と、内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点ごとに計測したビーム路程から欠陥エコー源となりうる微小要素を選び出す手段と、重複して選び出された回数に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示する手段と、を備えたことを特徴とする、超音波による内部欠陥の映像化装置を提供するものである。
【0032】
また、本発明は、水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化方法において、点集束型超音波プローブから超音波集束ビームを被検体に向け送信して、該被検体の内部欠陥からの反射波(エコー)を受信し、各測定点において、欠陥エコーのビーム路程を記録し、内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、超音波ビームの指向性の計算値または実験値から、上記微小要素における超音波の入射強度を求めて、反射源としての評価値を集計する評価値カウンタに前記入射強度を増分として加え、全ての測定点について上記処理を行った後、前記評価値カウンタの値に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示することにより、前記課題を解決したものである。
【0033】
本発明は、又、水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化装置において、点集束型超音波プローブと、該点集束型超音波プローブから送信された超音波集束ビームの被検体の内部欠陥からの反射波(エコー)を受信する手段と、各測定点において、欠陥エコーのビーム路程を記録する手段と、内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各微小要素毎に反射源としての評価値を集計する評価値カウンタと、各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、超音波ビームの指向性の計算値または実験値から、上記微小要素における超音波の入射強度を求めて、前記評価値カウンタに前記入射強度を増分として加える手段と、全ての測定点について上記処理を行った後、前記評価値カウンタの値に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示する手段と、を備えたことを特徴とする、超音波による内部欠陥の映像化装置を提供するものである。
【0034】
本発明によれば、集束ビームを用いた超音波による内部欠陥の映像化において、
(1)内部欠陥の存在する深さによらず、均一な分解能で映像化を行う。
(2)板厚が大きく、集束ビームの焦点が届かない深さであっても、高い分解能で映像化を行う。
ことが可能になる。
【0035】
本発明は、図2に示すとおり、球面振動子や音響レンズを用いて送信する点集束型超音波プローブからの超音波集束ビームには、球面振動子や音響レンズの中心に垂直な方向(ビームの中心軸)に平行な波だけではなく、ビームの中心軸に平行でない方向に指向する波がある角度範囲にわたり密に含まれている点に着目したものであり、一般的に開口合成法に適さないとされている超音波集束ビームに開口合成法を組み合わせることが可能であるという発見に基づくものである。(一般には開口合成を行うためには、超音波送受信子から広い指向角にわたり拡散する波を送信する必要があるとされている。)
【0036】
【発明の実施の形態】
(実施の形態1)
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0037】
本発明の一実施形態に係る構成図を図1に示す。図1中、1は検査対象である被検体を示す。この例では被検体1は静止被検体であり、液浸法を用いて内部欠陥の映像化(イメージング)を行い、媒体は水を用いている。10は集束ビームを送受信する超音波プローブであり、送信回路11からの一定周期の電気パルスにより超音波集束ビームを被検体に向け送信するとともに、該被検体の表面および内部からの反射波(エコー)を受信する。受信された信号は受信増幅器12により、後の信号処理に都合のよい適正レベルに増幅される。超音波プローブ10は適当な走査手段によって被検体1に対し2次元走査(x−y走査)され、その位置はx方向位置検出手段21、y方向位置検出手段22によって検出され、欠陥像合成装置14に送られる。
【0038】
欠陥エコービーム路程計測回路13は表面エコー51と欠陥エコー52との受信タイミングの差、即ち、被検体1における欠陥エコー52のビーム路程(以下、被検体1におけるを省略し、欠陥エコーのビーム路程、または単にビーム路程と称する)を計測する。ビーム路程としては、超音波の伝播時間、あるいはそれに音速を掛け算した超音波の伝播距離のいずれを用いてもよい。計測された各ビーム路程は、欠陥像合成装置14に送られ、このときの超音波プローブ10の位置Pi,j(i:x方向の位置、j:y方向の位置)と対応付けて記録される。
【0039】
図3に本方法による欠陥像合成の方法を示す。図3は仮想的な3次元空間に被検体1の表面を設定し、その内部の欠陥が存在する可能性がある深さ範囲を3次元に微小要素Pfk,l,m(k:x方向の位置、l:y方向の位置、m:Z方向の位置)に分割する方法を示しており、更に位置Pi,jにて計測した欠陥エコーのビーム路程Wi,jから、該エコーの反射源となりうる微小要素を抽出する様子を示している。図中、ハッチングを施した要素は、深さが最も小さい位置の微小要素のなかで、Pi,jからの距離がWi,jとなる微小要素を示している。本実施例における欠陥像の合成手順は下記の通りである。
【0040】
欠陥像の合成手順1
(1)超音波プローブ10を所定ピッチで走査して各位置Pi,jで超音波の送受信信号から、欠陥エコービーム路程計測回路13によって欠陥エコーのビーム路程Wi,jを計測し、欠陥像合成装置14に記録する。
【0041】
(2)欠陥像合成装置14に記録された全ビーム路程Wi,jから欠陥が存在する可能性がある深さの範囲をもとめ、この深さの範囲に微小要素を設定し、3次元のアドレスPfk,l,mをつける。
【0042】
(3)各探触子位置Pi,jについて、Pfk,l,mとの距離を求め、計測したビーム路程Wi,jと比較し、所定の誤差の範囲で一致すれば、Pfk,l,mに設けたカウンターCk,l,mにカウント1を加算する。カウンターCk,l,mは3次元の配列であり、深さ方向位置を固定すると(mの値を固定)、二次元の配列となる。図4は更にその一部を抽出して示している。
【0043】
図4に入力されている数字は、その配列要素が上記比較工程で何回一致がみられたかを示している。
【0044】
(4)全探触子位置につき、上記計算を行った後、mを特定の値に固定し、Ck,l,mの内容をカウント値に応じて濃淡または色をつけて表示等すると、2次元の欠陥像(深さ方向位置を限定したCスコープ)が得られる。mの値を変化させて2次元欠陥像を作成すると深さ方向での欠陥形状の変化を観察できる。
【0045】
15は欠陥像表示装置であり、上記のように作成された2次元欠陥像をカウント値に応じて色または濃淡をつけて表示する。
【0046】
なお、欠陥像の表示は上記に限らず、mを固定することなく、3次元的に表示してもよいし、kまたはlの値を固定し、Bスコープのような断層像を表示してもよい。
【0047】
(実施例1)
図5(a)は上記実施形態の装置を用いて、厚さ120mmの鋼製試験片の深さ80mmの位置にある微小欠陥を周波数2MHz、振動子径:50.8mm、水中焦点距離:406mmの集束プローブを用いて、深さ60mmの位置に焦点を設定して測定した結果を示している。対比のため同条件での従来のCスキャン探傷による欠陥映像を図5(c)に示している。微小欠陥の存在する深さが超音波ビームの焦点から離れているため、従来のCスキャン探傷による欠陥映像はぼやけたものになっているが、本実施例の装置では欠陥の細かな構造まで明瞭に映像化できている。即ち、従来のCスキャン探傷で問題であった焦点以外での分解能低下を本実施例の装置で解決できることがわかる。
【0048】
(実施の形態2)
更に、下記の欠陥像の合成手順2によると欠陥像の鮮明さを更に向上させることができる。
【0049】
欠陥像の合成手順2
(1)超音波プローブ10を所定ピッチで走査して各位置Pi,jで超音波の送受信信号から、欠陥エコービーム路程計測回路13によって各位置Pi,jで検出した欠陥エコーのビーム路程Wi,jを計測し、欠陥像合成装置14に記録する。
【0050】
(2)欠陥像合成装置14に記録されたビーム路程Wi,jから欠陥が存在する可能性がある深さの範囲をもとめ、この深さの範囲に微小要素を設定し、3次元のアドレスPfk,l,mをつける。
【0051】
(3)各探触子位置Pi,jについて、Pfk,l,mとの距離を求め、計測したビーム路程Wi,jとを比較し、所定の誤差の範囲で一致すれば、超音波ビームの指向性の計算値または実験値から、上記Pfk,l,mにおける超音波の入射強度Ik,l,mを求めて、Pfk,l,mに設けたカウンターCk,l,mに増分Ik,l,mを加算する。本手順2においても、カウンターCk,l,mは3次元の配列であり、深さ方向位置を固定すると(mの値を固定)、二次元の配列となる。図6は更にその一部を抽出して示している。
【0052】
図6に入力されている数字は、上記比較工程で一致がみられた場合の超音波の入射強度Ik,l,mの合算値であり、図4の内容とは異なった値となっている(図4と図6は同一のデータを用いて得られたカウント値であり、手順に応じカウンタへの加算の方法を変えたものである)。
【0053】
(4)全探触子位置につき、上記計算を行った後、mを特定の値に固定し、Ck,l,mの内容をカウント値に応じて濃淡または色をつけて表示等すると、2次元の欠陥像(深さ方向位置を限定したCスコープ)が得られる。mの値を変化させて2次元欠陥像を作成すると深さ方向での欠陥形状の変化を観察できる。
【0054】
(実施例2)
上記手順2による欠陥像を図5(b)に示す。手順1による欠陥像図5(a)よりも更に欠陥像の鮮明さが増していることがわかる。
【0055】
また、図7はmの値を変化させて2次元欠陥像を作成して深さ方向での欠陥形状の変化を観察した結果を示している。欠陥像の合成手順に当り手順2を用いた。図7(a)〜(f)は上記実施の形態2の装置を用いて、厚さ160mmの鋼製試験片の深さ約60mmの位置にある微小欠陥を周波数2MHz、振動子径:50.8mm、水中焦点距離:406mmの集束プローブを用いて、深さ40mmの位置に焦点を設定して測定した結果を示している。対比のため同条件での従来のCスキャン探傷による欠陥映像を図8に示している。従来のCスキャン探傷では単に円形にみえる欠陥が、深さによって異なる位置に反射面を有することがわかり、本発明の方法により欠陥の3次元形状の把握が容易に出来ることがわかる。
【0056】
以上、本発明の実施の形態について説明してきたが、本発明はこれに限るものではなく、被検体が鋼板の場合のみならず、例えばロールなどの円柱体や鋼管であっても適用でき、更に材質は鋼でなくても樹脂やその他金属あるいは全く別のものであっても適用可能であることは明らかである。また、被検体は静止物体に限る必要性はなく、移動物体が対象であってももちろん適用可能である。被検体を浸漬する媒体も水のほか、油やその他のものであってももちろんよい。
【0057】
【発明の効果】
本発明によれば、異物質の含有、ボイド、内部割れなどの内部欠陥が存在しうる製品の品質評価において、製品の内部品質を詳細に検査して、有害な内部欠陥を有する製品の需要家への納入を防止できるようになり、更に内部欠陥の性状から製造技術の問題点を調べ、内部欠陥が発生しない製造技術を確立できるようになる。
【図面の簡単な説明】
【図1】本発明の構成にかかる装置を示す、一部断面図を含むブロック図
【図2】本発明に用いる集束ビームを示す図
【図3】本発明の欠陥像の合成方法を示す斜視図
【図4】カウント値の例を示す図表
【図5】本発明の効果の例を従来例と比較して示す図
【図6】図4と異なる加算方法によるカウント値の例を示す図表
【図7】本発明法による測定結果の一例を示す図
【図8】従来技術による欠陥映像の一例を示す図
【図9】従来技術の構成にかかる装置を示す、一部断面図を含むブロック図
【図10】従来技術の問題点をを説明するための斜視図
【図11】従来の開口合成法の原理を説明するための断面図
【符号の説明】
1、110…被検体
10、111…超音波プローブ
11、112…送信回路
12、113…受信増幅器
13…欠陥エコービーム路程計測回路
14…欠陥像合成装置
15…欠陥像表示装置
21…x方向位置検出手段
22…y方向位置検出手段
51…表面エコー
52…欠陥エコー
114…ゲート回路
115…ピークディテクタ
120…振動子アレイ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flaw detection method, which is a type of non-destructive inspection method, and provides high-resolution images of internal defects that can be present in variously shaped objects such as plates, tubes, and cylinders made of metal, resin, and the like. The present invention relates to a method and an apparatus for imaging an internal defect by ultrasonic waves to be displayed.
[0002]
[Prior art]
It is a very important technical task for the manufacturing industry to detect non-destructively internal defects of products of various shapes such as plates, tubes, columns, and the like made of metal, resin, and the like, and to further investigate properties of the internal defects.
[0003]
The purpose is to inspect the internal quality of the product in detail, prevent the delivery of products with harmful internal defects to consumers, investigate the problems of manufacturing technology from the nature of the internal defects, and generate internal defects Not to establish a manufacturing technology. Representative examples of internal defects include the inclusion of foreign substances, voids, and internal cracks. For example, in the case of steel products, the content of foreign substances is often an oxide of aluminum or calcium, and these are called nonmetallic inclusions.
[0004]
Among such non-destructive inspection methods, which are collectively called a nondestructive inspection method, the ultrasonic flaw detection method is suitable for the inspection of the inside of a product. As described above, the inspection targets include inclusion of foreign substances, voids, and internal cracks, and the detection of these internal defects is referred to as flaw detection.
[0005]
Ultrasonic waves used in ultrasonic flaw detection are roughly classified into longitudinal waves and transverse waves. Longitudinal waves are compressional vibrations (also referred to as compressional waves) transmitted through an object or medium as well as sound waves transmitted through air or water. This longitudinal wave is often used when a flaw is detected by propagating ultrasonic waves perpendicularly to the surface of the subject (referred to as vertical flaw detection).
[0006]
Transverse waves are the propagation of shear strain and are often used for oblique flaw detection of welds and the like.
[0007]
Generally, when transmitting ultrasonic waves to a subject, an electric pulse is applied to the piezoelectric vibrator to generate high-frequency pulse vibration, and this vibration is guided to the subject via an appropriate couplant (water, oil, etc.). It is performed by. The reception of the ultrasonic wave is performed in a process reverse to the transmission, and a voltage or a current generated by the vibration received by the piezoelectric vibrator is observed by an appropriate electric device. A sensor that has a built-in piezoelectric vibrator and oscillates ultrasonic waves by a received electric pulse is called an ultrasonic transmitter, and a sensor that has a built-in piezoelectric vibrator and converts received vibration into an electric signal is called an ultrasonic receiver. There is no special difference in the structure, and a sensor having a built-in piezoelectric vibrator can be generally used for transmitting and receiving ultrasonic waves. In many cases, the sensor is used for both transmitting and receiving ultrasonic waves, and at this time, this sensor is referred to as an ultrasonic transceiver. The names of the ultrasonic transmitter, the ultrasonic receiver, and the ultrasonic transmitter / receiver are names given from the function of the sensor, but the names of the ultrasonic probe and the ultrasonic probe in the sense of a tool for performing an exploration. Are often used.
[0008]
The ultrasonic flaw detection method using an ultrasonic transmitter / receiver using a piezoelectric vibrator is a direct contact method in which an ultrasonic transmitter / receiver is applied to a subject via oil or the like to transmit / receive ultrasonic waves, and a medium such as water is interposed. The method is broadly divided into a liquid immersion method for transmitting and receiving ultrasonic waves to and from a subject (a water immersion method when the medium is water). In the immersion method,
(1) The ultrasonic transceiver does not come into contact with the subject.
(2) It is easy to keep the incident intensity of the ultrasonic wave on the subject constant.
(3) By focusing an ultrasonic beam using an acoustic lens or a spherical vibrator, measurement with high spatial resolution is possible.
The liquid immersion method is preferably used when the inside of the subject is evaluated in detail with high spatial resolution.
[0009]
Taking the water immersion method (one form of the liquid immersion method) shown in FIG. 9 as an example of the prior art, the principle of ultrasonic flaw detection will be briefly described below. FIG. 9 shows that an object to be inspected is immersed in water, ultrasonic waves are transmitted from the ultrasonic probe 111 to the object 110 via water, and reflected waves (echoes) from the surface and the inside of the object 110 are reflected in water. 1 shows a general configuration of a water immersion flaw detection method for detecting a defect by receiving an ultrasonic probe 111 via the interface. In this case, the ultrasonic probe 111 is also used for transmitting and receiving ultrasonic waves. When the ultrasonic wave emitted from the ultrasonic transducer is applied to the subject, the ultrasonic wave is reflected on the surface and returns to the ultrasonic transducer through the medium again (hereinafter, the reflected wave from the subject surface is referred to as a surface echo). ). On the other hand, at the same time, ultrasonic vibration occurs on the surface of the subject on which the ultrasonic wave has entered, and the vibration propagates into the subject. If there is no defect in the object, the propagated ultrasonic vibration is applied to the surface on the opposite side of the object (for example, the back surface of the plate if ultrasonic waves are applied to the surface of the plate. , Which is also referred to as a bottom surface), is reflected at the bottom surface, propagates in the subject in the opposite direction, returns toward the surface of the subject, passes through the medium again, and transmits and receives the ultrasonic transceiver. (Hereinafter, this reflected wave is referred to as a bottom surface echo).
[0010]
If there is any defect in the object, the ultrasonic wave incident on the object is reflected by the defect, returns toward the surface of the object, passes through the medium, and returns to the ultrasonic transmitter / receiver (hereinafter referred to as defect echo). ). The timing at which the defective echo returns to the ultrasonic transmitter / receiver is earlier than that of the bottom surface echo in accordance with the difference in the length of the propagation path (hereinafter, referred to as the beam path). Detecting this defect echo is the basic principle of ultrasonic flaw detection.
[0011]
At this time, by using an ultrasonic lens that can focus the ultrasonic beam at one point using an acoustic lens or a spherical oscillator as an ultrasonic transceiver, and by using a thin portion where the ultrasonic beam is focused, measurement is performed. Higher resolution can be achieved.
[0012]
There is a C-scan ultrasonic flaw detection method (see Non-patent Document 1) as a method for two-dimensionally scanning an ultrasonic transmitter / receiver for transmitting / receiving a focused beam with respect to an object and imaging an internal defect of the object with high resolution. This flaw detection method is often used for detecting internal defects that require high resolution.
[0013]
[Non-patent document 1]
Edited by Japan Non-Destructive Inspection Association, "Ultrasonic Testing II", Japan Non-Destructive Inspection Association (2000), p. 151-152
[0014]
Generally, the C scan flaw detection method has a configuration in which a defect echo is extracted by a gate circuit 114 and the amplitude of the defect echo is detected by a peak detector 115, as shown in FIG. It is a dimensional map. As described above, the conventional C-scan flaw detection method is characterized in that amplitude information of a defect echo is used.
[0015]
Hereinafter, problems of the conventional C-scan flaw detection method will be described with reference to FIG.
[0016]
First problem: As shown in FIG. 10, the focused beam has a large beam diameter at a position other than the focal point, the resolution is reduced at a position other than the focal point, and various depths of the subject ( It is difficult to visualize the internal defect existing in the direction (z direction in FIG. 10) at a uniform resolution.
[0017]
Second problem: In imaging an internal defect of an extremely thick material, it is necessary to focus a focused beam on a deep position of the subject in order to improve the resolution of a defect image at a deep position of the subject. Assuming that the wavelength of the ultrasonic wave is λ, the short-range sound field limit distance X of the ultrasonic transducer which is a flat plate having a diameter D 0 Is represented by the following equation (1).
[0018]
X 0 = D 2 / (4 · λ) (1)
[0019]
The near-field limit distance is the natural focus, which is the distance at which the phases of the ultrasonic waves radiated from the individual element points of the vibrator are almost aligned and no interference occurs (without focusing by a lens or the like). Even if the phases match.) Therefore, the focus of the focused beam is at the near-field limit distance X 0 Unless the position is set closer to the probe, a sufficient focusing effect cannot be obtained. Practically, the focal length F of the focused beam is X 0 It is said that it is necessary to be shorter than / 2.
[0020]
From the above, to set the focus of the focused beam at a deep position of the subject, X 0 It must be understood that it is necessary to increase the diameter of the ultrasonic vibrator. However, in order to electrically drive the ultrasonic vibrator to emit ultrasonic pulses, it is necessary to prevent the electric resistance of the ultrasonic vibrator from becoming too low, and the diameter of the ultrasonic vibrator is limited. Exists. Therefore, it is technically difficult to set the focus of the focused beam at a deep position of the extremely thick material. For example, to image an internal defect of a steel object using a frequency of 2 MHz, a depth of about 80 mm is a limit. is there. Therefore, it is difficult to visualize an internal defect at a deeper position with a high resolution.
[0021]
In addition to the above-described C-scan flaw detection method, there is an aperture synthesis method as a technique aiming at high-resolution imaging. The principle of aperture synthesis will be described by taking as an example a case where defect imaging is performed by bringing the transducer array shown in FIG. 11 into contact with the surface of the subject 110. Ultrasonic waves are transmitted from each transducer of the transducer array to detect a defect echo, and the beam path of the defect echo in the subject 110 is measured from the time from transmission of the ultrasonic wave to reception of the echo. Since the ultrasonic waves transmitted and received from the individual transducers 120p (p = 1, 2,...) Are spatially spread, the beam path of the echo detected by the transducer 120p is Wp (p = 1, 2, 1). , ‥‥), there is a reflection source somewhere in the directivity range of the ultrasonic wave transmitted and received by the transducer 120 p in the hollow sphere Sp (p = 1, 2, ‥‥) having a radius Wp. . When the echo is detected using all the transducers and the intersection of the hollow sphere Sp is obtained, the intersection becomes a defect image. FIG. 6 , 120 8 , 120 10 , 120 Thirteen , 120 Fifteen 3 shows a state in which a defect image is synthesized from the beam path of the detected echo.
[0022]
Furthermore, if the transducer array 120 is scanned in a direction perpendicular to the plane of the paper (scanning stroke is Ls), a three-dimensional defect image can be obtained. When the total length of the transducer array is L, this method corresponds to transmitting an ultrasonic wave from each point of the transducer having a large size of L × Ls and receiving an echo to obtain a defect image. The method has a feature that high resolution equivalent to defect imaging by a large vibrator can be obtained without restriction on the vibrator diameter due to matching of electric impedance. Patent Documents 1 and 2 are cited as prior art documents of this technology.
[0023]
[Patent Document 1]
JP-A-7-49398
[Patent Document 2]
JP-A-10-142201
[0024]
[Problems to be solved by the invention]
However, in this method, as shown in Patent Document 1, in order to detect a defect echo over a wide range, a wide directivity angle is required for the ultrasonic transceiver, and the ultrasonic beam is focused on a narrow area. This technique is incompatible with the C-scan flaw detection method in which the measurement is performed by using a conventional method.
[0025]
Therefore, the following items have become extremely important issues in imaging internal defects by ultrasonic waves using a focused beam.
[0026]
(1) Imaging is performed at a uniform resolution regardless of the depth at which internal defects exist.
[0027]
(2) Imaging is performed with high resolution even when the plate thickness is large and the depth of the focused beam cannot be reached.
[0028]
In addition, since the above (2) is equivalent to the case of imaging an internal defect located beyond the focus in (1), the problem is ultimately summarized in (1).
[0029]
The present invention has been made in view of such circumstances, and it is an object of the present invention to enable imaging with uniform resolution regardless of the depth at which internal defects exist.
[0030]
[Means for Solving the Problems]
The present invention, water is interposed between the water immersion type ultrasonic probe and the subject, while scanning the ultrasonic probe relative to the subject, transmitting ultrasound toward the subject, In a method of imaging an internal defect by using an ultrasonic wave that receives a reflected wave (echo) from an internal defect of the subject and visualizes the internal defect, an ultrasonic focused beam is transmitted from the point focusing type ultrasonic probe toward the subject. Then, a reflected wave (echo) from the internal defect of the subject is received, the beam path of the defect echo is recorded at each measurement point, and the reconstruction of the internal defect image is performed. The image is divided into microelements of the same size, microelements that can be a defect echo source are selected from the beam path measured at each measurement point, and the shading and color are applied to the microelements according to the number of times that they are selected repeatedly. To indicate the internal defect of the subject More it is obtained by solving the above problems.
[0031]
According to the present invention, water is interposed between the water immersion type ultrasonic probe and the subject, and the ultrasonic probe is scanned relative to the subject while transmitting ultrasonic waves toward the subject. A point-focusing ultrasonic probe, a point-focusing ultrasonic probe, and an ultrasonic imaging device that receives reflected waves (echoes) from the internal defect of the subject and visualizes the internal defect. Means for receiving a reflected wave (echo) of the ultrasonic focused beam transmitted from the internal defect of the subject, means for recording the beam path of the defect echo at each measurement point, and reconstruction of the internal defect image. In performing this, the reconstructed image of the subject is divided into microelements of the same size, a means for selecting a microelement that can be a defect echo source from a beam path measured at each measurement point, and a number of times that the element is selected redundantly Depending on the fine element, With a, is characterized in that it comprises a means for displaying the internal defects of the object to provide a video apparatus for internal defects by ultrasound.
[0032]
In addition, the present invention interposes water between the water immersion type ultrasonic probe and the subject, transmits the ultrasonic wave toward the subject while scanning the ultrasonic probe relatively to the subject. A method of imaging an internal defect by ultrasonic waves, which receives a reflected wave (echo) from the internal defect of the subject and visualizes the internal defect, by applying an ultrasonic focused beam from a point focusing type ultrasonic probe to the subject. And transmits the reflected wave (echo) from the internal defect of the subject, records the beam path of the defect echo at each measurement point, and reconstructs the internal defect image. The reconstructed image is divided into microelements of the same size, microelements that can be defect echo sources are selected from the beam path measured at each measurement point, and the microelements are calculated from the calculated or experimental values of the directivity of the ultrasonic beam. The incident intensity of the ultrasonic wave at After adding the incident intensity as an increment to an evaluation value counter that aggregates the evaluation values as a reflection source, performing the above-described processing for all the measurement points, and then shading or coloring the minute elements according to the value of the evaluation value counter. The above-mentioned problem has been solved by displaying the internal defect of the subject with a mark.
[0033]
According to the present invention, water is interposed between the water immersion type ultrasonic probe and the subject, and the ultrasonic probe is scanned relative to the subject while transmitting ultrasonic waves toward the subject. A point-focusing ultrasonic probe, a point-focusing ultrasonic probe, and an ultrasonic imaging device that receives reflected waves (echoes) from the internal defect of the subject and visualizes the internal defect. Means for receiving a reflected wave (echo) of the ultrasonic focused beam transmitted from the internal defect of the subject, means for recording the beam path of the defect echo at each measurement point, and reconstruction of the internal defect image. In performing this, the reconstructed image of the subject is divided into microelements of the same size, and an evaluation value counter that counts the evaluation values as a reflection source for each microelement, and a defect based on the beam path measured at each measurement point. Select small elements that can be echo sources From the calculated or experimental value of the directivity of the ultrasonic beam, determine the incident intensity of the ultrasonic wave in the microelement, add the incident intensity to the evaluation value counter as an increment, and perform the above processing for all the measurement points. Means for displaying the internal defect of the subject by shading or coloring the minute element in accordance with the value of the evaluation value counter, and displaying the internal defect of the subject. It is intended to provide an imaging device.
[0034]
According to the present invention, in imaging of internal defects by ultrasonic waves using a focused beam,
(1) Imaging is performed at a uniform resolution regardless of the depth at which internal defects exist.
(2) Imaging is performed with high resolution even when the plate thickness is large and the depth of the focused beam cannot be reached.
It becomes possible.
[0035]
According to the present invention, as shown in FIG. 2, an ultrasonic focused beam transmitted from a point-focusing type ultrasonic probe transmitted using a spherical oscillator or an acoustic lens has a direction (beam) perpendicular to the center of the spherical oscillator or the acoustic lens. Not only the waves parallel to the central axis of the beam, but also the fact that waves directed in directions that are not parallel to the central axis of the beam are densely contained over a certain angular range. It is based on the finding that it is possible to combine aperture synthesis methods with ultrasound focused beams that are not suitable. (Generally, in order to perform aperture synthesis, it is necessary to transmit a wave that spreads over a wide directional angle from an ultrasonic transceiver.)
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0037]
FIG. 1 shows a configuration diagram according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a subject to be tested. In this example, the subject 1 is a stationary subject, and imaging (imaging) of an internal defect is performed using a liquid immersion method, and water is used as a medium. An ultrasonic probe 10 transmits and receives a focused beam, transmits an ultrasonic focused beam to a subject by an electric pulse from the transmitting circuit 11 at a constant period, and reflects a reflected wave (echo) from the surface and the inside of the subject. ) To receive. The received signal is amplified by the receiving amplifier 12 to an appropriate level convenient for subsequent signal processing. The ultrasonic probe 10 is two-dimensionally scanned (xy scanning) with respect to the subject 1 by an appropriate scanning unit, and the position thereof is detected by an x-direction position detection unit 21 and a y-direction position detection unit 22. 14 is sent.
[0038]
The defect echo beam path measurement circuit 13 calculates the difference between the reception timings of the surface echo 51 and the defect echo 52, that is, the beam path of the defect echo 52 in the subject 1 (hereinafter, the path in the subject 1 is omitted, and the beam path of the defect echo is omitted). , Or simply referred to as the beam path). Either the propagation time of the ultrasonic wave or the propagation distance of the ultrasonic wave multiplied by the speed of sound may be used as the beam path. The measured beam paths are sent to the defect image synthesizing device 14, and the position P of the ultrasonic probe 10 at this time is i, j (I: position in the x direction, j: position in the y direction).
[0039]
FIG. 3 shows a method of synthesizing a defect image according to the present method. FIG. 3 sets the surface of the subject 1 in a virtual three-dimensional space, and sets the depth range in which a defect inside the subject 1 may exist to a three-dimensional minute element Pf. k, l, m (K: position in the x direction, l: position in the y direction, m: position in the Z direction). i, j Path W of defect echo measured at i, j The figure shows how a small element that can be a reflection source of the echo is extracted from the above. In the figure, the hatched elements indicate P among the small elements at the position where the depth is the smallest. i, j Distance from W i, j Are shown. The procedure for synthesizing a defect image in the present embodiment is as follows.
[0040]
Defect image synthesis procedure 1
(1) The ultrasonic probe 10 is scanned at a predetermined pitch and each position P i, j From the transmission / reception signal of the ultrasonic wave, the defect echo beam path measurement circuit 13 uses the defect echo beam path W i, j Is measured and recorded in the defect image synthesizing device 14.
[0041]
(2) The total beam path W recorded in the defect image synthesizing device 14 i, j From the depth range in which a defect may be present, a small element is set in this depth range, and the three-dimensional address Pf k, l, m Attach
[0042]
(3) Each probe position P i, j For Pf k, l, m And the measured beam path W i, j And if they match within a predetermined error range, Pf k, l, m Counter C provided in k, l, m Is added to the count 1. Counter C k, l, m Is a three-dimensional array. When the position in the depth direction is fixed (the value of m is fixed), the array becomes a two-dimensional array. FIG. 4 further shows a part of the extracted data.
[0043]
The numbers entered in FIG. 4 indicate how many times the sequence element has been matched in the comparison step.
[0044]
(4) After performing the above calculation for all the probe positions, m is fixed to a specific value, and C k, l, m Is displayed in a shaded or colored manner according to the count value, a two-dimensional defect image (a C scope with a limited position in the depth direction) is obtained. When a two-dimensional defect image is created by changing the value of m, a change in the defect shape in the depth direction can be observed.
[0045]
Reference numeral 15 denotes a defect image display device, which displays the two-dimensional defect image created as described above with a color or shading according to the count value.
[0046]
The display of the defect image is not limited to the above, and may be displayed three-dimensionally without fixing m, or by fixing the value of k or l and displaying a tomographic image such as a B scope. Is also good.
[0047]
(Example 1)
FIG. 5 (a) shows, using the apparatus of the above embodiment, a minute defect at a depth of 80 mm of a steel test piece having a thickness of 120 mm at a frequency of 2 MHz, a transducer diameter of 50.8 mm, and a focal length in water of 406 mm. 4 shows the measurement results obtained by setting a focal point at a position at a depth of 60 mm using the focusing probe shown in FIG. FIG. 5C shows a defect image obtained by conventional C-scan flaw detection under the same conditions for comparison. Since the depth of existence of the minute defect is far from the focal point of the ultrasonic beam, the defect image obtained by the conventional C-scan detection is blurred. However, in the apparatus of this embodiment, the fine structure of the defect is clear. Has been visualized. In other words, it can be seen that the resolution of the present embodiment can be used to solve the problem of the resolution reduction other than the focal point, which is a problem in the conventional C-scan flaw detection.
[0048]
(Embodiment 2)
Further, according to the following procedure 2 for synthesizing a defective image, the sharpness of the defective image can be further improved.
[0049]
Defect image synthesis procedure 2
(1) The ultrasonic probe 10 is scanned at a predetermined pitch and each position P i, j From the ultrasonic transmission / reception signal, each position P is detected by the defect echo beam path measurement circuit 13. i, j Path W of the defect echo detected in step i, j Is measured and recorded in the defect image synthesizing device 14.
[0050]
(2) Beam path W recorded in the defect image synthesizing device 14 i, j From the depth range in which a defect may be present, a small element is set in this depth range, and the three-dimensional address Pf k, l, m Attach
[0051]
(3) Each probe position P i, j For Pf k, l, m And the measured beam path W i, j Is compared within a predetermined error range, the above-mentioned Pf is calculated from the calculated value or the experimental value of the directivity of the ultrasonic beam. k, l, m Incident intensity I of ultrasonic wave k, l, m , Pf k, l, m Counter C provided in k, l, m Increment I k, l, m Is added. Also in this procedure 2, the counter C k, l, m Is a three-dimensional array. When the position in the depth direction is fixed (the value of m is fixed), the array becomes a two-dimensional array. FIG. 6 further shows a part of the extracted data.
[0052]
The numbers input in FIG. 6 indicate the incident intensity I of the ultrasonic wave when the agreement is found in the comparison step. k, l, m (FIGS. 4 and 6 are count values obtained by using the same data, and the method of adding to the counter according to the procedure is different. Changed).
[0053]
(4) After performing the above calculation for all the probe positions, m is fixed to a specific value, and C k, l, m Is displayed in a shaded or colored manner according to the count value, a two-dimensional defect image (a C scope with a limited position in the depth direction) is obtained. When a two-dimensional defect image is created by changing the value of m, a change in the defect shape in the depth direction can be observed.
[0054]
(Example 2)
FIG. 5B shows a defect image obtained by the above procedure 2. It can be seen that the sharpness of the defect image is further increased as compared with the defect image shown in FIG.
[0055]
FIG. 7 shows the result of observing a change in defect shape in the depth direction by creating a two-dimensional defect image by changing the value of m. Procedure 2 was used in synthesizing the defect image. FIGS. 7 (a) to 7 (f) show, using the apparatus of the second embodiment, a minute defect at a position of about 60 mm in depth of a steel test piece having a thickness of 160 mm at a frequency of 2 MHz and a vibrator diameter of 50 mm. The figure shows the measurement result obtained by setting a focal point at a position of 40 mm in depth using a focusing probe having a focal length of 8 mm and an underwater focal length of 406 mm. FIG. 8 shows a defect image obtained by conventional C-scan flaw detection under the same conditions for comparison. In the conventional C-scan inspection, it can be seen that a defect that appears to be simply circular has a reflective surface at a position different depending on the depth, and that the method of the present invention makes it easy to grasp the three-dimensional shape of the defect.
[0056]
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and the present invention is applicable not only to the case where the test object is a steel plate, but also to a cylindrical body such as a roll or a steel pipe. Obviously, the material is not limited to steel, but may be a resin or other metal or a completely different material. In addition, the subject need not be limited to a stationary object, and can be applied to a moving object. The medium in which the subject is immersed may of course be oil, or other material in addition to water.
[0057]
【The invention's effect】
According to the present invention, in the quality evaluation of a product in which internal defects such as inclusion of foreign substances, voids, and internal cracks may exist, the internal quality of the product is inspected in detail, and a customer of a product having a harmful internal defect is inspected. Can be prevented from being delivered to the company, and furthermore, problems of the manufacturing technology can be examined from the nature of the internal defect, and a manufacturing technology free of internal defects can be established.
[Brief description of the drawings]
FIG. 1 is a block diagram including a partial cross-sectional view showing an apparatus according to the configuration of the present invention.
FIG. 2 shows a focused beam used in the present invention.
FIG. 3 is a perspective view showing a method for synthesizing a defect image according to the present invention.
FIG. 4 is a table showing examples of count values;
FIG. 5 is a diagram showing an example of the effect of the present invention in comparison with a conventional example.
FIG. 6 is a chart showing an example of a count value by an addition method different from that in FIG. 4;
FIG. 7 is a diagram showing an example of a measurement result according to the method of the present invention.
FIG. 8 is a diagram showing an example of a defect image according to the related art.
FIG. 9 is a block diagram including a partial cross-sectional view showing an apparatus according to a configuration of the related art.
FIG. 10 is a perspective view for explaining a problem of the related art.
FIG. 11 is a sectional view for explaining the principle of a conventional aperture synthesis method.
[Explanation of symbols]
1, 110 ... subject
10, 111 ... ultrasonic probe
11, 112 ... transmission circuit
12, 113 ... receiving amplifier
13: Defect echo beam path measurement circuit
14. Defect image synthesis device
15 ... Defect image display device
21 x-direction position detecting means
22... Y-direction position detecting means
51 ... Surface echo
52 ... Defect echo
114 ... Gate circuit
115 ... Peak detector
120 ... transducer array

Claims (4)

水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化方法において、
点集束型超音波プローブから超音波集束ビームを被検体に向け送信して、該被検体の内部欠陥からの反射波(エコー)を受信し、
各測定点において、欠陥エコーのビーム路程を記録し、
内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、
重複して選び出された回数に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示することを特徴とする、超音波による内部欠陥の映像化方法。
Water is interposed between the water immersion type ultrasonic probe and the subject, and while the ultrasonic probe is relatively scanned with respect to the subject, an ultrasonic wave is transmitted toward the subject, and the inside of the subject is transmitted. In a method of imaging an internal defect by ultrasonic waves that receives a reflected wave (echo) from the defect and visualizes the internal defect,
A point-focusing type ultrasonic probe transmits an ultrasonic focused beam toward a subject, receives a reflected wave (echo) from an internal defect of the subject,
At each measurement point, record the beam path of the defect echo,
In reconstructing the internal defect image, the reconstructed image of the object is divided into minute elements of the same size, and a minute element that can be a defect echo source is selected from a beam path measured for each measurement point,
A method of imaging internal defects by ultrasonic waves, characterized by displaying the internal defects of the subject by shading or coloring the minute elements according to the number of times selected and selected repeatedly.
水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化装置において、
点集束型超音波プローブと、
該点集束型超音波プローブから送信された超音波集束ビームの被検体の内部欠陥からの反射波(エコー)を受信する手段と、
各測定点において、欠陥エコーのビーム路程を記録する手段と、
内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点ごとに計測したビーム路程から欠陥エコー源となりうる微小要素を選び出す手段と、
重複して選び出された回数に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示する手段と、
を備えたことを特徴とする、超音波による内部欠陥の映像化装置。
Water is interposed between the water immersion type ultrasonic probe and the subject, and while the ultrasonic probe is relatively scanned with respect to the subject, an ultrasonic wave is transmitted toward the subject, and the inside of the subject is transmitted. In an internal defect imaging device using ultrasonic waves that receives reflected waves (echoes) from the defect and visualizes the internal defect,
A point-focusing ultrasonic probe,
Means for receiving a reflected wave (echo) of an ultrasonic focused beam transmitted from the point focused ultrasonic probe from an internal defect of the subject;
Means for recording the beam path of the defect echo at each measurement point;
In performing the reconstruction of the internal defect image, the reconstructed image of the subject is divided into small elements of the same size, and a means for selecting a small element that can be a defect echo source from a beam path measured for each measurement point,
Means for displaying the internal defect of the subject by coloring and shading the microelements according to the number of times selected in duplicate,
A device for imaging internal defects by ultrasonic waves, comprising:
水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化方法において、
点集束型超音波プローブから超音波集束ビームを被検体に向け送信して、該被検体の内部欠陥からの反射波(エコー)を受信し、
各測定点において、欠陥エコーのビーム路程を記録し、
内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、
超音波ビームの指向性の計算値または実験値から、上記微小要素における超音波の入射強度を求めて、反射源としての評価値を集計する評価値カウンタに前記入射強度を増分として加え、
全ての測定点について上記処理を行った後、前記評価値カウンタの値に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示することを特徴とする、超音波による内部欠陥の映像化方法。
Water is interposed between the water immersion type ultrasonic probe and the subject, and while the ultrasonic probe is relatively scanned with respect to the subject, an ultrasonic wave is transmitted toward the subject, and the inside of the subject is transmitted. In a method of imaging an internal defect by ultrasonic waves that receives a reflected wave (echo) from the defect and visualizes the internal defect,
A point-focusing type ultrasonic probe transmits an ultrasonic focused beam toward a subject, receives a reflected wave (echo) from an internal defect of the subject,
At each measurement point, record the beam path of the defect echo,
In reconstructing the internal defect image, the reconstructed image of the object is divided into minute elements of the same size, and a minute element that can be a defect echo source is selected from a beam path measured for each measurement point,
From the calculated value or experimental value of the directivity of the ultrasonic beam, determine the incident intensity of the ultrasonic wave in the microelement, add the incident intensity as an increment to an evaluation value counter that aggregates the evaluation values as a reflection source,
After performing the above-described processing for all the measurement points, the microelements are shaded or colored according to the value of the evaluation value counter, and the internal defect of the subject is displayed. How to visualize defects.
水浸型超音波プローブと被検体との間に水を介在させ、該超音波プローブを被検体に対して相対的に走査しつつ、超音波を被検体に向け送信し、該被検体の内部欠陥からの反射波(エコー)を受信して内部欠陥を映像化する超音波による内部欠陥の映像化装置において、
点集束型超音波プローブと、
該点集束型超音波プローブから送信された超音波集束ビームの被検体の内部欠陥からの反射波(エコー)を受信する手段と、
各測定点において、欠陥エコーのビーム路程を記録する手段と、
内部欠陥像の再構成を行うに当り、被検体の再構成像を同じ大きさの微小要素に分け、各微小要素毎に反射源としての評価値を集計する評価値カウンタと、
各測定点毎に計測したビーム路程から欠陥エコー源となりうる微小要素を選び出し、超音波ビームの指向性の計算値または実験値から、上記微小要素における超音波の入射強度を求めて、前記評価値カウンタに前記入射強度を増分として加える手段と、
全ての測定点について上記処理を行った後、前記評価値カウンタの値に応じて上記微小要素に濃淡や色をつけて、被検体の内部欠陥を表示する手段と、
を備えたことを特徴とする、超音波による内部欠陥の映像化装置。
Water is interposed between the water immersion type ultrasonic probe and the subject, and while the ultrasonic probe is relatively scanned with respect to the subject, an ultrasonic wave is transmitted toward the subject, and the inside of the subject is transmitted. In an internal defect imaging device using ultrasonic waves that receives reflected waves (echoes) from the defect and visualizes the internal defect,
A point-focusing ultrasonic probe,
Means for receiving a reflected wave (echo) of an ultrasonic focused beam transmitted from the point focused ultrasonic probe from an internal defect of the subject;
Means for recording the beam path of the defect echo at each measurement point;
In performing the reconstruction of the internal defect image, the reconstructed image of the subject is divided into minute elements of the same size, and an evaluation value counter that totals the evaluation value as a reflection source for each minute element,
From the beam path measured at each measurement point, select a small element that can be a defect echo source, and from the calculated or experimental value of the directivity of the ultrasonic beam, obtain the incident intensity of the ultrasonic wave at the small element, and obtain the evaluation value. Means for adding the incident intensity to a counter as an increment;
After performing the above process for all the measurement points, by applying a shade or color to the micro element according to the value of the evaluation value counter, means for displaying the internal defect of the subject,
A device for imaging internal defects by ultrasonic waves, comprising:
JP2002314291A 2002-10-29 2002-10-29 Method and apparatus for imaging internal defect by ultrasonic wave Expired - Fee Related JP4196643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314291A JP4196643B2 (en) 2002-10-29 2002-10-29 Method and apparatus for imaging internal defect by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314291A JP4196643B2 (en) 2002-10-29 2002-10-29 Method and apparatus for imaging internal defect by ultrasonic wave

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008203226A Division JP2008261889A (en) 2008-08-06 2008-08-06 Imaging method of internal defect by ultrasonic wave, and its device

Publications (2)

Publication Number Publication Date
JP2004150875A true JP2004150875A (en) 2004-05-27
JP4196643B2 JP4196643B2 (en) 2008-12-17

Family

ID=32458638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314291A Expired - Fee Related JP4196643B2 (en) 2002-10-29 2002-10-29 Method and apparatus for imaging internal defect by ultrasonic wave

Country Status (1)

Country Link
JP (1) JP4196643B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128018A (en) * 2003-10-24 2005-05-19 General Electric Co <Ge> Inspection method for determining initial mechanical damage and inspection device therefor
WO2009104811A1 (en) * 2008-02-20 2009-08-27 Jfeスチール株式会社 Ultrasonic measurement device and ultrasonic measurement method
WO2010001853A1 (en) * 2008-07-04 2010-01-07 株式会社東芝 3d ultrasonographic device
JP2010071983A (en) * 2008-08-19 2010-04-02 Jfe Steel Corp Ultrasonic imaging method and ultrasonic imaging apparatus
JP2010527015A (en) * 2007-05-15 2010-08-05 シーメンス アクチエンゲゼルシヤフト Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave
JP2011013092A (en) * 2009-07-01 2011-01-20 Toshiba Corp Device for ultrasonic inspection
JP2014089065A (en) * 2012-10-29 2014-05-15 Ihi Corp Method and apparatus for ultrasonic flaw detection
JP2014089064A (en) * 2012-10-29 2014-05-15 Ihi Corp Method and apparatus for ultrasonic flaw detection
KR101494086B1 (en) 2012-07-19 2015-02-16 가부시키가이샤 히타치 파워 솔루션즈 Measurement frequency variable ultrasonic imaging device
JP2021076376A (en) * 2019-11-05 2021-05-20 株式会社ニチゾウテック Ultrasonic flaw detection device and reflection source identification method
CN113552219A (en) * 2021-07-28 2021-10-26 浙江大学 Ultrasonic self-focusing detection method for hole defects of multilayer structure

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128018A (en) * 2003-10-24 2005-05-19 General Electric Co <Ge> Inspection method for determining initial mechanical damage and inspection device therefor
JP4648676B2 (en) * 2003-10-24 2011-03-09 ゼネラル・エレクトリック・カンパニイ Inspection method and apparatus for determining initial mechanical failure
JP2010527015A (en) * 2007-05-15 2010-08-05 シーメンス アクチエンゲゼルシヤフト Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave
KR101218473B1 (en) * 2008-02-20 2013-01-04 제이에프이 스틸 가부시키가이샤 Ultrasonic measurement device and ultrasonic measurement method
WO2009104811A1 (en) * 2008-02-20 2009-08-27 Jfeスチール株式会社 Ultrasonic measurement device and ultrasonic measurement method
JP2010071971A (en) * 2008-02-20 2010-04-02 Jfe Steel Corp Ultrasonic measuring instrument and ultrasonic measuring method
CN102216767A (en) * 2008-02-20 2011-10-12 杰富意钢铁株式会社 Ultrasonic measurement device and ultrasonic measurement method
JP2010014626A (en) * 2008-07-04 2010-01-21 Toshiba Corp 3d ultrasonographic device
US8488871B2 (en) 2008-07-04 2013-07-16 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic inspection apparatus
WO2010001853A1 (en) * 2008-07-04 2010-01-07 株式会社東芝 3d ultrasonographic device
JP2014074726A (en) * 2008-08-19 2014-04-24 Jfe Steel Corp Ultrasonic wave imaging method and ultrasonic wave imaging device
JP2010071983A (en) * 2008-08-19 2010-04-02 Jfe Steel Corp Ultrasonic imaging method and ultrasonic imaging apparatus
JP2011013092A (en) * 2009-07-01 2011-01-20 Toshiba Corp Device for ultrasonic inspection
KR101494086B1 (en) 2012-07-19 2015-02-16 가부시키가이샤 히타치 파워 솔루션즈 Measurement frequency variable ultrasonic imaging device
TWI510800B (en) * 2012-07-19 2015-12-01 Hitachi Power Solutions Co Ltd Measurement of variable frequency ultrasonic imaging devices
US9326752B2 (en) 2012-07-19 2016-05-03 Hitachi Power Solutions Co., Ltd. Measurement frequency variable ultrasonic imaging device
JP2014089065A (en) * 2012-10-29 2014-05-15 Ihi Corp Method and apparatus for ultrasonic flaw detection
JP2014089064A (en) * 2012-10-29 2014-05-15 Ihi Corp Method and apparatus for ultrasonic flaw detection
JP2021076376A (en) * 2019-11-05 2021-05-20 株式会社ニチゾウテック Ultrasonic flaw detection device and reflection source identification method
JP7346249B2 (en) 2019-11-05 2023-09-19 株式会社ニチゾウテック Ultrasonic flaw detection inspection equipment and reflection source identification method
CN113552219A (en) * 2021-07-28 2021-10-26 浙江大学 Ultrasonic self-focusing detection method for hole defects of multilayer structure
CN113552219B (en) * 2021-07-28 2022-06-07 浙江大学 Ultrasonic self-focusing detection method for hole defects of multilayer structure

Also Published As

Publication number Publication date
JP4196643B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5402046B2 (en) Ultrasonic measuring device and ultrasonic measuring method
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
CN1985165B (en) Three-dimensional ultrasonic imaging device
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP2011257384A (en) Method for imaging structure shape in welded part and device therefor
US20060254359A1 (en) Hand-held flaw detector imaging apparatus
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
JP5910641B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JP4196643B2 (en) Method and apparatus for imaging internal defect by ultrasonic wave
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
US8091423B2 (en) Weld verification system and method
JP2008261889A (en) Imaging method of internal defect by ultrasonic wave, and its device
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
US11709093B1 (en) Three-dimensional broadband nonlinear phased array imaging
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Mitri et al. Comparison of continuous-wave (CW) and tone-burst (TB) excitation modes in vibro-acoustography: Application for the non-destructive imaging of flaws
Ginzel et al. A Study of Time-of-Flight Diffraction Technique Using Photoelastic Visualisation
Titov et al. Measurements of velocity and attenuation of leaky waves using an ultrasonic array
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JP3739368B2 (en) Ultrasonic tandem multi-array flaw detector
Netzelmann et al. Ceramic Automotive Valves-Chances and Limitations of Nondestructive Testing
JPH1123543A (en) Ultrasonic flaw detection method
Hall et al. A Real-Time SAFT System Applied to the Ultrasonic Inspection of Nuclear Reactor Components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees